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From FNS to HEIV: A Link between Two Vision
Parameter Estimation Methods

Wojciech Chojnacki, Michael J. Brooks, Anton van den Hengel, Darren Gawley

Abstract— Problems requiring accurate determination of pa-
rameters from image-based quantities arise often in computer
vision. Two recent, independently developed frameworks for
estimating such parameters are the FNS and HEIV schemes.
Here, it is shown that FNS and a core version of HEIV are
essentially equivalent, solving a common underlying equation
via different means. The analysis is driven by the search for a
nondegenerate form of a certain generalized eigenvalue problem,
and effectively leads to a new derivation of the relevant case of
the HEIV algorithm. This work may be seen as an extension
of previous efforts to rationalize and interrelate a spectrum of
estimators, including the renormalization method of Kanatani
and the normalized eight-point method of Hartley.

Index Terms— Statistical methods, maximum likelihood,
(un)constrained minimization, fundamental matrix, epipolar
equation

I. I NTRODUCTION

ESTIMATION of the parameters that describe a relation-
ship between image feature locations, possibly across

multiple cameras, is a central problem in computer vision.
Basic examples include the stereo and motion problems of
estimating coefficients of theepipolar equation[1] and the
differential epipolar equation[2], and conic fitting [3]. The
principal equationapplicable in a variety of situations, in-
cluding those specified above, takes the form

θT u(x) = 0. (1)

Here, θ = [θ1, . . . , θl]T is a vector representing unknown
parameters;x = [x1, . . . , xk]T is a vector representing an
element of the data (for example, the locations of a pair of
corresponding points); andu(x) = [u1(x), . . . , ul(x)]T is
a vector with the data transformed in a problem-dependent
manner such that: (i) each componentui(x) is a quadratic
form in the compound vector[xT , 1]T , (ii) one component
is equal to1. In some cases, the parameters are subject to an
ancillary constraintnot involving feature locations. A common
form of the ancillary constraint is

φ(θ) = 0, (2)

where, for some real numberκ, φ is a scalar-valued function
homogeneousof degreeκ—that is such thatφ(tθ) = tκφ(θ)
for everyθ and every nonzero scalart.

The estimation problem associated with (1) and (2) can be
stated as follows: Given a collection{x1, . . . ,xn} of image
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data and a meaningfulcost functionthat characterizes the
extent to which any particularθ fails to satisfy the system
of the copies of equation (1) associated withx = xi (i =
1, . . . , n), find θ 6= 0 satisfying (2) for which the cost function
attains its minimum. TheGaussian model of errorsin data
combined with theprinciple of maximum likelihoodleads to
the cost function

JAML(θ;x1, . . . ,xn) =
n∑

i=1

θT u(xi)u(xi)T θ

θT ∂xu(xi)Λxi
∂xu(xi)

T
θ

,

where, for any lengthk vector y, ∂xu(y) denotes thel × k
matrix of the partial derivatives of the functionx 7→ u(x)
evaluated aty, and, for eachi = 1, . . . , n, Λxi

is a k × k
symmetric covariance matrixdescribing the uncertainty of
the data pointxi (see [4], [5], [6]). If JAML is minimized
over those nonzero parameter vectors for which (2) holds,
then the vector at which the minimum ofJAML is attained,
theconstrainedminimizer ofJAML, defines theapproximated
maximum likelihood estimatêθAML. The unconstrainedmin-
imizer of JAML obtained by ignoring the ancillary constraint
and searching over all of the parameter space defines the
unconstrained approximated maximum likelihood estimate,
θ̂u

AML. The functionθ 7→ JAML(θ;x1, . . . ,xn) is homoge-
neous of degree zero and the zero set ofφ is unaffected by
multiplication by nonzero scalars, so botĥθAML and θ̂u

AML

are determined only up to scale.
Various methods are available for findinĝθu

AML. One is
the fundamental numerical scheme(FNS) introduced by Choj-
nacki et al. in [5]. Another is, as will be revealed shortly,
a certain version of theheteroscedastic errors-in-variables
(HEIV) schemethat was first proposed by Leedan and Meer
[7] and further developed by Matei and Meer [8], [9]. The
FNS method operates over the entire parameter space, whereas
the HEIV method operates essentially on a subspace of one
dimension less and recuperates the missing dimension in a
single final step. This paper aims to understand the previously
unclear relationship between the two schemes. It is shown
that the algorithms are two different, but intimately related,
means for numerically solving one and the same equation
characterizingθ̂u

AML. In the analysis that follows, FNS is
taken as a starting point, and HEIV is evolved via reduction of
a certain generalized eigenvalue problem to a nondegenerate
form. This approach effectively results in a new derivation of
the relevant case of the HEIV algorithm.

