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Abstract 
A smooth object depicted in a monochrome image will often exhibit brightness variation, or shading. A problem 
much studied in computer vision has been that of how object shape may be recovered from image shading. When 
the imaging conditions are such that an overhead point-source illuminates a smooth Lambertian surface, the problem 
may be formulated as that of finding a solution to an eikonal equation. This article will focus on the existence 
and uniqueness of such solutions, reporting recent results obtained. With regard to existence, shading patterns 
are exhibited for which there is no corresponding object shape. Specifically, a necessary and sufficient condition 
is presented for a circularly symmetric eikonal equation to admit exclusively unbounded solutions; additionally, 
a sufficient condition is given for an eikonal equation to have no solution whatsoever. In connection with unique- 
ness, we consider eikonal equations, defined over a disc, such that the Euclidean norm of the gradient of any solu- 
tion is circularly symmetric, vanishes exactly at the disc center, and diverges to infinity as the circumference of 
the disc is approached. Contrary to earlier influential work, a class of such eikonal equations is shown to possess 
simultaneously circularly symmetric and noncircularly symmetric bounded smooth solutions. 

1 Introduction 

The eikonal equation 

u,’ + r4.v’ = 8(x, y) (1) 

which arises naturally in wavefront analysis and in the 
development of special methods for integrating Hamil- 
ton’s equations (the Jacobi-Hamilton method), has long 
attracted the attention of physicists and mathematicians. 
More recently, the eikonal equation has appeared in 
computer vision formulations. It is in the latter context 
that we present a number of (non-)existence and (non-) 
uniqueness results of fundamental significance. 

A monochrome photograph of a smooth object will 
typically exhibit brightness variation, or shading. Of 
interest in computer vision is the problem of how object 
shape can be extracted from image shading. This shape- 
from-shading problem has been shown by Horn [1975] 
(see also Horn & Brooks [1989], where the same article 

appears in a collection of seminal papers in the field) 
to correspond to the problem of solving a first-order 
partial differential equation. Specifically, one seeks a 
function u(x, y), representing surface depth in the direc- 
tion of the z-axis, satisfying the image irradiance 
equation 

R(um uy) = w4 Y> 

over Q. Here, R is a known function (the so-called 
reflectance map) capturing the illumination and surface 
reflecting conditions, E is an image formed by (ortho- 
graphic) projection of light along the z-axis onto a plane 
parallel to the xy-plane, and 0 is the image domain. 

An interesting case obtains when the reflectance map 
is specified so as to correspond to the situation in which 
an overhead, distant point-source illuminates a Lamber- 
tian surface. A small portion of such a surface acts as 
a perfect diffuser appearing equally bright from all 
directions. At first, this might seem to imply that 
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Lambertian surfaces cannot exhibit other than constant 
shading. However, due to foreshortening, a curved ob- 
ject will in general receive illumination that differs in 
strength across the surface, and it is this that will be 
responsible for variation in image brightness. If a small 
surface portion with normal direction (-u,, -u,,, 1) 
is illtiated by a distant, overhead point-source of unit 
power in direction (0, 0, l), then, according to Lam- 
bert’s law, the emitted radiance and, in view of the 
aforementioned assumptions, the reflectance map are 
given by the cosine of the angle between the two direc- 
tions, namely (u,” + uy2 + 1)-l’*. Thus, if E(x, y) 
denotes the corresponding image, the image irradiance 
equation for the above situation takes the form 

Noting that 0 < E(x, y) I 1, we may rewrite the above 
equation as (l), where &(x, y) is a transformed image 
given by &(x, y) = (E(.x, y))-* - 1. 

Given an image, the natural question arises as to 
whether it depicts a physically realizable shape. For 
Lambertian shading with illumination conditions as 
above, this reduces to the problem of determining 
whether there exists a bounded solution of (1) over a 
given domain. It was Horn [1987] who first posed this 
problem and who coined the term impossible shading 
for a brightness pattern that could not be the image of 
a smooth surface. In this article, we present two differ- 
ent classes of images for which there are no genuine 
shapes. Initially, we reveal a class of images for which 
only unbounded (and therefore physically unrealizable) 
shapes exist. Next, we present a class of images exhib- 
iting shading for which neither bounded nor unbounded 
shapes exist. This portion of the article will refine an 
approach due to Horn, Szeliski, and Yuille [1989] (see 
also Acknowledgments). 

