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Abstract— Problems requiring accurate determination of pa- data and a meaningfukost functionthat characterizes the

rameters from image-based quantities arise often in computer extent to which any particula@ fails to satisfy the system
vision. Two recent, independently developed frameworks for ¢ iy copies of equation (1) associated with= z; (i =
= x; (I =

estimating such parameters are the FNS and HEIV schemes. . ... . .
Here, it g showr? that FNS and a core version of HEIV are 1r--- ;n), find @ 7 0 satisfying (2) for which the cost function

essentially equivalent, solving a common underlying equation attains its minimum. TheGaussian model of errorén data
via different means. The analysis is driven by the search for a combined with theprinciple of maximum likelihoodeads to
nondegenerate form of a certain generalized eigenvalue problem, the cost function

and effectively leads to a new derivation of the relevant case of n

T
the HEIV algorithm. This work may be seen as an extension . _ 0" u(x;)u(z;)"0
. . . . JAML(O,.’Bl,...,.’Bn)—Z y
of previous efforts to rationalize and interrelate a spectrum of , 0T8wu(a:i)Aw0wu(:ci)T9
estimators, including the renormalization method of Kanatani =1 ‘
and the normalized eight-point method of Hartley. where, for any lengttk vectory, d,u(y) denotes thé x k
Index Terms— Statistical methods, maximum likelinood, Matrix of the partial derivatives of the functian — u(z)
(un)constrained minimization, fundamental matrix, epipolar €valuated aty, and, for eachi = 1,...,n, Ay, isak x k
equation symmetric covariance matrixdescribing the uncertainty of

the data pointz; (see [4], [5], [6]). If JanmL IS minimized
over those nonzero parameter vectors for which (2) holds,
) ~ then the vector at which the minimum dfyy, is attained,
E STIMATION of the parameters that describe a relationne constrainedminimizer of Jayr,, defines thepproximated
ship between image feature locations, possibly acroggimum likelihood estima®@ay.. The unconstrainednin-
multiple cameras, is a central problem in computer Visiofymizer of 5y, obtained by ignoring the ancillary constraint
Basic examples include the stereo and motion problems gy searching over all of the parameter space defines the
estimating coefficients of thepipolar equation[1] and the nconstrained approximated maximum likelihood estimate

I. INTRODUCTION

dif_‘fer_ential epipolar eq_uatior{z_], and c_onic fitting [1_3]. Th_e aXML- The function — Jam(6;1,...,x,) is homoge-
prlnc_:lpal equanonqpphcable in a variety of situations, in-naous of degree zero and the zero setdé unaffected by
cluding those specified above, takes the form multiplication by nonzero scalars, so boh y;, and EXML

07 u(x) = 0. (1) are d_etermmed only up to S(_:ale. L _

Various methods are available for findir@,,;. One is

Here, & = [01,...,6,]" is a vector representing unknownthe fundamental numerical scher(leNS) introduced by Choj-
parametersxz = [z1,...,2;]7 is a vector representing annacki et al. in [5]. Another is, as will be revealed shortly,
element of the data (for example, the locations of a pair af certain version of théeteroscedastic errors-in-variables
corresponding points); and(z) = [ui(z),...,w(x)]” is (HEIV) schemethat was first proposed by Leedan and Meer

a vector with the data transformed in a problem-dependdg@ and further developed by Matei and Meer [8], [9]. The
manner such that: (i) each componentz) is a quadratic FNS method operates over the entire parameter space, whereas
form in the compound vectofz”, 1]7, (ii) one component the HEIV method operates essentially on a subspace of one
is equal tol. In some cases, the parameters are subject to @imension less and recuperates the missing dimension in a
ancillary constraintnot involving feature locations. A commonsingle final step. This paper aims to understand the previously
form of the ancillary constraint is unclear relationship between the two schemes. It is shown
that the algorithms are two different, but intimately related,
$(6) =0, (2) means for numericall Ivi d [
n y solving one and the same equation
where, for some real number, ¢ is a scalar-valued function characterizingf ;. In the analysis that follows, FNS is
homogeneousf degrees—that is such that(t0) = t"¢(9) taken as a starting point, and HEIV is evolved via reduction of

for every@ and every nonzero scalér a certain generalized eigenvalue problem to a nondegenerate
The estimation problem associated with (1) and (2) can B&m. This approach effectively results in a new derivation of
stated as follows: Given a collectiofe,, ..., z,} of image the relevant case of the HEIV algorithm.