Determination ofθ̂AML is a much more complicated task
than isolation ofθ̂u

AML. Recently, an integrated method for
calculating θ̂AML was proposed that extends the FNS tech-
nique [10], [11]. The present contribution may provide a basis
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1) Setθ0 = θ̂ALS.
2) Assuming thatθk−1 is known, compute the

matrix Xθk−1 .
3) Compute a normalized eigenvector of

Xθk−1 corresponding to the eigenvalue
closest to zero (in absolute value) and take
this eigenvector forθk.

4) If θk is sufficiently close toθk−1, then ter-
minate the procedure; otherwise increment
k and return to Step 2.

Fig. 1. Fundamental numerical scheme.

for designing a similar extension to the HEIV framework.
From a broader perspective, this work may also be seen as
an extension of previous efforts to rationalize and interrelate a
spectrum of estimators, including the renormalization method
of Kanatani [12] and the normalized eight-point method of
Hartley [13].

II. FUNDAMENTAL NUMERICAL SCHEME

The unconstrained minimizer̂θu
AML satisfies thevariational

equationfor unconstrained minimization

[∂θJAML(θ;x1, . . . ,xn)]θ=θ̂u
AML

= 0T (3)

with ∂θJAML the row vector of the partial derivatives ofJAML

with respect toθ. Direct computation shows that

[∂θJAML(θ;x1, . . . ,xn)]T = 2Xθθ, (4)

whereXθ is an l × l symmetric matrix given by

Xθ =
n∑

i=1

Ai

θT Biθ
−

n∑
i=1

θT Aiθ

(θT Biθ)2
Bi,

Ai = u(xi)u(xi)T , Bi = ∂xu(xi)Λxi
∂xu(xi)

T
.

Thus, (3) can be written as

[Xθθ]θ=θ̂u
AML

= 0. (5)

An algorithm for numerically solving this equation proposed
in [5] exploits the fact that a vectorθ satisfies (5) if and only
if it is a solution of theordinary eigenvalue problem

Xθξ = λξ (6)

corresponding to the eigenvalueλ = 0. Thus, if θk−1 is
an approximate solution, then an improved solution can be
obtained by picking a vectorθk from that eigenspace of
Xθk−1 which most closely approximates the null space of
Xθ; this eigenspace is, of course, the one corresponding
to the eigenvalue closest to zero in absolute value. The
fundamental numerical scheme [5] implementing this idea is
presented in Fig. 1. The scheme is seeded with thealgebraic
least squares(ALS) estimate, θ̂ALS, defined as the uncon-
strained minimizer of the cost functionJALS(θ;x1, . . . ,xn) =
‖θ‖−2

∑n
i=1 θT Aiθ, with ‖θ‖ = (

∑l
j=1 θ2

j )1/2. The estimate

1) Setθ0 = θ̂ALS.
2) Assuming thatθk−1 is known, compute the

matricesMθk−1 andNθk−1 .
3) Compute a normalized eigenvector of the

eigenvalue problem

Mθk−1ξ = λNθk−1ξ

corresponding to the eigenvalue closest to 1
and take this eigenvector forθk.

4) If θk is sufficiently close toθk−1, then ter-
minate the procedure; otherwise increment
k and return to Step 2.

Fig. 2. Basic HEIV scheme.

θ̂ALS coincides, up to scale, with an eigenvector of
∑n

i=1 Ai

associated with the smallest eigenvalue, and this can be found
by performing singular-value decompositionof the matrix
[u(x1), . . . ,u(xn)]T .

