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Abstract—When determining the parameters of a parametric planar
shape based on a single low-resolution image, common estimation
paradigms lead to inaccurate parameter estimates. The reason behind
poor estimation results is that standard estimation frameworks fail to
model the image formation process at a sufficiently detailed level of
analysis. We propose a new method for estimating the parameters of a
planar elliptic shape based on a single photon-limited, low-resolution
image. Our technique incorporates the effects of several elements—
point-spread function, discretisation step, quantisation step, and photon
noise—into a single cohesive and manageable statistical model. While
we concentrate on the particular task of estimating the parameters of
elliptic shapes, our ideas and methods have a much broader scope and
can be used to address the problem of estimating the parameters of
an arbitrary parametrically representable planar shape. Comprehensive
experimental results on simulated and real imagery demonstrate that
our approach yields parameter estimates with unprecedented accuracy.
Furthermore, our method supplies a parameter covariance matrix as a
measure of uncertainty for the estimated parameters, as well as a planar
confidence region as a means for visualising the parameter uncertainty.
The mathematical model developed in this paper may prove useful in
a variety of disciplines which operate with imagery at the limits of
resolution.

Index Terms—Ellipse fitting, Poisson noise, quantisation, discretisation,
image formation model, photon-limited, low-resolution.

I. INTRODUCTION

WE present a method for recovering the parameters of a planar
elliptic shape from a low-resolution, photon-limited digital

image. Our procedure provides unparalleled parameter estimation
accuracy. We develop a systematic but manageable statistical model
of the image formation process that distinguishes our approach from
contemporary methods. Our model accounts for the point-spread
function (PSF), the inherent continuous-to-discrete mapping of the
image formation process, as well as the uncertainty due to quantisation
and photon noise. Figure 1 illustrates an example of the diverse
images that our model accommodates. While our paper focuses on the
particular task of estimating the parameters of elliptic shapes, the ideas
and methods formulated in this article have a much broader scope
and can be used to address the problem of estimating the parameters
of an arbitrary parametrically representable planar shape. Determining
the parameters of an ellipse from a low-resolution planar image has
essential applications in camera calibration [1], but the core of our
contribution lies in the details of the mathematical framework and
conceptual methodology. We believe that our general approach is
worthy of imitation and may lead to substantial progress in confocal
microscopy, long-range surveillance, high-accuracy camera calibration,
and astronomy.

II. RELATED WORK

The majority of ellipse estimation methods fit a curve to a planar
set of points. One distinguishes between point-based ellipse fitting
methods by considering the nature of the cost function that the
algorithms minimise. Methods which explicitly decrease the distance
between the points and the ellipse curve are considered geometric

methods. The quintessential geometric method is orthogonal distance
regression, which minimises the orthogonal distance from a point to
the curve [2]–[8]. Algebraic methods, on the other hand, try to ensure
that the data points satisfy an ellipse implicit equation as accurately as
possible. One differentiates between algebraic methods by considering
how they penalise the degree to which a data point fails to satisfy an
implicit equation [9]–[12]. Algebraic methods, in particular, have been
the focus of considerable study, and recent works have concentrated
on improving their statistical efficacy and accuracy [13]–[16].

The fact that the most advanced ellipse fitting methods operate on
data points is problematic when one wishes to fit an ellipse to a photon-
limited low-resolution image of an elliptic region. The difficulty lies
in extracting a set of data points that precisely lie on the contour
of the ellipse. The standard approach involves gradient estimation,
non-maxima suppression, and thresholding. These steps produce, at
best, a set of data points that approximate the contour only at the
level of resolution of the pixel grid. Moreover, each of these steps
introduces substantial errors and biases which the noise models of
prevailing ellipse fitting methods disregard.

It is possible to obtain data points with sub-pixel coordinates by
using sub-pixel edge detection methods [17]. However, sub-pixel
techniques usually do not characterise the uncertainty or bias of
their estimates, and so one cannot attribute meaningful covariance
matrices to the sub-pixel data points. The inability to characterise
the uncertainty and bias of the sub-pixel points is a severe limitation
and, effectively, violates the modelling assumptions associated with
point-based ellipse fitting methods. Moreover, the sub-pixel estimation
methods are themselves sensitive to noise and do not take quantisation
into account.

As an alternative to point-based ellipse fitting, Ouellet and Hébert
[18] proposed a region-based method. The region-based method
exploits a duality relationship between a point and a line in projective
geometry. The duality relationship states that the homogeneous
representation of a point may simultaneously be interpreted as a
description of a line. Hence, one can equivalently state the problem of
fitting an ellipse to a set of points, as the task of fitting an ellipse to a
set of lines. The particular set of lines that satisfy an ellipse equation
are called the envelope of tangent lines. The region-based method takes
advantage of the observation that lines perpendicular to the gradient of
an ideal ellipse image are tangent to the ellipse. The method proceeds
by computing the gradient of an image and discarding pixels where
the magnitude of the gradient is below a specified threshold. For each
remaining pixel, the method constructs a line that is perpendicular
to the orientation of the gradient. The algorithm then minimises an
algebraic error, which is similar to the well-known point-based direct
ellipse fit (DEF) [19], [20]. An important difference is that each line
contributes to the algebraic cost by a weight equal to the magnitude
of the gradient from which the line was derived.

The limitations mentioned for the point-based ellipse fitting methods
also hold for the aforementioned region-based method. This particular
region-based method does not model the image formation process, and
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Fig. 1. Examples of different digital images of the same elliptic region. The top-left image denotes an ideal digital image of an elliptic region. All the other
images are observations of this image with different point-spread functions at varying levels of resolution, noise level, and quantisation. Our aim is to recover
the ellipse parameters associated with the ideal digital image (top-left) given its corrupted observation.

so cannot accommodate Poisson noise or quantisation in a principled
manner. Furthermore, the method still operates at the level of pixels
and so does not address the resolution problem.

We address the shortcomings of these established ellipse fitting
methods by developing a new estimation framework which incorpo-
rates an intricate but tractable model of the image formation process.

III. IMAGE FORMATION PROCESS

One can conceptualise an imaging system as a continuous-to-
discrete operator which maps a function of continuous variables
(the elliptic shape in our 3D world) to a finite set of numbers (the
discrete image) [21]. The information loss in the passage from the
continuous domain to the digital one occurs in four stages (see Fig. 2).
First, the 3D world is projected onto a 2D plane using one of several
projection methods available (perspective, fish-eye, catadioptric, etc.).
The projection process produces an analogue image with infinite
resolution, or an ideal geometric image. The geometric image is an
idealisation—any real optical device (e.g., a camera lens) imposes
certain imprecisions such as geometric distortions and blurring. The
second stage models the effect of the errors and leads to the real
analogue image. This image still resides in the analogue domain and
is not directly observable. The third and fourth stage, discretisation
plus addition of noise (including photon counting noise, electronic
noise and quantisation round-off noise), finally produces an observable
digital image.

To keep the transition from the ideal to the real analogue image
tractable, it is standard to assume that the amount of blurring does
not vary within the field of view, and as such can be modelled by
a convolution of the ideal image with a single function [22]. This
function is known as the PSF of the image acquisition device. With
the PSF at hand, the relation between the ideal and real analogue
images can be written as

freal(x, y) = (fideal ∗ psf)(x, y), (1)

where ∗ denotes convolution in the plane [23]. As it turns out, the
PSF can in practice be well approximated by a Gaussian kernel,

psf(x, y) =
1

2πσ2
PSF

exp

(
−x

2 + y2

2σ2
PSF

)
(2)

with some positive σPSF. We shall adopt this approximation in our
discussion.