Determination of@ g, is @ much more complicated task
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Processing, Mawson Lakes, SA 5095, Australia. Calculating@anr was proposed that extends the tech-
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1) Sety = Oars.

2) Assuming tha®;_; is known, compute the
matrix X, _,.

3) Compute a normalized eigenvector of
X, _, corresponding to the eigenvalue
closest to zero (in absolute value) and take
this eigenvector foB,,.

4) If 6, is sufficiently close t&#;_1, then ter-
minate the procedure; otherwise increment
k and return to Step 2.

Fig. 1. Fundamental numerical scheme.

1) Sety = Oars.

2) Assuming that);_; is known, compute the
matricesMy, , and Ng, _,.

3) Compute a normalized eigenvector of the
eigenvalue problem

M9k71€ = )\N9k71€

corresponding to the eigenvalue closest to 1
and take this eigenvector fdk;.

4) If 6, is sufficiently close t&;_1, then ter-
minate the procedure; otherwise increment
k and return to Step 2.

Fig. 2. Basic HEIV scheme.

for designing a similar extension to the HEIV framework.

From a broader perspective, this work may also be seen as

an extension of previous efforts to rationalize and interrelatega, ¢ coincides, up to scale, with an eigenvector)of._, A,
spectrum of estimators, including the renormalization methedsociated with the smallest eigenvalue, and this can be found
of Kanatani [12] and the normalized eight-point method dfy performing singular-value decompositionf the matrix

Hartley [13].

[l. FUNDAMENTAL NUMERICAL SCHEME

The unconstrained minimizéy ,;; satisfies thevariational
equationfor unconstrained minimization

[OgJamL(0; 1, ..., 2y)]g_g. =07 3)

GXML
with 9gJanmr, the row vector of the partial derivatives @f v,
with respect tof. Direct computation shows that

[OgJamL(0; 1, ..., z,)]" = 2X 0, (4)
where X g is anl x [ symmetric matrix given by
LA " 07A,0
Xo = - Bia
=2 0" B,6 2 67 B,0)?

i=1 i=1

A; = u(zy)u(z;)?, B; = (?mu(a:,;)Amiamu(a:i)T.
Thus, (3) can be written as
[X 0] o—b,, — 0. (5)

[u(x), ..., u(x,)]T.

Ill. BAsic HEIV SCHEME

An alternative parameter estimation framework, derived in a
quite different manner to FNS, has been proposed by Leedan
and Meer [7] and further extended by Matei and Meer [8],
[9]. As will become apparent shortly, a core method of this
framework that we will termHEIV with carrier bias correction
eliminated is effectively a different means for numerically
solving (5). In one form this method relies upon re-expressing
Xg as

Xg=Mg— Ny
with
A R W)
Mo=Y —"— Nog=Y — "B,
o ; o’B.o " ° ; (67 B,0)?
and restating the variational equation (5) as
Mg = N8, 7

where the evaluation a@ngL is dropped for clarity. The

~ An algorithm for numerically solving this equation proposeshatrices My and N are nonnegative definite (witth
in [5] exploits the fact that a vectdt satisfies (5) if and only generically positive definite ifz > 1), so # can be viewed

if it is a solution of theordinary eigenvalue problem
Xo€ = A (6)

corresponding to the eigenvalue = 0. Thus, if 8, is

as a solution of thgeneralizedeigenvalue problem
Mo& = ANg& (8)

corresponding to the eigenvalue = 1. The basic het-

an approximate solution, then an improved solution can keoscedastic errors-in-variables scheme (see Section VII for
obtained by picking a vectof, from that eigenspace of a clue as to the name) is an algorithm for solving (7) that