III. B ASIC HEIV SCHEME

An alternative parameter estimation framework, derived in a
quite different manner to FNS, has been proposed by Leedan
and Meer [7] and further extended by Matei and Meer [8],
[9]. As will become apparent shortly, a core method of this
framework that we will termHEIV with carrier bias correction
eliminated is effectively a different means for numerically
solving (5). In one form this method relies upon re-expressing
Xθ as

Xθ = Mθ −Nθ

with

Mθ =
n∑

i=1

Ai

θT Biθ
, Nθ =

n∑
i=1

θT Aiθ

(θT Biθ)2
Bi,

and restating the variational equation (5) as

Mθθ = Nθθ, (7)

where the evaluation at̂θu
AML is dropped for clarity. The

matricesMθ and Nθ are nonnegative definite (withMθ

generically positive definite ifn ≥ l), so θ can be viewed
as a solution of thegeneralizedeigenvalue problem

Mθξ = λNθξ (8)

corresponding to the eigenvalueλ = 1. The basic het-
eroscedastic errors-in-variables scheme (see Section VII for
a clue as to the name) is an algorithm for solving (7) that
exploits the above eigenvalue problem in a manner analogous
to that in which FNS utilizes the eigenvalue problem (6). The
scheme is a variation on the technique proposed in [7], [8],
[9]. The details are given in Fig. 2.

As is easily seen from (12) below, the null space of each
matrix Bi contains the lengthl vector [0, . . . , 0, 1]T . Conse-
quently,Nθ is singular. Now, ifθ is a “true” parameter vector
and x1, . . . ,xn are noise-free data satisfyingθT u(xi) = 0
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for eachi = 1, . . . , n, thenMθ is also singular, havingθ in
its null space. As is well known, if bothMθ and Nθ are
simultaneously rank-deficient (or almost rank-deficient, which
happens, for example, whenθ is close to a “true” parameter
vector and the data are just a tiny perturbation of noise-free
data), then solving the eigenvalue problem (8) is prone to
numerical instability [14]. One way to get around this difficulty
is to reduce the eigenvector problem (8) to a similar problem
involving a positive definite right-hand side matrix. Such a
reduction is best achieved by reformulating the variational
equation (7). This is described next.

IV. REDUCED VARIATIONAL EQUATION

The vectoru(x) has one entry equal to 1 and can be written
as

u(x) = [z(x)T , 1]T , (9)

wherez(x) is a “pure measurement” vector of lengthl − 1.
The vector of parametersθ can be partitioned conformally as

θ = [ηT , α]T (10)

with η a length l − 1 vector andα a scalar. We are going
to show that the variational equation (7) is equivalent to a
system of two equations, one of which involves onlyη and
can be solved in isolation, and the other expressesα in terms
of η. The first equation will lead to a desired nondegenerate
eigenvalue problem.

We begin by noting that, in view of (9),

Ai = u(xi)u(xi)T =
[
ziz

T
i zi

zT
i 1

]
(11)

for eachi = 1, . . . , n; here, of course,zi is short forz(xi).
Another consequence of (9) is the identity

∂xu(x) =
[
∂xz(x)

0T

]
,

which implies that, for eachi = 1, . . . , n,

Bi =
[
B0

i 0
0T 0

]
, (12)

with B0
i = ∂xz(xi)Λxi

∂xz(xi)
T
. For eachi = 1, . . . , n,

define a weight

βi =
1

ηT B0
i η

(13)

that depends on theith element of dataxi, its covarianceΛxi
,

and the parameter vectorη. Let z̃ be the centroid of thezi

given by

z̃ =
∑n

i=1 βizi∑n
i=1 βi

, (14)

and, for eachi = 1, . . . , n, let

z′i = zi − z̃ (15)

be theith pure measurement vector relative toz̃. Define two
(l − 1)× (l − 1) matrices

M ′
η =

n∑
i=1

βiz
′
iz
′
i
T , N ′

η =
n∑

i=1

(
βiz

′
i
T η

)2
B0

i .