The discretisation stage is reflective of the fact that the image values
are constant over each pixel from a grid of pixels, and that they are
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Fig. 2. An overview of an image formation model. In the first step, the 3D
world is projected onto a 2D image plane resulting in an ideal geometric image.
The second stage accounts for imprecisions such as geometric distortions and
blurring. The third step imposes a grid of pixels, introduces a statistical model
for the number of photons that hit each pixel, and accounts for noise. The
final step models the loss of information due to quantisation of the photon
counts.

multiples of a single numerical value. The latter effect is explained
by the image intensity at a particular pixel being proportional to the
number of photo-electrons recorded by the pixel’s sensor. Instrumental
in the passage from the real analogue to the digital image is a pixel
response function:

prf(P ) =
1

|P |

∫
P

freal(x, y) dx dy, (3)
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where, for a pixel P , |P | denotes the area of P . We shall regard the
image intensity at the pixel P as a random value fluctuating around
prf(P ).

IV. PROBABILISTIC MODEL

Let C be the conversion factor linking the image intensity with
the photo-electron count. If the image intensity is a number between,
say, 0 and 1, then the corresponding value of the photo-electron
count is an integer between 0 and C. Neglecting—temporarily—the
digitisation error, it is natural to model the photo-electron count NP
at P stochastically by applying a Poisson noise to prf(P ), i.e., by
letting

NP = XP , (4)

where XP is a Poisson-distributed random variable with mean
C prf(P ),

Pr(XP = k) =
(C prf(P ))k

k!
e−kC prf(P ) (5)

for k = 0, 1, 2, . . . .
To include the quantisation error, we modify the above definition

and add to XP an integer-valued random variable UP uniformly
distributed in the range

[−b, b] ∩ Z = {−b,−b+ 1, . . . ,−1, 0, 1, . . . , b− 1, b}, (6)

where b is a non-negative integer. In other words, we let

NP = XP + UP . (7)

Our proposed image recovery method will be based on the statistical
model of a pixel value embodied in the above formula. To proceed,
it will be critical to identify the form of the pixel response function
and the shape of the probability distribution of NP .

V. PIXEL RESPONSE FUNCTION

We now provide a computationally convenient expression for the
pixel response function for an image of a uniform white planar shape.
We consider two scenarios whereby the shape appears against (1) a
completely black backdrop and (2) a grey backdrop.

A. Black background

Let D be a uniform white region on a black planar background.
Then the image associated with D can be described as

fideal(x, y) = 1D(x, y), (8)

where 1D stands for the characteristic function of D. In view of (1),

freal(x, y) =

∫
R2

1D(x− s, y − t) psf(s, t) dsdt. (9)

For (s, t) ∈ R2, let T(s,t)D denote the translate of D by (s, t),

T(s,t)D = {(x, y) ∈ R2 | (x− s, y − t) ∈ D}. (10)

It is readily checked that

1D(x− s, y − t) = 1T(s,t)D(x, y). (11)

With this in mind, for a given pixel P , we have∫
P

[∫
R2

1D(x− s, y − t) psf(s, t) dsdt

]
dxdy

=

∫
P

[∫
R2

1T(s,t)D(x, y) psf(s, t) dsdt

]
dx dy

=

∫
R2

[∫
P

1T(s,t)D(x, y) dx dy

]
psf(s, t) dsdt

=

∫
R2

∣∣P ∩ T(s,t)D
∣∣ psf(s, t) dsdt

=

∫
R2

∣∣T(−s,−t)P ∩D
∣∣ psf(s, t) dsdt, (12)

where the identity∣∣P ∩ T(s,t)D
∣∣ =

∣∣T(−s,−t)P ∩D
∣∣ (13)

results from

T(−s,−t)(P ∩ T(s,t)D) = T(−s,−t)P ∩D (14)

and the fact that the area of P ∩ T(s,t)D is the same as the area
of the translate T(−s,−t)(P ∩ T(s,t)D) of P ∩ T(s,t)D by (−s,−t).
Combining Eqs. (3), (9), and (12), we finally obtain

prf(P ) =
1

|P |

∫
R2

∣∣T(−s,−t)P ∩D
∣∣psf(s, t) dsdt. (15)

B. Grey background

Let D be a uniform white region on a grey planar background.
Suppose that the background has intensity c, where 0 ≤ c < 1. Then
the image associated with D can be described as

fideal(x, y) = 1D(x, y) + c1R2\D(x, y) (16)

or, equivalently, as

fideal(x, y) = (1− c)1D(x, y) + c. (17)

It then immediately follows from (15) that the pixel response function
in this case is given by

prf(P ) = c+
1− c
|P |

∫
R2

∣∣T(−s,−t)P ∩D
∣∣psf(s, t) dsdt. (18)

The above formula will play a key role in the subsequent development.
Note that (15) is a particular case of (18) with c = 0.

VI. PROBABILITY DISTRIBUTION

We now calculate the probability distribution of the random variable
NP defined in (7).

Suppose that X and Y are two independent random variables, with
X being Poisson-distributed with parameter λ, and Y being discrete
uniformly distributed over the set [−b, b] ∩ Z,

X ∼ Poisson(λ), Y ∼ DU (−b, b). (19)

Then, for each n ∈ [−b,∞) ∩ Z = {−b, b + 1, . . . }, the event
X+Y = n is the union of the pairwise disjoint events {X+Y = n}
and {Y = m}, where m runs over [−b, b] ∩ Z. It follows that

Pr(X + Y = n) =

b∑
m=−b

Pr(X + Y = n, Y = m). (20)

Since

Pr(X + Y = n, Y = m) = Pr(X = n− Y, Y = m)

= Pr(X = n−m, Y = m)

= Pr(X = n−m) Pr(Y = m), (21)
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where the last equality holds by the independence of X and Y , and

Pr(X = n−m) = e−λ
λn−m

(n−m)!
1[0,∞)(n−m), (22)

Pr(Y = m) =
1

2b+ 1
, (23)

we have

Pr(X + Y = n) =
1

2b+ 1

b∑
m=−b

e−λ
λn−m

(n−m)!
1[0,∞)(n−m)

=
1

2b+ 1

b∑
m=−b

e−λ
λn+m

(n+m)!
1[0,∞)(n+m).

(24)
Since 1[0,∞)(n + m) = 0 whenever m < −n, the dummy integer-
valued variable m in the last sum has to satisfy two conditions:
−b ≤ m ≤ b and n + m ≥ 0 or, equivalently, −n ≤ m. These
conditions may conveniently be combined into a single condition,
namely, max(−b,−n) ≤ m ≤ b or, what is the same, −min(b, n) ≤
m ≤ b, with the proviso that −min(b, n) ≤ b; if −min(b, n) > b,
we necessarily have Pr(X + Y = n) = 0. Thus

Pr(X + Y = n)

=


1

2b+ 1

∑b
m=−min(b,n) e−λ

λn+m

(n+m)!
if −min(b, n) ≤ b,

0 otherwise.
(25)

We immediately infer from this formula that if b = 0, then

Pr(X + Y = n) = e−λ
λn

n!
= Pr(X) (26)

for each n ∈ Z>0 := {0, 1, 2, . . . }.
Suppose that b > 0. Then if n < −b, then min(b, n) = n and so
−min(b, n) > b, implying, according to (25), that

Pr(X + Y = n) = 0. (27)

If −b ≤ n ≤ b, then min(b, n) = n, and we have

Pr(X + Y = n) =
1

2b+ 1

b∑
m=−n

e−λ
λn+m

(n+m)!