Given an image depicting some particular shape, 
another question arises as to whether it could also be 
the image of other shapes. For Lambertian surfaces illu- 
minated by an overhead point-source, this reduces to 
the problem of finding and examining all solutions of 
(1) over some domain. Note that if u is a solution of 
(l), then so too is any member of the family fu + k, 
where k is an arbitrary constant. Thus, the image of the 
surface S formed by the graph of u will be preserved 
under either a depth shift of S along the z-axis, the in- 
version of S with respect to the xy-plane, or a combi- 

nation of these transformations. These surfaces may 
clearly be said to possess a common shape. Of particu- 
lar interest is the situation of essential uniqueness in 
which a family of the type specified above constitutes, 
within some class of functions, the complete set of solu- 
tions to an equation of the form given in (1). 

Uniqueness of this kind has been demonstrated for 
equation (1) in the case where 

8(x, y) = xz + y2 
1 - x2 - y2 

Deift and Sylvester [1981], and independently Brooks 
[1983], proved that &(l - x2 - y*)“* + k are the 
only C* solutions to this equation over the unit disc 
{(x, y) E R*: x2 + y* < 1). All of these solutions are 
hemispherical in shape. Interestingly, Deift and Syl- 
vester also showed that this result fails in the class of 
C’ solutions. 

In an effort to obtain a more general result, Bruss 
[1982] (see also Horn & Brooks [1989]), in perhaps the 
major work in the uniqueness area, asserted the follow- 
ing: if R is a positive number, D(R) is the disc in the 
q-plane with radius R centered at the origin, andfis 
a continuous function on [0, R) of class C* over (0, R) 
satisfying the following conditions: 

(i) f(0) = 0 and f(r) > 0 for 0 C r < R 
(ii) lim,,af’(r) = 0, lim,,af”(r) exists and is positive 
(iii) lim,,R f(r) = fO3 

then all solutions of class C* to (1) in D(R) with 

&(x9 Y) = f(m) 

take the form 

f 
s 

-mdo+k 
0 

and so are circularly symmetric with common shape. 
Here, conditions (i) and (ii) ensure that the origin is 
the only (singular) point at which E vanishes to second 
order, while condition (iii) implies that the Euclidean 
norm of the gradient of any solution to (1) diverges to 
infinity as the circumference of D(R) is approached. 
We shall show here that this assertion is invalid. Specif- 
ically, we shall reveal a class of functionsf, having the 
above properties, for which the corresponding eikonal 
equations have a bounded, noncircularly symmetric 
solution of class C*. 
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We are concerned in this article with reporting, for 
the first time, a number of results to the computer vision 
literature that have recently appeared in the mathemati- 
cal literature. Accordingly, various theorems to be pre- 
sented will not be accompanied by proofs. For extended 
versions of this work, including full proofs, the inter- 
ested reader is referred to Brooks et al. [1992a,b]. 

2 Impossible Shading Patterns 

In this section, we exhibit two classes of shading pat- 
terns for which there is no corresponding shape. The 
first class will comprise shading patterns admitting only 
unbounded (physically unrealizable) solutions of the 
corresponding eikonal equation, while the second class 
will comprise shading patterns admitting no solutions 
whatsoever. 

2.1 Images Without Bounded Solution 

Let R be either a positive number or +03. Let f be a 
nonnegative continuous function on the interval [0, R) 
vanishing exactly at zero. Consider equation (1) with 
& given by (2). With this special form of E, the class 
of circularly symmetric solutions is readily determined. 
Each solution in this class takes the form +U + k, 
where 

Note that it is critical thatfvanish at zero so as to en- 
sure the differentiability of U at the origin of the xy- 
plane. Our eikonal equation may also admit noncircu- 
larly symmetric solutions. The function U(X, y) = xy 
provides an example of such a solution whenf(r) = 2 
and R = + 00. Unlike the class of circularly symmetric 
solutions, the class of all noncircularly symmetric solu- 
tions is not easily specified. 

A condition on f guaranteeing that all solutions to 
the corresponding eikonal equation are unbounded may 
readily be formulated. Clearly, in the class of circularly 
symmetric solutions, this sufficient condition is 

s 
Rmdo = +oo 

0 

It is less evident, though true, that the same condition 
is sufficient in the general case. In fact, we have the 
following: 

THEOREM 1. Let f be a nonnegative continuousfunction 
on [0, R) vanishing exactly at zero and satisfying (3). 
Then there is no bounded C’ solution in D(R) to (I) 
with E given by (2). 