Upon introducingA0
i = z′iz

′
i
T , the matricesM ′

η and N ′
η

can also be written as

M ′
η =

n∑
i=1

A0
i

ηT B0
i η

, N ′
η =

n∑
i=1

ηT A0
i η

(ηT B0
i η)2

B0
i ,

which reveals their resemblance toMθ andNθ. The choice
of the weightsβi is largely motivated by the desire to achieve
such a resemblance in the first place. Obviously,M ′

η and
N ′

η both depend not only onη, but also on the data and their
covariances.

We now show thatθ = [ηT , α]T satisfies (7) if and only if
the following system of equations holds:

M ′
ηη = N ′

ηη, (16)

α = −z̃T η. (17)

Note that the first equation constrains solelyη and, therefore,
can be solved separately. Onceη is determined,α is readily
prescribed by the second equation. As will become apparent
shortly, the equations decouple as a result of the specific
choice of the centroid̃z. Of the two constraints, the first
plays a leading role and will be called thereduced variational
equation. A key feature of this equation is that its right-hand
side matrixN ′

η, unlike Nθ, is genericallypositive definiteif
n ≥ l.

To show the equivalence of (7) and the system comprising
(16) and (17), first note that, by (10) and (12),θT Biθ =
ηT B0

i η and, further, by (13),

βi =
1

θT Biθ
(18)

for eachi = 1, . . . , n. Consequently,

Mθ =
n∑

i=1

βiAi. (19)

Observe next that, in view of (12),

Nθ =
[
N0

θ 0
0T 0

]
(20)

with

N0
θ =

n∑
i=1

θT Aiθ

(θT Biθ)2
B0

i .

Now, if θ = [ηT , α]T satisfies (7), then, in view of (11), (19)
and (20), (7) can be rewritten as

n∑
i=1

βi

[
ziz

T
i zi

zT
i 1

] [
η
α

]
=

[
N0

θ 0
0T 0

] [
η
α

]
,

or equivalently as the system
n∑

i=1

βi(αzi + ziz
T
i η) = N0

θη, (21)

n∑
i=1

βi(α + zT
i η) = 0. (22)

On account of (14) and (22),

α + z̃T η =
∑n

i=1 βi(α + zT
i η)∑n

i=1 βi
= 0, (23)
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and this immediately yields (17). To show that (16) also holds,
note that, by (9) and (10), for eachi = 1, . . . , n,

u(xi)T θ = α + zT
i η,

and, by (15) and (17),

α + zT
i η = (zi − z̃)T η = z′i

T η.

Hence
θT Aiθ = (u(xi)T θ)2 = (z′i

T η)2.

This together with (18) implies that

θT Aiθ

(θT Biθ)2
= (βiz

′
i
T η)2,

whence immediatelyN0
θ = N ′

η. With this identity, (21) can
be rewritten as

n∑
i=1

βi(αzi + ziz
T
i η) = N ′

ηη. (24)

On the other hand, taking into account (15), we see that
n∑

i=1

βi(αzi+ziz
T
i η)

=
n∑

i=1

βizi(α + zT
i η)

=
n∑

i=1

βi(z′i + z̃)(α + zT
i η).

(25)

By (22),
n∑

i=1

βiz̃(α + zT
i η) = z̃

n∑
i=1

βi(α + zT
i η) = 0, (26)

and by (15) and (23),
n∑

i=1

βiz
′
i(α + zT

i η) =
n∑

i=1

βiz
′
i(α + z̃T η + z′i

T η)

=
n∑

i=1

βiz
′
iz
′
i
T η = M ′

ηη.

(27)

Combining (25), (26), and (27), we obtain
n∑

i=1

βi(αzi + ziz
T
i η) = M ′

ηη.

This jointly with (24) finally yields (16), as desired.
Working backwards, one can easily infer that ifη satisfies

(16) andα is given by (17), thenθ = [ηT , α]T satisfies (7).

V. REDUCED HEIV SCHEME

The algebraic least squares estimatesη̂ALS and α̂ALS are
naturally defined as the respective components in the repre-
sentation

θ̂ALS = [(η̂ALS)T , α̂ALS]T .

Analogously, the unconstrained approximated maximum like-
lihood estimateŝηu

AML andα̂u
AML are defined via the decom-

position
θ̂u

AML = [(η̂u
AML)T , α̂u

AML]T .