=
1

2b+ 1

n+b∑
k=0

e−λ
λk

k!
. (28)

If n > b, then min(b, n) = b, and we have

Pr(X + Y = n) =
1

2b+ 1

b∑
m=−b

e−λ
λn+m

(n+m)!

=
1

2b+ 1

n+b∑
k=n−b

e−λ
λk

k!

=
1

2b+ 1

(
n+b∑
k=0

e−λ
λk

k!
−
n−b∑
k=0

e−λ
λk

k!

)
. (29)

Using the upper incomplete gamma function

Γ(α, x) =

∫ ∞
x

e−ttα−1 dt (30)

and the formula

Γ(n+ 1, x) = n!

n∑
m=0

e−x
xm

m!
(31)

for n ∈ Z>0, we can rewrite Eqs. (27)–(29) as
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Fig. 3. A visualisation of the probability mass function of quantised photon
counts given by equations Eqs. (25) and (32).

Pr(X + Y = n)

=



0 if n < −b,

Γ(n+ b+ 1, λ)

(2b+ 1)(n+ b)!
if −b ≤ n ≤ b,

1

2b+ 1

(
Γ(n+ b+ 1, λ)

(n+ b)!

−Γ(n− b+ 1, λ)

(n− b)!

) if n > b.

(32)

An illustration of this probability mass function is presented in Fig. 3.

VII. ESTIMATION METHOD

Suppose that our region of interest, say the interior of an ellipse,
is a member of a family of candidate regions {Dξ | ξ ∈ Ξ} indexed
by a vector of parameters ξ running over a parameter space Ξ. Let
ξ∗ be the vector of parameters determining the region of interest. For
each ξ ∈ Ξ, suppose that Dξ is transformed via a physical process
into a digital image. Let P denote the set of corresponding pixels.
For each pixel P in P , we assume that the image intensity fP of P
is modelled as a random variable NP given by (7). Moreover, we
assume that the NP , P ∈ P , are stochastically independent. This
means that with

N = (NP )P∈P and fdigital = (fP )P∈P , (33)

we have

Pr(N = fdigital) =
∏
P∈P

Pr(NP = fP ). (34)
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The expression on the right hand side depends on the parameters ξ, b,
c, C, and σPSF. More explicitly, we have, in accordance with (32),

Pr(NP = fP )

=



0 if n < −b,

Γ(fP + b+ 1, λP )

(2b+ 1)(fP + b)!
if −b ≤ fP ≤ b,

1

2b+ 1

(
Γ(fP + b+ 1, λP )

(fP + b)!

−Γ(fP − b+ 1, λP )

(fP − b)!

) if fP > b,

(35)

where, in line with Eqs. (5) and (18),

λP = C

(
c+

1− c
|P |

∫
R2

∣∣T(−s,−t)P ∩Dξ

∣∣psf(s, t) dsdt

)
(36)

depends on ξ, c, C, and, in view of (2), also on σPSF. We treat
b, c and C as values known a priori and fixed. Writing, more
emphatically, Pr(N = fdigital) as Pr(fdigital | ξ, σPSF), we may
treat (ξ, σPSF) 7→ Pr(fdigital | ξ, σPSF) as the likelihood function
for ξ and σPSF. Using the maximum likelihood (ML) principle, we
may next estimate ξ and σPSF, given an observed digital image
fobserved = (fob

P )P∈P , by minimising the corresponding negative
log-likelihood function

`(ξ, σPSF) := −
∑
P∈P

ln Pr(NP = fob
P ). (37)

In other words,

{ξ̂, σ̂PSF} = arg min
ξ,σPSF

`(ξ, σPSF). (38)

We are solely interested in obtaining an estimate of the region of
concern, so once the minimisation is performed, we may discard
σ̂PSF and the remaining ξ̂ is then an estimate of ξ∗. We refer to ξ̂
as the ML estimate of ξ∗, and dub the method of generating ξ̂ the
ML estimator for region estimation.

The above-described estimation method requires, critically, a means
for calculating the term

∣∣T(−s,−t)P ∩Dξ

∣∣ in (36). As it turns out,
the evaluation of

∣∣T(−s,−t)P ∩Dξ

∣∣ can be performed effectively in
the case where Dξ is an ellipse (with ξ the vector of the ellipse’s
parameters). This is due to the fact that there exist explicit formulae for
determining the area of intersection between an ellipse and a rectangle
(a pixel) in the case that the sides of the rectangle are parallel to the
semi-axes of the ellipse. We present these rather involved formulae
in Appendix A and henceforth concentrate our discussion exclusively
on ellipse estimation.

A. Characterising an ellipse region

An ellipse in general position can be expressed parametrically as

x = H +A cosα cos τ −B sinα sin τ,

y = K +A cosα sin τ +B sinα cos τ. (39)

Here, A and B represent the length of the semi-major and semi-minor
axis of the ellipse, H and K denote the x and y coordinates of the
centre of the ellipse, τ is the angle formed by the major axis with
the positive x axis, and α is the angular co-ordinate of the point
(x, y) on the ellipse. The vector ξ = [A,B,H,K, τ ]> (excluding α)
encompasses the geometric parameters of the ellipse and uniquely
describes the ellipse as a set. Alongside the parametric form, the

ellipse can be represented in Cartesian form as the locus of points
(x, y) in the plane satisfying

ax2 + bxy + cy2 + dx+ ey + f = 0 (40)

where a, b, c, d, e, f are real numbers such that b2 < 4ac. The vector
θ = [a, b, c, d, e, f ]> of the algebraic parameters of the ellipse
determines the ellipse uniquely, however the reverse correspondence
is not univocal—all non-zero multiples of θ describe one and the
same ellipse. Using the Cartesian form, the interior of the ellipse
can be conveniently characterised as the locus of points (x, y) in the
plane satisfying

ax2 + bxy + cy2 + dx+ ey + f < 0. (41)

The above two descriptions of an ellipse are fully equivalent, each
being obtainable from the other by means of a conversion formula.
The explicit formulas for conversion will be of relevance in what
follows. The rule for the passage from the geometric parameters to
the algebraic parameters is given by

a =
cos2 τ

A2
+

sin2 τ

B2
,

b =

(
1

A2
− 1

B2

)
sin 2τ ,

c =
cos2 τ

B2
+

sin2 τ

A2
,

d =
2 sin τ (K cos τ −H sin τ)

B2
− 2 cos2 τ (H +K tan τ)

A2
,

e =
2 cos τ (H sin τ −K cos τ)

B2
− 2 sin τ (H cos τ +K sin τ)

A2
,

f =
(H cos τ +K sin τ)2

A2
+

(K cos τ −H sin τ)2

B2
− 1.