X, , which most closely approximates the null space @xploits the above eigenvalue problem in a manner analogous
Xo; this eigenspace is, of course, the one correspondittgthat in which FNS utilizes the eigenvalue problem (6). The

to the eigenvalue closest to zero in absolute value. Tbeheme is a variation on the technique proposed in [7], [8],

fundamental numerical scheme [5] implementing this idea [8]. The details are given in Fig. 2.

presented in Fig. 1. The scheme is seeded withathebraic

As is easily seen from (12) below, the null space of each

least squareqALS) estimate 5ALS, defined as the uncon-matrix B; contains the lengtth vector [0, ...,0,1]7. Conse-

strained minimizer of the cost functioh1,s(8; x1,...,x,) =

16]172 327, 07 4,0, with ||0]] = (3'_, 62)!/2. The estimate and 1, ..

j=1"J

quently, N g is singular. Now, if is a “true” parameter vector
.,x, are noise-free data satisfyir@Tu(:ci) =0



for eachi = 1,...,7n, then M is also singular, having in  Upon introducingA? = z/2/7, the matricesM;, and N,
its null space. As is well known, if bottMy and Ny are can also be written as

simultaneously rank-deficient (or almost rank-deficient, which n 40 " T A%
happens, for example, whehis close to a “true” parameter M, = Z Tiéo’ N, = Z TZ?B?’
vector and the data are just a tiny perturbation of noise-free =1 "Bl =1 (n"Bin)

data), then solving the eigenvalue problem (8) is prone ighich reveals their resemblance My and Ng. The choice
numerical instability [14]. One way to get around this difficultyof the weights; is largely motivated by the desire to achieve
is to reduce the eigenvector problem (8) to a similar problesuch a resemblance in the first place. ObviouM,’,, and

involving a positive definite right-hand side matrix. Such @’ both depend not only o, but also on the data and their
reduction is best achieved by reformulating the variationgbvariances.

equation (7). This is described next. We now show tha8 = [”, a|7 satisfies (7) if and only if
the following system of equations holds:
IV. REDUCED VARIATIONAL EQUATION - M/T,n _ Nﬁ,n, (16)
The vectoru(x) has one entry equal to 1 and can be written T
as a=—z"1. a7)
u(z) = [2(x)",1]", (9) Note that the first equation constrains solglynd, therefore,

can be solved separately. Onges determinedg is readily
prescribed by the second equation. As will become apparent
shortly, the equations decouple as a result of the specific
0=[n" a)” (10) choice of the centroick. Of the two constraints, the first
plays a leading role and will be called theduced variational

with # a lengthi —1 .VeCtor anda a scalar_. We are going equation A key feature of this equation is that its right-hand
to show that the variational equation (7) is equivalent to &

. L de matrix V! , unlike Ny, is genericallypositive definitaf
system of two equations, one of which involves omjyand n 6. 159 w

L . ) n>1.
can be solved in isolation, and the other express@sterms To show the equivalence of (7) and the system comprising

of n. The first equation will lead to a desired nondegenera{%) and (17), first note that, by (10) and (18 B,0 —

eigenvalue problem. T RO
We begin by noting that, in view of (9), n Bin and, further, by (13),

where z(x) is a “pure measurement” vector of length- 1.
The vector of paramete can be partitioned conformally as