1) Setη0 = η̂ALS.
2) Assuming thatηk−1 is known, compute the

matricesM ′
ηk−1

andN ′
ηk−1

.
3) Compute a normalized eigenvector of the

eigenvalue problem

M ′
ηk−1

ζ = λN ′
ηk−1

ζ

corresponding to the eigenvalue closest to 1
and take this eigenvector forηk.

4) If ηk is sufficiently close toηk−1, then ter-
minate the procedure; otherwise increment
k and return to Step 2.

Fig. 3. Reduced HEIV scheme.

In view of (17), α̂u
AML is uniquely determined bŷηu

AML—
when the centroid̃z is taken with the weights

βi =
1

(η̂u
AML)T B0

i η̂u
AML

,

then α̂u
AML = −z̃T η̂u

AML. Now, the generalized eigenvalue
problem

M ′
ηζ = λN ′

ηζ (28)

is nondegenerate: the matrixN ′
η is positive definite. Ac-

cordingly, η̂u
AML can be determined with use of a simple

modification of the HEIV algorithm. The steps of thisre-
ducedHEIV scheme are given in Fig. 3. It is essentially in
this form that the HEIV algorithm was first advanced [7],
[8]. The original version employs a slightly different, bias-
corrected form ofthe vector of carriersu(x). The reduced
scheme, based solely onu(x), constitutes HEIV with carrier
bias correction eliminated. Both versions are comparable in
performance, but since the one with carrier bias correction
eliminated is somewhat simpler, it is this version that was
eventually recognized as the fundamental form of the HEIV
algorithm [9].

It is worth mentioning that Leedan and Meer [7] proposed
a robust procedure for solving the eigenvalue problem (16)
based upongeneralized singular value decompositionof a pair
of matrices(Sη,T η) satisfying M ′

η = ST
η Sη and N ′

η =
T T

η T η.
Finally, we remark that reduction to a nondegenerate form

of eigenvalue problems similar to (28) is crucial for computing
some other types of estimates, notably Kanatani-like renormal-
ization estimates [12] [4, Chap. 9] (these are approximates of
θ̂u

AML of some sort), and ellipse-specific estimates obtainable
with use of an improved version of the direct least-squares
fitting algorithm of Fitzgibbon et al. [3], due to Halı́ř and
Flusser [15].

VI. STABLE HEIV SCHEME

The reduced HEIV scheme is locally convergent—to work
it requires the initial iterate to be close to a solution of
(16). A more stable version of the algorithm, able to cope
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Max. diff. ALS FNS HB HR

HEIV 146 4.7×10−6 7.5×10−5 2.6×10−8

HR 146 4.7×10−6 7.5×10−5

HB 146 7.1×10−5

FNS 146

Avg. diff. ALS FNS HB HR

HEIV 24.8 5.7×10−8 2.0×10−6 2.5×10−10

HR 24.8 5.8×10−8 2.0×10−6

HB 24.8 2.0×10−6

FNS 24.8

TABLE I

MAXIMUM AND AVERAGE DIFFERENCES IN JAML VALUES FOR

DIFFERENT ESTIMATION METHODS.

with a less accurate initial iterate, results from selecting the
eigenvector corresponding to the smallest eigenvalue instead
of the eigenvector corresponding to the eigenvalue closest to 1.
Leedan and Meer remark that this modified method converges
successfully (in fact with high convergence rate) even when
seeded with a random initial estimate. Typically, the minimal
eigenvalues computed after a first iteration are also the closest
to 1, and so from the second iteration onwards the modified
algorithm acts effectively as the original version. Without the
modification, the scheme may exhibit slow convergence or
even divergence.