(42)

To present the rule for the passage from the algebraic parameters into
geometric parameters, we first let

∆ = b2 − 4ac,

λ± =
1

2

(
a+ c∓

(
b2 + (a− c)2

)1/2)
,

ψ = bde− ae2 − b2f + c(4af − d2),

V ± =

(
ψ

λ±∆

)1/2

, (43)

where ± and ∓ are shorthand for + or −, which allows presentation
of two expressions in one formula, with the upper − of ∓ associated
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Fig. 4. M ×N array of pixels with the corresponding grid of pixel centres
spanning the unit box [0, 1] × [0, 1]. The diagram includes a formula for
converting the matrix indices of a pixel to the pixel’s Cartesian coordinates.

with the + of ±. We can now state the rule in question as

A = max(V +, V −), B = min(V +, V −),

H =
2cd− be

∆
, K =

2ae− bd
∆

,

τ =



1
2

arccot
(
a−c
b

)
if b < 0, a < c and V + ≥ V −,

π
4

if b < 0, a = c and V + ≥ V −,
1
2

arccot
(
a−c
b

)
+ π

2
if b < 0, a > c and V + ≥ V −,

0 if b = 0, a < c and V + ≥ V −,
π
2

if b = 0, a ≥ c and V + ≥ V −,
1
2

arccot
(
a−c
b

)
+ π if b > 0, a < c and V + ≥ V −,

3π
4

if b > 0, a = c and V + ≥ V −,
1
2

arccot
(
a−c
b

)
+ π

2
if b > 0, a > c and V + ≥ V −,

1
2

arccot
(
a−c
b

)
+ π

2
if b < 0, a < c and V + < V −,

3π
4

if b < 0, a = c and V + < V −,
1
2

arccot
(
a−c
b

)
+ π if b < 0, a > c and V + < V −,

π
2

if b = 0, a < c and V + < V −,

0 if b = 0, a ≥ c and V + < V −,
1
2

arccot
(
a−c
b

)
+ π

2
if b > 0, a < c and V + < V −,

π
4

if b > 0, a = c and V + < V −,
1
2

arccot
(
a−c
b

)
if b > 0, a > c and V + < V −

(44)
(see [24, Section 4.10.2] for the starting point of the derivation of the
formulas). We remark that the formula for τ is valid only under the
assumption that the ellipse is not a circle, i.e., provided the inequality
(a− c)2 + b2 > 0 holds.

B. Forming a digital image of an ellipse region

To be able to make use of the negative log-likelihood given in (37),
one needs to have a way of constructing digital images of candidate
ellipse regions that incorporate the effects of the PSF, discretisation
step, quantisation step, and photon noise. In this section, we outline
the procedure for constructing such images.

With a view to generating a single specific image, given a pair of
integers M and N such that M ≥ 2 and N ≥ 2, we create a grid of

pixels in the form of an M ×N array of rectangles aligned with the
x and y axes, each of size (M − 1)−1 × (N − 1)−1, with the centre
(xn, ym) of the (m,n)th rectangle specified by

xn =
n− 1

N − 1
and ym =

M −m
M − 1

(45)

for every 1 ≤ m ≤ M and every 1 ≤ n ≤ N (see Fig. 4).
Given a particular ellipse specified by a parameter vector θ, we
construct a digital image via the following steps. We first determine
the geometric parameters of the ellipse. The relevant formulae are
given in Subsection VII-A. Next, we take advantage of the fact that
an application of the coordinate transformation

x′ = (x−H) cos τ + (y −K) sin τ,

y′ = −(x−H) sin τ + (y −K) cos τ (46)

brings the ellipse to a standard form. More specifically, we apply the
above transformation to each pixel centre, obtaining points (x′n, y

′
m)

(m = 1, . . . ,M , n = 1, . . . , N ). For each pair (m,n), we form
a rectangle of size (M − 1)−1 × (N − 1)−1 centred at (x′n, y

′
m)

and aligned with the x′ and y′ axes, and calculate the area of
intersection between this rectangle and the ellipse transformed to
the x′-y′ coordinate system (this ellipse is uniquely determined by
A and B). In our calculations we use formulae from Appendix A.
Subsequently, we divide the intersection area by the area of the
rectangle. The outcome yields the value of a pixel-averaged ideal
digital image at the (n,m)th pixel, faveraged(xn, ym). To incorporate
the effect of the PSF, we implement, for a value c of the background
intensity, a discretised version of (18) in the form

prf(xn, ym) = c+
1− c
Z

M∑
s=1

N∑
t=1

faveraged(xs, yt)

× exp

(
− (xs − xn)2 + (yt − ym)2

2σ2
PSF

)
,

(47)
where Z is a normalisation constant given by

Z =

M∑
s=1

N∑
t=1

exp

(
− (xs − xn)2 + (yt − ym)2

2σ2
PSF

)
. (48)

The array [prf(xn, ym)]1≤m≤M, 1≤n≤N has entries between 0 and
1. Scaling each entry of this array by a conversion factor C and
simulating, for each pair (m,n) independently, effects of Poisson
noise with parameter C prf(xn, ym) with the aid of Algorithm 1, we
next obtain an array [fPoisson(xn, ym)]1≤m≤M, 1≤n≤N of plausible
photon counts, or a Poisson-corrupted image. Recall that the standard
deviation of Poisson noise is equal to the square-root of the average
number of events. Hence, when applying Poisson noise to an image,
the signal-to-noise ratio is equal to

SNR =
C prf(xn, ym)√
C prf(xn, ym)

=
√
C prf(xn, ym). (49)

For a large choice of C, the signal-to-noise ratio will be significant,
and the image will appear relatively noise free. Conversely, for small
values of C, corresponding to low-light conditions, the noise will be
much more prominent. To model the quantisation step of the digital
image formation process, we partition the Poisson-corrupted image
into G grey levels. The partitioning is achieved by grouping the
intensities into discrete bins. Let b denote the half-width of a bin. For
modelling convenience, we shall assume that both b and C are powers
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Algorithm 1 RandomPoissonVariate(λ) [25]
Require: λ > 0

1: L← −λ
2: k ← 0
3: p← 0
4: condition ← True
5: while condition do
6: k ← k + 1
7: p← p+ ln (RAND) . RAND generates a uniform number in

the interval [0, 1].
8: condition ← (p ≥ L) . Inequality is either True or False.
9: return k − 1 . Result is a random sample from a Poisson

distribution with mean λ.

of two, which ensures that the number of grey levels G = C/(2b) is
also a power of two. With the quantisation function

q(x) =



1 if −∞ < x < 2b× 1,

2 if 2b× 1 ≤ x < 2b× 2,

3 if 2b× 2 ≤ x < 2b× 3,
...
G− 1 if 2b× (G− 2) ≤ x < 2b× (G− 1),

G if 2b× (G− 1) ≤ x <∞,

(50)

the final digital image is given by the relation

fdigital(xn, ym) = 2b× q (CfPoisson(xn, ym))− b. (51)

Our quantisation model can be interpreted as follows. The scale factor
C denotes the number of photons that would yield a maximum amount
of charge in a pixel and produce the brightest intensity. The interval
from zero to C is partitioned into sub-intervals (bins), and generally
the observed photon count is replaced by the centre value of the
interval into which the photon count falls. The last interval extends
into positive infinity to capture the notion of saturation. A pixel is said
to be saturated if at least C photons have reached it. If the number of
photons exceeds C, then any additional photons that reach the pixel
will not be registered and hence effectively quantised to the same
value as the maximum count C.

An illustration of the different stages of the digital image formation
process is presented in Fig. 5.