1
s = ———— 18
A; = u(z)u(x;)? = {z;zf zlz] (11) g 6" B;6 (18)
b for eachi = 1,...,n. Consequently,
for eachi = 1,...,n; here, of coursez; is short forz(x;). N
Another consequence of (9) is the identity My = Zﬁisz (19)
_ |O=z(z) i=1
Oou(z) = { o’ } ’ Observe next that, in view of (12),
T o 0
which implies that, for each=1,...,n, Ny — [13779 8] (20)
B,—|Bi © (12)
‘ot o) with .
" 974,60
0 2 0
with B? = 0,2(x;)Ag,dpz(z;)". For eachi = 1,...,n, Ng ZZi(aTB_WBr
define a weight =1 ’
8 = 1 (13) Now, if @ = [n?, )T satisfies (7), then, in view of (11), (19)
nT Bin and (20), (7) can be rewritten as
that depends on thigh element of data;, its cova_rianceflmi, iﬂ- zizz‘ z] ] Ng o] [
a_nd the parameter vectey. Let z be the centroid of the; ‘ i RT 1 lal =107 ol lal’
given by . =1
5 Ziil @zi’ (14) O equivalently as the system
2eim1 B S T 0
and, for each = 1,...,n, let > Bilazi+ ziz[m) = Ngn, (21)
=1
Zi=z;— % (15) n
_ . > Bila+z{m)=0. (22)
be theith pure measurement vector relativezoDefine two =

(I =1) x (I = 1) matrices On account of (14) and (22),

n n 5 n . T
_1\4,/'7 = z;ﬂiz’iz,’iT, NITI = 2; ([)’LZ;T’II) B’(L] o+ 2Tn — Zz—l;{éa ;_zl 77) — 0’ (23)
i= = =117



and this immediately yields (17). To show that (16) also holds,

note that, by (9) and (10), for each=1,...,n,
u(z;)'0 = a+ zI'n,
and, by (15) and (17),
at+zin=(z;—2)"n==z"n
Hence
07 A0 = (u(z;)"0)* = (z;n)”.
This together with (18) implies that
0" A,0

T AT (34T )2
(GTBiO)Q (ﬁlzz T’) )

1) Setny =NaLs-
2) Assuming that,_, is known, compute the
matricesM,, andN,
3) Compute a normalized eigenvector of the
eigenvalue problem
! !/
M; (=AN ¢

Mk—1

corresponding to the eigenvalue closest to 1
and take this eigenvector fay,.

4) If n,, is sufficiently close tap, _,, then ter-
minate the procedure; otherwise increment
k and return to Step 2.

whence immediatelyN§ = N;T With this identity, (21) can Fig. 3. Reduced HEIV scheme.

be rewritten as

n
Zﬂi(azi + zizln) = N,

i=1

On the other hand, taking into account (15), we see that

Z Bi(azi+zizln)

i=1

= Bizila+z{n)

i=1

=" Bilz + 2)(a + 2Tn).

i=1

By (22),

Zﬁii(a + z?n) = 22@-(0& + z;frn) =0,

i=1 i=1
and by (15) and (23),

> Bizia+z{n) =) Bizila+ 2 n+2"n)
i=1 1=1

n
= Zﬂiz;ngn =M.
i=1

Combining (25), (26), and (27), we obtain

n
Z Bi(az; + zizIn) = M n.
i=1

This jointly with (24) finally yields (16), as desired.
Working backwards, one can easily infer thamifsatisfies
(16) anda is given by (17), ther® = [n”, a]” satisfies (7).

V. REDUCEDHEIV SCHEME

In view of (17), a%,, is uniquely determined byj%,;—
when the centroict is taken with the weights

1
61' = = T R0 ~u )
(Mxm) " Bi M,
then a4,y = —2 0%, Now, the generalized eigenvalue
problem
M ¢ = AN, ¢ (28)

is nondegenerate: the matriN;, is positive definite. Ac-
cordingly, n%,;;, can be determined with use of a simple
modification of the HEIV algorithm. The steps of this-
ducedHEIV scheme are given in Fig. 3. It is essentially in
this form that the HEIV algorithm was first advanced [7],
[8]. The original version employs a slightly different, bias-
corrected form ofthe vector of carriersu(x). The reduced
scheme, based solely arn(x), constitutes HEIV with carrier
bias correction eliminated. Both versions are comparable in
performance, but since the one with carrier bias correction
eliminated is somewhat simpler, it is this version that was
eventually recognized as the fundamental form of the HEIV
algorithm [9].