Interestingly, condition (3) is not only sufficient but 
also necessary for the unboundedness of all solutions to 
the equation in question. We have the following theorem: 

THEOREM 2. Let f be a nonnegative continuous function 
in [0, R) vanishing exactly at zero ana’ satisfying 

s 
“-do< +m 
0 

Then every solution in D(R) to (1) with & given by (2) 
is bounded. Moreover, if u is any such solution, then 

sup 4x7 Y) - inf 4x9 Y) 
k y)@(R) kyWC-0 

12 
s 

RJfo da 
0 

Observe that whether the integral 1,” m da is 
finite or infinite depends exclusively on the behavior 
off near R. The integral will be infinite if, for example, 
f(r) diverges to infinity sufficiently rapidly as r tends 
to R. This means that, in the context of real images 
of Lambertian surfaces illuminated by an overhead 
point-source, a circularly symmetric image cannot be 
derived from a genuine shape if it gets dark too quickly 
as the image boundary is approached. Note also that 
the above integral may be finite or infinite under the 
condition that R is finite and lim,+, f(r) = tco, 
which implies that the Euclidean norm of the gradient 
of any solution to (1) diverges to infinity as the circum- 
ference of D(R) is approached. This is of interest in 
that it relates to the familiar notion of occluding bound- 
ary. The following examples show that the integral may 
be finite or infinite with the above condition being met: 
if R = n/2 and f (r) = tan2 r, then the integral is infi- 
nite, and so no bounded solutions to (1) can exist; on 
the other hand, if R = 1 and f(r) = r2(1 - ?)-I (the 
image of the unit hemisphere centered at the origin), 
then the integral is finite, and so all solutions to (1) must 
be bounded. 

Comparison of theorems 1 and 2 reveals the follow- 
ing remarkable dichotomy: either all solutions to equa- 
tion (1) with E given by (2) are bounded, or all solu- 
tions are unbounded, according to whether the integral 
1,” Jfo da is finite or infinite, respectively. The 
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question then arises as to whether there is an eikonal 
equation having both an unbounded and a bounded 
solution. This is answered in the affirmative when we 
note that, in the semidisc {(x, y) E R* : x2 + y* < 1, 
x > 01, the bounded function arctan&-‘) and the 
unbounded function ln(G + y*) + 1 both satisfy 
the eikonal equation uz + U; = (x2 + y*)-‘. The 
graphs of these functions are displayed in figures la 
and lb, respectively. 

2.2 Images Without Solution 

We now establish the existence of images & for which 
there is no solution to equation (1). In addition, we offer 
some insight into the result. The theorem presented 
below is a refinement of that due to Horn et al. [1989]; 
its proof, to be found in Brooks et al. [1992a], elaborates 
an outline also due to Horn et al. [1989]. 

THEOREM 3. Let Q be a bounded open connected subset 
of the xy-plane with bouna’ary cXI being a piecewise C ’ 

curve of length &‘a~. Let (x0, yO) be a point in !Il and 
r be a positive number such that the closed disc fi(x,, 
yo, r) of radius r centered at (x0, yo) is contained in 
Q. Suppose E is a nonnegative continuousfunction on 
the closure of 0, positive in fl, such that 

4rG > PattJG (4) 
where 

El = n-in {W, Y) : 6, Y) C &x0, yo, r>> 

and 

E2 = max {&(x, y) : (x, y) E an]. 
Then there is no C’ solution to (I) in Q. 

Note that the theorem is of local character: if !J is a 
subset of a domain fl and 8 is a nonnegative function on 
A whose restriction to 62 satisfies (4) for some choice of 
&x0, yo, r) in a, then, obviously, there is no C’ solu- 
tion to (1) in A. Reformulated in terms of Lambertian 
shading, this locality property can be expressed as say- 
ing that no genuine image can admit too dark a spot on 
too bright a background, assuming that the background 

(4 (b) 
Fig. 1. (a) The graph of the function arctan(yx-‘) over x > 0, x2 + y2 < 1. (b) The graph of the function ln[(x* + y*)“*] + 1 over x > 0, 
2 + y* < 1. 
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does not contain a point having unit brightness. The pre- 
cise balance between the qualifications “too dark” and 
“too bright” is, of course, given by condition (4). An 
example of shading without shape is given in figure 2. 