C. Implementing the maximum likelihood estimator

A numerically stable implementation of formula (37) for the nega-
tive log-likelihood is presented in Algorithm 2 and Algorithm 3. We
minimise the negative log-likelihood using the BFGS Quasi-Newton
method, and evaluate the required gradient and approximate Hessian
numerically. Among the variables that we choose to parametrise
the log-likelihood with in Algorithm 2 are real-valued variables
labelled

√
A,
√
B, and

√
σPSF. During the optimisation process

we square
√
A,
√
B, and

√
σPSF, and ensure in that way that the

values of A, B, and σPSF are non-negative. To prevent σPSF from
attaining the value of zero, we add a small positive constant ε to
(
√
σPSF)2. We assume that the scale factor C and the quantisation

factor b are known or have been estimated from the data, and we
do not optimise them further. Thus our overall parameter vector
is η = [

√
A,
√
B,H,K, τ,

√
σPSF]>, with the derived vector of

geometric parameters ξ = [(
√
A)2, (

√
B)2, H,K, τ ]>.

D. Characterising the uncertainty of the estimate

To characterise the uncertainty or reliability of the ML estimate ξ̂
of the geometric parameters of the region’s bounding ellipse, we use

Algorithm 2 LikelihoodDiscreteUniformPoisson(η, fdigital,C,b)

Require: η = [
√
A,
√
B,H,K, τ,

√
σPSF]>, C ∈ N, b ∈ N

1: ξ = [(
√
A)2, (

√
B)2, H,K, τ ]>

2: fdigital ← DIGITALIMAGE
(
ξ, C, b, (

√
σPSF)2 + ε

)
. Form a

candidate digital image as per Subsection VII-B.
3: l← 0
4: for m← 1 . . .M do
5: for n← 1 . . . N do
6: v ← fobserved(xn, ym) . The variable fobserved(xn, ym)

is the observed digital image.
7: λ← max (fdigital(xn, ym), ε) . Precaution to avoid

taking the log of zero.
8: for w ← −min(b, v) . . . b do
9: z [w + min(b, v)]←

− λ+ (v + w) lnλ− GAMMALN(w + v + 1)

.

Use the natural logarithm of the gamma function.
10: l← l − ln(2b+ 1) + LOGSUMEXP(z) . Apply the

log-sum-exp trick for numerically stable evaluation of the sum
of exponentials.

11: return −l . Result is the negative log-likelihood.

Algorithm 3 LogSumExp(z)
Require: length-N array z

1: a← max{z[n] : n = 1 . . . N} . Take the largest entry.
2: s← 0
3: for n← 1 . . . N do
4: s← s+ exp (z[n]− a) .

ln(
∑N
n ezn) = a+ ln(

∑N
n ezn−a).

5: return a+ ln s

the covariance matrix Λξ̂ of ξ̂. We calculate the latter by exploiting
the covariance matrix Λη̂ of the maximum likelihood estimate η̂.
Taking into account that the covariance matrix of a ML estimate
is approximately equal to the inverse Hessian of the negative log-
likelihood at the estimate, we let

Λη̂ =

([
∂2`(η, b, C)

∂η∂η>

]
η=η̂

)−1

(52)

(see [26, Section 3.2]). Next, applying the rule of covariance
propagation, we propagate Λη̂ through the transformation η 7→ ξ to
obtain

Λξ̂ = [∂ηξ]η=η̂ Λη̂

(
[∂ηξ]η=η̂

)>
. (53)

The Jacobian matrix of η 7→ ξ is explicitly given by

∂ηξ =


2
√
A 0 0 0 0 0

0 2
√
B 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (54)

1) Visualising a planar confidence region: The reliability of ξ̂
can alternatively be expressed in terms of a confidence region. One
typically constructs a confidence region of a parameter vector estimate
as a portion of the parameter space that contains the correct parameter
vector with a given high probability. But since the parameter space for
the totality of all ellipses is five-dimensional, a canonical confidence
region is difficult to visualise and interpret. Hence, we formulate a
more visually appealing form of an ellipse-specific confidence region,
namely a confidence region in the plane. Such an area is meant to
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(a) (b) (c) (d) (e)

Fig. 5. Example images detailing the stages of the image formation process. (a) The ideal (unobservable) analogue image. (b) Consequence of discretisation. (c)
Consequence of discretisation and the point spread function. (d) Consequence of discretisation, the point spread function and Poisson noise. (e) Consequence of
discretisation, the point spread function, Poisson noise and quantisation.

cover the in-plane locus of the actual ellipse with a specified high
probability.

The first to consider planar confidence regions for ellipse fits was
Porrill [27]. Our approach is inspired by Scheffé’s S-method for
constructing simultaneous confidence bands for linear regression
[28], [29, Sect. 9.4–5], and we have previously used it to establish
planar confidence regions for a point-based ellipse fitting method [30].
The construction that we set forth exploits the algebraic parameters
of the ellipse and in particular involves the covariance matrix of
an algebraically expressed ML estimate of the ellipse. To obtain a
meaningful expression for such a matrix, it is mandatory to eliminate
a redundant indeterminate scale of algebraic parameters [31], [32].
We proceed with scale elimination by imposing the normalisation
constraint ‖θ‖ = 1. Let κ denote the mapping ξ 7→ θ defined
in Eq. (42) and let π denote the normalisation transformation
θ 7→ ‖θ‖−1θ. We take θ̂ = π(κ(ξ̂)) for the algebraically expressed
ML estimate, with π here guaranteeing that θ̂ is unit-normalised.
Applying the rule of covariance propagation, we find that the
concomitant algebraic covariance matrix Λθ̂ is given by

Λθ̂ = [∂θπ]θ=κ(ξ̂) [∂ξκ]ξ=ξ̂ Λξ̂

(
[∂ξκ]ξ=ξ̂

)> (
[∂θπ]θ=κ(ξ̂)

)>
.

(55)
The Jacobian matrix of κ,

∂ξκ = [∂ξa
>, ∂ξb

>, ∂ξc
>, ∂ξd

>, ∂ξe
>, ∂ξf

>]>, (56)

is given explicitly by

∂ξa =

[
−2 cos2 τ

A3
, −2 sin2 τ

B3
, 0, 0,

(
1

B2
− 1

A2

)
sin 2τ

]
,

∂ξb =

[
−2 sin 2τ

A3
,

2 sin 2τ

B3
, 0, 0, 2

(
1

A2
− 1

B2

)
cos 2τ

]
,

∂ξc =

[
−2 sin2 τ

A3
, −2 cos2 τ

B3
, 0, 0,

(
1

A2
− 1

B2

)
sin 2τ

]
,

∂ξd =

[
4 cos2 τ(H +K tan τ)

A3
,

4 sin τ(H sin τ −K cos τ)

B3
,

−2 cos2 τ

A2
− 2 sin2 τ

B2
,

(
1

B2
− 1

A2

)
sin 2τ,

2(A−B)(A+B)(K cos 2τ −H sin 2τ)

A2B2

]
,

∂ξe =

[
4 sin τ(H cos τ +K sin τ)

A3
,

4 cos τ(K cos τ −H sin τ)

B3
,(

1

B2
− 1

A2

)
sin 2τ, −2 cos2 τ

B2
− 2 sin2 τ

A2
,

2(A−B)(A+B)(H cos 2τ +K sin 2τ)

A2B2

]
,

∂ξf =

[
−2(H cos τ +K sin τ)2

A3
, −2(K cos τ −H sin τ)2

B3
,

2(H +K tan τ) cos2 τ

A2
+

2(H sin τ −K cos τ) sin τ

B2
,

2 sin τ(H cos τ +K sin τ)

A2
+

2 cos τ(K cos τ −H sin τ)

B2
,

2
(
B2 −A2

)
(K cos τ −H sin τ)(H cos τ +K sin τ)

A2B2

]
.