It is worth mentioning that Leedan and Meer [7] proposed
a robust procedure for solving the eigenvalue problem (16)
based upomgeneralized singular value decompositioina pair
of matrices(S,,, T) satisfying M, = S}'S, and N, =
T, Th.

Finally, we remark that reduction to a nondegenerate form
of eigenvalue problems similar to (28) is crucial for computing
some other types of estimates, notably Kanatani-like renormal-
ization estimates [12] [4, Chap. 9] (these are approximates of
0%, of some sort), and ellipse-specific estimates obtainable

The algebraic least squares estimafggy and aars are Wwith use of an improved version of the direct least-squares
naturally defined as the respective components in the repfigiing algorithm of Fitzgibbon et al. [3], due to Haland

sentation R
OaLs = [(Mars)”, davLs]”

Analogously, the unconstrained approximated maximum like-

Flusser [15].

VI. STABLE HEIV SCHEME

lihood estimateg;’,,; andak, are defined via the decom- The reduced HEIV scheme is locally convergent—to work

position R
BXML = [(ﬁXML)Tv aZML}T

it requires the initial iterate to be close to a solution of
(16). A more stable version of the algorithm, able to cope



Max. diff. | ALS FNS HB HR ALS

HEIV 146  4.7x1076  7.5x107° 2.6x10°8 200} E
HR 146  4.7x1076 7.5x10°°
HB 146 7.1x107° 0 - ‘ . .

FNS 146 0 20 40 60 80 100 120 140 160 180 200

400 T T T T T T T T T
Avg. diff. | ALS FNS HB HR FNS

200 - b
HEIV 24.8 5.7x1078 2.0x107% 2.5x10°10
HR 24.8 5.8x107% 2.0x107 o N ‘ ‘ ‘ ‘ ‘ ‘
HB 24.8 2.0x1076 0 20 40 60 80 100 120 140 160 180 200
FNS 24.8 400 ‘ ‘ ‘ ‘ ‘ ; ‘

HB

T T
200 1
TABLE | .l
MAXIMUM AND AVERAGE DIFFERENCES IN JaMT1, VALUES FOR 0 L . . . . . .

DIFFERENT ESTIMATION METHODS 0 20 40 60 80 100 120 140 160 180 200

HR

200 B
with a less accurate initial iterate, results from selecting the OLL ‘ ‘ ‘ ‘ ‘ ‘

. . . . 0 20 40 60 80 100 120 140 160 180 200
eigenvector corresponding to the smallest eigenvalue insteadoo : : : : : : ‘ :

of the eigenvector corresponding to the eigenvalue closest to 1.

Leedan and Meer remark that this modified method converge$® ]
successfully (in fact with high convergence rate) even when .

HEIV

i L

seeded with a random initial estimate. Typically, the minimal " 20 40 0 8 100 120 140 160 180 200
eigenvalues computed after a fl,rSt It?ratlon are also the Cl,o,slgs.t4 Performance histograms for each of the methods, Wity bins
to 1, and so from the second iteration onwards the mod|f|eﬁ? thez-axes, and frequencies of occurrence onghexes.

algorithm acts effectively as the original version. Without the

modification, the scheme may exhibit slow convergence or

even divergence.

single element of data took the form of matched corresponding
points from left and right images of a stereo pair and the goal
o VI_I' (_JRIGINS OFHEIV _ _was to estimate the associatithdamental matrixDetails of