Further insight may be gained by considering the fol- 
lowing. Suppose that a planar rubber sheet is inclined 
slightly away from the horizontal, and that a coin is 
glued to the underside of the sheet. Imagine twisting the 
coin so as to make a portion of the sheet more steeply 
inclined (see figure 3a). An image of the sheet will now 
exhibit a dark area surrounded by a bright background. 
This area may be made arbitrarily dark by a further 
twisting of the coin, while the background may be 
brightened by having the sheet inclined more closely 
to the horizontal. We therefore appear to be in a posi- 
tion to formulate a contradiction to theorem 3. However, 
in attempting to generate a specific counterexample in 
this way, it soon becomes apparent that the image of 
the steep area cannot be made sufficiently dark and 
large without the surface exhibiting at least one station- 
ary point where u, = uy = 0 (see figure 3b). Such a 
point would result in a violation of the condition in 

theorem 3 that E > 0 in 52. The theorem therefore sur- 
vives intact, 

Finally, note that the aforementioned locality prop- 
erty implies that there exist infinitely many impossible 
images that are arbitrarily close to any given genuine 
image. To see this, observe that any genuine image may 
be altered in an arbitrarily small subregion so as to 
ensure the satisfaction of condition (4). It thus follows 
that impossible images are dense in the aggregate of 
all images. 

3 Ambiguous Shading Patterns 

In this section, we present a class of noncircularly sym- 
metric C* solutions to eikonal equations with & given 
by (2). In doing so, we generate counterexamples to 
Bruss’ assertion described earlier. Our approach is con- 
structive in nature in that we develop noncircularly sym- 
metric solutions from pieces of surface glued together 
to form C* wholes. It should be noted that, even after 
an extensive search, the authors were unable to derive 

Fig. 2. Shading without shape. 
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(a> 0-J) 
I@. 3. (a) Surface without stationary point. (h) Surface with a stationary point 

a counterexample given by a simple analytical formula, 
and this remains an open problem. The consequent 
drawback here is that specification of our surfaces is 
somewhat complex. However, as we seek only a 
counterexample (of whatever form) to Bruss’ assertion, 
this in no way weakens the result. 

3.1 Solutions Over Quadrants and Discs 

The construction will be divided into several steps. The 
graph of any of the noncircularly symmetric solutions 
in question will take the form of a saddle having four 
regions of monotonicity spread out over four quadrants 
in the xy-plane determined by the lines y = +x. First, 
we shall construct a portion of a typical solution over 
the quadrant containing the positive x-halfaxis; the three 
remaining portions will easily be generated from this 
one. Next, we shall specify a class of functions f for 
which the portions over all four quadrants can be 
smoothly pasted together and shall describe the corre- 
sponding process of gluing. Finally, we shall discuss 
the differentiability properties of the solutions obtained. 

We now undertake the first stage of the construction. 

THEOREM 4. Let R be either a positive number or + 03. 
Let f be a positive function of class C2 on (0, R) such 
that 

Fy f(r) = 0 

limf’(Y) = 2 
r-‘~ r 

(5) 

(6) 

and 

r[f”(r)fW - Cf’Wl + fWf’W 2 0 (7) 

for 0 < r < R. Then there is a unique solution u of 
class C2 to (I), with & given by (2), defined over the 
quadrant 

QI(@ = (6, Y) 6 D(R) : 1~1 < x, 0 c x c R3 

such that u is positive in the upper xy-hal&Aane and 
vanishes at the positive x-half&s. Moreover, u(x, -y) 
= -u(x, y) for each (x, y) in et(R). 

To appreciate the precise rationale for the introduc- 
tion of conditions (5), (6), and (7), a detailed examina- 
tion of the proof is required (see Brooks et al. [1992b]). 
However, some insight may be gained by noting that 
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our construction resorts to the standard method of char- 
acteristics. Condition (7) then ensures that base charac- 
teristics do not intersect, while condition (6) ensures 
that the base characteristics sweep out the entire 
quadrant. 