(57)

The Jacobian of π is given by the more concise formula

∂θπ = ‖θ‖−1
(
I6 − ‖θ‖−2θθ>

)
, (58)

where I6 is the 6× 6 identity matrix.
In what follows, we use the notation x = [x, y]> and u(x) =

[x2, xy, y2, x, y, 1]>, with which the ellipse equation (40) can be
succinctly written as θ>u(x) = 0. The starting point for the main
construction is the observation that when θ̂ is viewed as a multivariate
normally distributed random vector,

θ̂ ∼ N(θ∗,Λθ∗), (59)

where θ∗ is the unit-normalised parameter vector of the true ellipse
and Λθ∗ is a covariance matrix, the scalar random variable θ̂

T
u(x)

is normally distributed with variance u(x)>Λθ∗u(x) for every point
x on the locus Eθ∗ = {x ∈ R2 | θT∗ u(x) = 0} of the true ellipse.
The observation is based on the fact that θ̂

T
u(x) = (θ̂ − θ∗)

Tu(x)
whenever x ∈ Eθ∗ and the fact that by the rule of covariance propa-
gation (θ̂ − θ∗)

Tu(x) has variance u(x)>Λθ∗u(x). Consequently,
under the assumption that θ̂ is an unbiased estimate of θ∗,

zx =
(θ̂
T
u(x))2

u(x)>Λθ∗u(x)
(60)

is a squared normal random variable for every x ∈ Eθ∗ . Each zx,
insofar as x belongs to Eθ∗ , attains large values with less probability
than small values, with the probability of any particular set of values
regarded as large or small being independent of x. This suggests
using the zx as building blocks in the construction of a confidence
region in the plane. Since the covariance Λθ∗ is unknown, the zx
do not have observable realisations and, for the sake of construction,
have to be replaced with these variables’ observable variants

ẑx =
(θ̂
T
u(x))2

u(x)>Λ
θ̂
u(x)

, (61)

where the covariance estimate Λ
θ̂

serves as a natural replacement for
Λθ∗ . Again, large observed values of ẑx are less plausible than small
observed values as long as x ∈ Eθ∗ . It is thus natural to consider
confidence regions for θ̂ in the form

{
x ∈ R2

∣∣ ẑx ≤ c } , where c
is a positive constant. Ideally, for a confidence region at (confidence)
level 1− α, we should choose c such that

Pr (zx ≤ c for all x ∈ Eθ∗) = Pr

(
sup

x∈Eθ∗

zx ≤ c

)
= 1−α. (62)

But the distribution of supx∈Eθ∗
zx is not easy to determine, so as a

second best choice we shall replace supx∈Eθ∗
zx by a random upper
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bound whose distribution can be readily calculated. Proceeding to
the specifics, we first note that, since ‖θ̂‖ = ‖θ∗‖ = 1, we have
(θ̂ − θ∗)

>θ∗ = −‖θ̂ − θ∗‖2/2. Consequently, resorting to the first
order approximation around θ∗, we may next assume that

(θ̂ − θ∗)
>θ∗ = 0. (63)

Given a length-n vector a, let P⊥a denote the n × n symmetric
projection matrix given by

P⊥a = In − ‖a‖−2aa>. (64)

It is readily seen that, for each length-n vector x, P⊥a x represents
the orthogonal projection of x onto the orthogonal complement of
the space spanned by a in Rn. Now, (63) can be restated as

θ̂ − θ∗ = P⊥θ∗(θ̂ − θ∗). (65)

We also note that, in view of (63),

Λθ∗θ∗ = E((θ̂ − θ∗)(θ̂ − θ∗)
>)θ∗ = 0, (66)

where E(X) denotes the expectation of the random matrix X. Thus
the null space of Λθ∗ , N (Λθ∗), contains θ∗. Typically, N (Λθ∗) will
be one-dimensional and will be spanned by θ∗. Given a matrix A, let
A+ denote the Moore–Penrose pseudo-inverse of A, and, when A
non-negative definite, let A1/2 denote the unique non-negative definite
square root of A. By a general rule, (Λ+

θ∗
)1/2Λ

1/2
θ∗

= (Λ
1/2
θ∗

)+Λ
1/2
θ∗

is a symmetric projection matrix representing the orthogonal projection
onto the orthogonal complement of N (Λθ∗). Assuming that N (Λθ∗)

is spanned by θ∗, (Λ+
θ∗

)1/2Λ
1/2
θ∗

is a symmetric projection matrix
representing the orthogonal projection onto the orthogonal complement
of the space spanned by θ∗. This is the same as saying that

(Λ+
θ∗)1/2Λ

1/2
θ∗

= P⊥θ∗ . (67)

Now note that if x ∈ Eθ∗ , then, by (65),

θ̂
>

u(x) = (θ̂ − θ∗)
>u(x) = (θ̂ − θ∗)

>P⊥θ∗u(x) (68)

and further, by (67),

θ̂
>

u(x) = (θ̂ − θ∗)
>(Λ+

θ∗)1/2Λ
1/2
θ∗

u(x)

= ((Λ+
θ∗)1/2(θ̂ − θ∗))

>Λ
1/2
θ∗

u(x). (69)

By the Cauchy–Bunyakovsky–Schwarz inequality,

(θ̂
>

u(x))2 ≤ ‖(Λ+
θ∗)1/2(θ̂ − θ∗)‖2‖Λ1/2

θ∗
u(x)‖2. (70)

Also,

‖(Λ+
θ∗)1/2(θ̂ − θ∗)‖2 = (θ̂ − θ∗)

>Λ+
θ∗(θ̂ − θ∗) (71)

and
‖Λ1/2

θ∗
u(x)‖2 = u(x)>Λθ∗u(x). (72)

Hence,
zx ≤ (θ̂ − θ∗)

>Λ+
θ∗(θ̂ − θ∗). (73)

Since x is an arbitrary member of Eθ∗ , we have

sup
x∈Eθ∗

zx ≤ (θ̂ − θ∗)
>Λ+

θ∗(θ̂ − θ∗). (74)

Now the random variable (θ̂− θ∗)
>Λ+

θ∗
(θ̂− θ∗) has approximately

a chi-squared distribution with 5 degree of freedom. Let χ2
5,α denote

the 100(1 − α)% percentile of the χ2 distribution with 5 degrees
of freedom, characterised by the relation Pr

(
χ2 ≤ χ2

5,α

)
= 1− α.

Inequality (74) guarantees that

Pr

(
sup

x∈Eθ∗

zx ≤ χ2
5,α

)
≥ 1− α. (75)

Substituting Λ
θ̂

for Λθ∗ , we also approximately have

Pr

(
sup

x∈Eθ∗

ẑx ≤ χ2
5,α

)
≥ 1− α. (76)

This allows an approximate confidence region at level 1− α for θ̂ to
be taken as

{
x ∈ R2

∣∣ ẑx ≤ χ2
5,α

}
. We finally point out that if α

is set to the standard conventional value of 0.05, then χ2
5,α = 11.07.