~ The original derivation of the HEIV algorithm, as givenhe various expressions involved are presented elsewhere [5].
in [7], [8], [9], is different from the one presented here. |, oyr experiments, five estimation methods were tested,
In our exposition, the core of HEIV, namely its reduce@ienoted as ALS, FNS, HB, HR, and HEIV. ALS is the simple,
form, results from reformulating the variational equation Sgjrect algebraic least squares method described in Section . It
that the associated generalized eigenvalue problem becogaciyded as a method of a different category to give a sense
nondegenerate. The original derivation is based on a dirggtscgie to the forthcoming numerical results. The FNS, HB,
application of the maximum likelihood principle to a statistical, HR methods were implemented as specified in Figs. 1, 2
model operating with candidate probability distributions fopnq 3, respectively. These iterative methods were terminated
z(x1),..., z(x,), with the random variables,, ...x, mod- ynen the difference in norm between successive estimates was
eImg the image datay,...,x,. When thex; have equal |gss than a common, very small threshold. Estimates of the
variances (as is often assumed), th;) form, as a rule, a fina| method, HEIV, were obtained using the MATLAB source
heteroscedastiset of random variables, that is having different e supplied by the authors of the original HEIV papers [16].
variances. This explains the term “heteroscedastic” in the namerne simulations were based on a set of “true” pairs of

of the HEIV algorithm. The “errors-in-variables” part of the,qrresponding points generated by selecting a realistic stereo
label a!lude; to the adopted statistical model being a so-callegerg configuration, randomly choosing many 3D points,
errors-in-variables m_odel—the scalgr components of e@chand projecting the 3D points onto two image planes. Only
are not segregated into two exclusive groups of explanatqpyse scene points were considered that had both projections
(essentially nonrandom) and response (random) variables, 2gffined to the image size af 000 x 1,000 pixels.
are all consistently treated as random variables. For each of N = 5,000 iterations, the true corresponding
points were perturbed by homogeneous Gaussian jitter to
VIII. EXPERIMENTS produce noisy points. These noisy points were then used to
Relative performance of the FNS and HEIV methods wagenerate a fundamental matrix estimate for each of the five
experimentally assessed by running a series of simulaticestimation methods. For each estimate, the value of/thg;,
involving synthetic data. The particular problem considerexbst function was computed. Comparison was undertaken in
was estimation of epipolar geometry. It turns out that ithis realm asJang is the basis for our rationalizing and
this case the vector of carriers is unbiased and the origitiaking of the various iterative methods considered. Note that
version of HEIV involving bias corrected carriers coincidethe singularity constraint was not imposed, as this would
with the version with carrier bias correction eliminated. Atherwise obfuscate comparison (the constraint is usually



implemented as a separate post-process). In these tests, [theMm. J. Brooks, W. Chojnacki, and L. Baumela, “Determining the ego-

level of noise was fixed at = 1.0 pixels, although similar
results were obtained using different noise levels.
Fig. 4 shows the histograms afayr, values associated

with each of the estimators. In contrast with the ALS method,
the iterative methods generate very similar response profilelé]
Table | compares estimators pairwise by showing both th

maximum and average differences in associatgg;, values

over the complete set of trials. The respective top left elements

are computed via the expressi(maxlASiSN ‘JAML(O%/]\EI\/)*
Tamr(Ohps)| andN 1S5 [ Tanin (Bfgry) — Jamr (Oars)

The results demonstrate that the methods FNS, HB, HR, ai

HEIV deliver estimates whose associatdgy;, values are

extremely close. As would be expected from the earlier theoryg
the HR and HEIV methods prove to be almost numerically

identical.

Some MATLAB code implementing aspects of the abovd®)

may be found at [17].

IX. CONCLUSION

In this work, aspects of the FNS and HEIV frameworks ol
estimating parameters from image-based data were examined.
It was shown that FNS and a core version of HEIV are
essentially equivalent, both in terms of analytical formulatio[ql]
and numerical outcome. In this way, further understanding is
gained about the interrelationships between members of the
spectrum of estimators available for computation of geometric
parameters. Given that the FNS scheme has been receﬁtﬂl
upgraded to incorporate constraint in a fully integrated manner,
the opportunity now exists to enhance the HEIV framework3]

in a similar manner.
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