VII. O RIGINS OFHEIV

The original derivation of the HEIV algorithm, as given
in [7], [8], [9], is different from the one presented here.
In our exposition, the core of HEIV, namely its reduced
form, results from reformulating the variational equation so
that the associated generalized eigenvalue problem becomes
nondegenerate. The original derivation is based on a direct
application of the maximum likelihood principle to a statistical
model operating with candidate probability distributions for
z(x1), . . . ,z(xn), with the random variablesx1, . . . xn mod-
eling the image datax1, . . . ,xn. When thexi have equal
variances (as is often assumed), thez(xi) form, as a rule, a
heteroscedasticset of random variables, that is having different
variances. This explains the term “heteroscedastic” in the name
of the HEIV algorithm. The “errors-in-variables” part of the
label alludes to the adopted statistical model being a so-called
errors-in-variables model—the scalar components of eachxi

are not segregated into two exclusive groups of explanatory
(essentially nonrandom) and response (random) variables, and
are all consistently treated as random variables.

VIII. E XPERIMENTS

Relative performance of the FNS and HEIV methods was
experimentally assessed by running a series of simulations
involving synthetic data. The particular problem considered
was estimation of epipolar geometry. It turns out that in
this case the vector of carriers is unbiased and the original
version of HEIV involving bias corrected carriers coincides
with the version with carrier bias correction eliminated. A
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HEIV
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Fig. 4. Performance histograms for each of the methods, withJAML bins
on thex-axes, and frequencies of occurrence on they-axes.

single element of data took the form of matched corresponding
points from left and right images of a stereo pair and the goal
was to estimate the associatedfundamental matrix. Details of
the various expressions involved are presented elsewhere [5].

In our experiments, five estimation methods were tested,
denoted as ALS, FNS, HB, HR, and HEIV. ALS is the simple,
direct algebraic least squares method described in Section II. It
is included as a method of a different category to give a sense
of scale to the forthcoming numerical results. The FNS, HB,
and HR methods were implemented as specified in Figs. 1, 2,
and 3, respectively. These iterative methods were terminated
when the difference in norm between successive estimates was
less than a common, very small threshold. Estimates of the
final method, HEIV, were obtained using the MATLAB source
code supplied by the authors of the original HEIV papers [16].

The simulations were based on a set of “true” pairs of
corresponding points generated by selecting a realistic stereo
camera configuration, randomly choosing many 3D points,
and projecting the 3D points onto two image planes. Only
those scene points were considered that had both projections
confined to the image size of1, 000× 1, 000 pixels.

For each ofN = 5, 000 iterations, the true corresponding
points were perturbed by homogeneous Gaussian jitter to
produce noisy points. These noisy points were then used to
generate a fundamental matrix estimate for each of the five
estimation methods. For each estimate, the value of theJAML

cost function was computed. Comparison was undertaken in
this realm asJAML is the basis for our rationalizing and
linking of the various iterative methods considered. Note that
the singularity constraint was not imposed, as this would
otherwise obfuscate comparison (the constraint is usually
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implemented as a separate post-process). In these tests, the
level of noise was fixed atσ = 1.0 pixels, although similar
results were obtained using different noise levels.

Fig. 4 shows the histograms ofJAML values associated
with each of the estimators. In contrast with the ALS method,
the iterative methods generate very similar response profiles.
Table I compares estimators pairwise by showing both the
maximum and average differences in associatedJAML values
over the complete set of trials. The respective top left elements
are computed via the expressionsmax1≤i≤N |JAML(θ̂i

HEIV)−
JAML(θ̂i

ALS)| andN−1
∑N

i=1 |JAML(θ̂i
HEIV)−JAML(θ̂i

ALS)|.
The results demonstrate that the methods FNS, HB, HR, and
HEIV deliver estimates whose associatedJAML values are
extremely close. As would be expected from the earlier theory,
the HR and HEIV methods prove to be almost numerically
identical.

Some MATLAB code implementing aspects of the above
may be found at [17].

IX. CONCLUSION

In this work, aspects of the FNS and HEIV frameworks for
estimating parameters from image-based data were examined.
It was shown that FNS and a core version of HEIV are
essentially equivalent, both in terms of analytical formulation
and numerical outcome. In this way, further understanding is
gained about the interrelationships between members of the
spectrum of estimators available for computation of geometric
parameters. Given that the FNS scheme has been recently
upgraded to incorporate constraint in a fully integrated manner,
the opportunity now exists to enhance the HEIV framework
in a similar manner.
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