Proceeding to the next stage of the construction, let 
R be either a positive number or +03, and let 

QdO = {(xv Y) E D(R) : 1x1 < y, 0 < y < R} 

Q3(R> = {(x, y) E D(R) : lyl < -x, -R < x < 0} 

Q&O = ((A Y) E D(R) : 1x1 < -y, -R < Y < O} 

Given a positive function fof class C2 on (0, R) satis- 
fying (5), (6), and (7), let u be the solution to (l), with 
E given by (2), defined over Ql(R) that has the proper- 
ties stated in theorem 4. Let 

if (A Y) E QdR> 
if (x2 Y) c Q2@) 

m Y) = 
4-x, -Y) if (x, Y) E Q3(R) 
UC-Y, -4 if (x, Y) C QdR) 
jod’x’ m da 

I 
if-R<x=y<R 

- j$ld mj do if -R < x = -y < R 

We have the following. 

THEOREM 5. Let R be either a positive number or + 00. 
Let f be a positive function of class C2 over (0, R) sat- 
isfying (S), (6), and (7). Suppose, moreover, that for 
some 0 < r. < R, f is of class C4 over [O, ro) and of 
class C5 over (0, r,,), and thtf @) is bounded in (0, ro). 
Then U is a solution to (I), with & given by (2), of class 
C’ over D(R) and of class C2 over D(R)\ ((0, 0)). 

It is interesting to consider whether or not the solu- 
tion U is of class C* over the entire disc D(R). The 
following theorem specifies certain conditions on the 
function f that must be met for the answer to be in the 
affirmative. 

THEOREM 6. Let R be either a positive number or + M. 
Let f be a positive junction of class C* over (0, R) 
and, for some 0 < r. < R, of class C4 over [O, ro) 
satisfying (5), (6), and (7). Suppose that U is of class 
C* over D(R). Then f 111 (0) = fc4’(0) = 0. 

We conclude this section with a simple sufficient con- 
dition for U to be of class C2 over D(R). 

(CJ .hj), ytis$es (7), and, for some 0 < r. < R, f(rl 
w enever 0 I r < r,. Then U is of class C 

over D(R). 

3.2 Rejkements 

We now specify certain classes of functions f to which 
the results of the previous section are applicable. One 
of these classes will be used to generate a counterex- 
ample to Bruss’ assertion mentioned in the introduction. 

THEOREM 8. Let R be a positive number. Let g : (0, R) 
-+ [0, 1) be a function of class C* such that g’ and 
g ’ are nonnegative, g ’ is bounded in (0, ro) for some 
0 < r. < R, and lim,+o g (r) = 0. Then the&nction 
f dejned by 

f(r) = “ 
1 - g(r) 

(0 < r < R) 63) 

is of class C* and satis$es (5), (6), and (7). 

Notice that if we let R = 1 and g(r) = 2 for 0 < r 
< 1, then the function f given by (8), namely 
rz(1 - ?>-I, corresponds to the image of the unit 
hemisphere. Let U be the corresponding (noncircularly 
symmetric) solution to (1) with E as in (2) (see figure 4). 

THEOREM 7. Let R be either a positive number or + 00. 
Let f be a positive function that is of class C2 over 

Fig. 4. When viewed from above, under the conditions described in 
the text, this saddle-like surface will look the same as a hemisphere. 
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Since fc4)(0) = 1, it follows from theorem 6 that U is 
not of class C2. Of course, this result can independently 
be inferred from uniqueness results, mentioned in the 
introduction, due to Deift and Sylvester, and Brooks. 

Let R be a positive number. Let r. and rl be such 
that 0 < r. < rl < R. Let cp : (0, R) -+ [0, l] be a 
continuous function vanishing on (0, ro] and equal to 
1 on [r-i, R). For each 0 < r < R, set 

g(r) = c s r d+- - 4 65 
0 

where 

[S 

R 1 -1 c= cp(n)(R - 4 o!x 
0 

Clearly, g is of class C2 and, for each 0 < r < R, 

g’(r) = c 
s r $44 a!x 

0 

and g”(r) = cp(r). Accordingly, g meets the condi- 
tions specified in theorem 8. Letf be the function given 
by (8) and U be the corresponding solution to (1) in 
which & is given by (2). Then, lim,+R g(r) = 1 and 
so lim,,Rf(r) = +oo. Since g vanishes on (0, ro), it 
follows that f(r) = 12 for 0 < r 5 ro. Thus, by the- 
orem 7, U is of class C2 over D(R). A straightforward 
computation shows that 

s 
R*)do< +m 

0 

When combined with theorem 2, this relation implies 
that U is bounded. 

It is now clear that our goal expressed in the introduc- 
tion is achieved: the pair (f, U) provides a desired 
counterexample to Bruss’ assertion. 
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