VIII. EXPERIMENTAL RESULTS

We compared the ML estimator for ellipse fitting introduced in
Section VII against the point-based direct ellipse fit (DEF points) [19]
and its region-based gradient variant (DEF gradient) [18]. We obtained
2D points for DEF by applying Canny edge detection to the input
image. The gradient for the gradient-based DEF was computed using
the Sobel operator. We seeded the ML method with the point-based
DEF. For some experimental conditions the point-based DEF was of
such poor quality that the ML method converged to a sub-optimal
solution. The sub-optimal solutions manifest as outliers in the boxplots
of the ML results—had the ML method been seeded with a better
initial value it would have converged to a superior solution. In all of
our plots, we denote ML with blue ( ), point-based DEF with grey
( ), and gradient-based DEF with yellow ( ) colours.

A. Synthetic images

In this section, we present comprehensive results on simulated data.
The simulated data methodically imitates the image formation process
and incorporates the effects of the point spread function, Poisson
noise, discretisation error, and quantisation error. Without loss of
generality, the actual ellipses which gave rise to digital images always
lay within the unit box [0, 1]× [0, 1]. We followed the steps outlined
in Subsection VII-B to form the digital images.

The experimental design facilitates a cogent interpretation of the
standard deviation of the PSF as percentage area. For example, a
value of σPSF = 0.1 corresponds to ten percent of the digital image
area.

1) Varying signal-to-noise ratio: Based on (49), we characterised
the signal-to-noise ratio as the square root of the number of photons
in the brightest part of the real digital image freal. This definition
allowed us to distinguish between Poisson noise and the uncertainty
introduced by quantisation. In our first experiment the true parameter
vector was given by ξ = [0.25, 0.05, 0.5, 0.5, 0.785]>. We sampled
this ellipse with a square grid of 32 pixels and a Gaussian point spread
function with a standard deviation of 5%. For the quantisation step,
we set b = 1. We explored how the photon count affects the accuracy
of the estimator by varying the conversion factor C in powers of
two (16, 32, 64, 128, and 256). Each conversion factor induced a
different signal-to-noise ratio. For each choice of C we conducted a
hundred random trials. The results of these experiments are displayed
in Fig. 6.

Our second experiment was identical to the first, except that we
used a Gaussian PSF with a standard deviation of 15%. The results
of the second experiment are displayed in Fig. 7.

Discussion: Both experiments demonstrate that prevailing ellipse
estimation methods are remarkably inadequate when working at the
limits of resolution. The boxplots for the DEF estimates evidence a
substantial bias and demonstrate that these methods cannot recover
the true ellipse parameters. The example ellipse fits communicate
the deficiencies of DEF in a visually noticeable manner. In contrast
the proposed ML method yields accurate estimates even with very
low signal-to-noise ratios. The planar confidence regions rightly
communicate the fact that there is more uncertainty in the estimate of
the major axis, and that the uncertainty is greater for photon-limited
images.
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(b) Randomly chosen example result including a planar confidence region for each SNR level. The
dotted black ellipse denotes the truth.

Fig. 6. Estimation results on ellipse with varying signal-to-noise ratios (SNRs) sampled on a 32× 32 pixel grid with σPSF = 0.05 and b = 1.

2) Varying quantisation: For our third experiment we explored
how different quantisation levels impact the precision of the estimates.
The true parameter vector was given by ξ = [0.35, 0.15, 0.5, 0.5, 0]>.
We sampled this ellipse with a square grid of 32 pixels and a Gaussian
point spread function with a standard deviation of 15%. We modified
the quantisation half-width b in powers of two (2, 4, 8, 16, and
32) and conducted a hundred random trials for each value. Figure 8
summarises the outcome of the third experiment.

Discussion: The experiment validates our quantisation model.
Even with extreme quantisation—a binary image—the ML method
still yields estimates that are almost the correct parameters. The planar
confidence regions also confirm that greater quantisation levels inflate

the uncertainty of the estimates. In comparison, both DEF estimates
produce inadequate results for all quantisation levels.

3) Varying eccentricity: In general, parameter estimation of an
ellipse is more challenging when the eccentricity is substantial. In the
fourth series of experiments, we investigated how eccentricity affects
the quality of the estimates. In particular, we generated ellipses with
eccentricities ranging from 0.78 to 0.99 and sampled these ellipse
with a square grid of 32 pixels and a Gaussian PSF with a standard
deviation of 5%. For the quantisation step, we set b = 1. Figure 9
summarises our findings.

Discussion: The results indicate that both DEF methods signifi-
cantly and systematically underestimate the length of the semi-major
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(a) The boxplots show the distribution of the estimated geometric ellipse parameters for varying SNRs. The solid
red line in the boxplots represents the true ellipse parameters. To aid interpretation, an example image for each
SNR is presented in the bottom panel.

SNR=3.2 SNR=4.6 SNR=6.5 SNR=9.1 SNR=12.9

(b) Randomly chosen example result including a planar confidence region for each SNR level. The
dotted black ellipse denotes the truth.

Fig. 7. Estimation results on ellipse with varying signal-to-noise ratios (SNR) sampled on a 32× 32 pixel grid with σPSF = 0.15 and b = 1.

axis. The bias is even more prominent for high-eccentricity ellipses.
Contrastingly, the ML method produces accurate results for ellipses
with high or low eccentricity. The planar confidence regions indicate
that the semi-major axis is less certain for high-eccentricity ellipses.

4) Varying sampling grid: In our final set of experiments, we
investigated how image resolution influences the precision of the
estimates. Specifically, we varied the sampling grid in powers of
two (8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128). The true
parameter vector was given by ξ = [0.35, 0.15, 0.5, 0.5, 0]>. We
used a Gaussian point spread function with a standard deviation of
15% which produced a SNR ranging from 4.1977 to 4.4527. For
quantisation, we set b = 1. Figure 10 illustrates the results.

Discussion: The final set of simulations affirm the necessity
and efficacy of our maximum likelihood model. Even at the limits
of resolution, using an 8 × 8 pixel grid, the ML method produces
plausible parameter estimates. In accordance with expectation, the
planar confidence regions demonstrate greater parameter uncertainty
for low-resolution pixel grids than for higher resolution grids. The
performance of the DEF methods is poor. Evidently, the DEF methods
are not applicable for these types of low-resolution images.

B. Real images

To corroborate the conclusions of the synthetic data experiments we
conducted further laboratory experiments with real images. We used
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(a) The boxplots show the distribution of the estimated geometric ellipse parameters for varying quantisation
levels. The solid red line in the boxplots represents the true ellipse parameters. To aid interpretation an example
image for each quantisation level b is presented in the bottom panel together with a description of the final
number of grey levels.
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(b) Randomly chosen example result including a planar confidence region for each quantisation level.
The dotted black ellipse denotes the truth.

Fig. 8. Estimation results on ellipses with varying quantisation levels sampled on a 32× 32 pixel grid with σPSF = 0.15 and SNR equal to 8.8683.

the UI-1220LE-M-GL camera (IDS Imaging Development Systems
GmbH) and attached the MP0814-MP2 (IDS Imaging Development
Systems GmbH) lens to the camera. The camera has a global shutter
and an 8-bit monochrome CMOS sensor with a resolution of 752×480
pixels. We constructed a real ellipse region by glueing a white, elliptic
sticker onto a piece of black cardboard.

1) Experimental design: The software for the camera permits the
configuration of various low-level settings, such as exposure time,
gain, black-level offset, and quantisation, to name but a few. We set
the gamma correction factor to unity to guarantee a linear luminance
output.

To ensure that we obtained a reasonable approximation of the exact
ellipse parameters from the real images, we carefully adjusted the lens
and configured the camera to produce sharp and clear images. We then
recorded a sequence of 240 images and took the average geometric
ellipse parameters estimated by our ML method as the best guess for
the exact parameters. We substantiated our methodology by noting
that the variance of the 240 estimated parameters was negligible and
that the DEF methods produced similar estimates on the sharp and
clear images.

The black cardboard was not absolutely black, and so, unlike our
synthetic experiments, we did not estimate elliptic regions using a
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(a) The boxplots show the distribution of the estimated geometric ellipse parameters for varying eccentricities. The solid red
line in the boxplots represents the true ellipse parameters. To aid interpretation, an example image for each eccentricity is
presented in the bottom panel.
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(b) Randomly chosen example result including a planar confidence region for each eccentricity. The
dotted black ellipse denotes the truth. The planar confidence regions encompass the truth tightly reflecting
that there is not much uncertainty. They are not visible without zooming in.

Fig. 9. Estimation results on ellipses of varying eccentricity sampled on a 32× 32 pixel grid with σPSF = 0.05 and SNR ranging from 4.5200 to 5.6568.

model of a black background. Instead, we used the model for a
grey background described in Subsection V-B. Upon inspecting the
histograms of a series of images, which revealed grey values in the
range from 10 to 30 for the black cardboard, we set the background
intensity value to c = 0.15.

Another important aspect when working with real images is finding
an appropriate value for the conversion factor C which links the
image intensity with the photo-electron count (see Section IV). The
value of C determines the level of Poisson noise. In practice, we
constrain C to be a multiple of the maximum intensity in the image.
The intuition underpinning this constraint is that we first need to

adjust our model image which lies in the unit interval so that its
brightest value (a value of 1) matches the brightest observed intensity
in the actual image (a value between 0 and 255). Subsequently, we
need to convert the intensities into plausible photon counts. If the
image is dark and noisy, then we multiply by a small positive integer
to model a photon-limited scenario. If it looks relatively noise free,
then we can multiply by a more significant positive integer. Since
our model can generate a synthetic image, finding a suitable value
for C is not too complicated. A wrong choice of C will result in a
synthetic image that either looks too noisy or not noisy enough. The
correct choice of C will produce an image that resembles the observed
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(a) The boxplots show the distribution of the estimated geometric ellipse parameters for varying sampling grids.
The solid red line in the boxplots represents the true ellipse parameters. A circle against a dashed black line in a
boxplots indicates that a particular value exceeded the plot limit of the y axis. To aid interpretation, an example
image for each grid size is presented in the bottom panel.
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(b) Randomly chosen example result including a planar confidence region for each sampling grid size.
The dotted black ellipse denotes the truth.

Fig. 10. Estimation results on ellipses sampled on varying pixel grids with σPSF = 0.15 and SNR ranging from 4.1977 to 4.4527.

image. Apart from choosing an appropriate value of C by qualitatively
comparing the synthetic images against the actual images, one could
also quantify the root-mean-square error between the synthesised and
actual image. Furthermore, one could develop a particular calibration
step to identify the correct conversion factor. We opted to set C based
on empirical observations and settled on a value of C = 25 × G,
where G is the maximum grey value in a given image.

By altering the configuration properties of the camera and adjusting
the lens we were able to replicate many of the synthetic image
experiments. For each experimental condition, we recorded a series of
240 images and used these to test the performance of the algorithms.

2) Experiments: We quantified the performance of the estimators
by considering the algebraic ellipse parameters. The fidelity of the
algebraic parameters was evaluated by using an algebraic parameter
error, defined as

∥∥∥P⊥θ∗ θ̂
∥∥∥ , where θ∗ denotes the true value, and both

θ∗ and θ̂ are assumed to have unit norm.
Experiment 1: In our first set of experiments, we adjusted the

camera lens so that the target image was out of focus and blurred. We
cropped a 64× 64 region of interest that contained the ellipse region
and used it as input to our estimators. We initialised the Gaussian PSF
with a standard deviation of .5% and set b equal to 0. The results are
displayed in Fig. 11.
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Fig. 11. Experiment 1. Estimation results on a sequence of real images
(64× 64 pixels) where the lens was defocused to induce a blurred image. We
permuted the sequence of images in the bottom left panel so that the error
of the point-based direct ellipse fit is sorted in descending order. The bottom
right panel shows the estimates for the entire sequence overlayed on a single
figure. The dotted black line demarcates the true ellipse.

Actual image Synthesised im-
age

0 50 100 150 200 250

Permuted Video Frame

10
-3

10
-2

10
-1

Fig. 12. Experiment 2. Estimation results on a sequence of real images
(32× 32 pixels) where the lens was defocused to induce a blurred image. We
permuted the sequence of images in the bottom left panel so that the error
of the point-based direct ellipse fit is sorted in descending order. The bottom
right panel shows the estimates for the entire sequence overlayed on a single
figure. The dotted black line demarcates the true ellipse.

Experiment 2: The second experiment was identical to the first,
except that we configured the camera to downsample the resolution
by a half. After cropping the downsampled image, we obtained a
32× 32 square grid of pixels that encapsulated the ellipse region. We
initialised the Gaussian PSF with a standard deviation of 1% and set
b equal to 0. The results are displayed in Fig. 12.

Experiment 3: The third experiment was also identical to the first,
except that we configured the camera to downsample the resolution by
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Fig. 13. Experiment 3. Estimation results on a sequence of real images
(16× 16 pixels) where the lens was defocused to induce a blurred image. We
permuted the sequence of images in the bottom left panel so that the error
of the point-based direct ellipse fit is sorted in descending order. The bottom
right panel shows the estimates for the entire sequence overlayed on a single
figure. The dotted black line demarcates the true ellipse.

a quarter. Downsampling and cropping produced a 16× 16 pixel grid
of the ellipse region. We initialised the Gaussian PSF with a standard
deviation of 2% and set b equal to 0. The results are displayed in
Fig. 13.

Experiment 4: In the fourth experiment, we repeated the first
experiment but this time configured the camera to quantise the
luminance to 5 bits (32 grey levels). We initialised the Gaussian
PSF with a standard deviation of .5% and set b equal to 4. The results
are displayed in Figure Fig. 14.

Experiment 5: The fifth experiment mirrored the second exper-
iments, except that we also configured the camera to quantise the
luminance to 5 bits (32 grey levels). We initialised the Gaussian with
a standard deviation of 1% and set b equal to 4. The results are
displayed in Fig. 15.

Experiment 6: The sixth experiment mirrored the third exper-
iments, except that we also configured the camera to quantise the
luminance to 5 bits (32 grey levels). We initialised the Gaussian PSF
with a standard deviation of 2% and set b equal to 4. The results are
displayed in Fig. 16.

IX. DISCUSSION

The experiments that we conducted on real imagery have further
demonstrated the correctness and versatility of our statistical model.
It is remarkable that for each experiment, the synthetic image
associated with the maximum likelihood solution is visually almost
indistinguishable from the real picture. Evidently, our mathematical
development strikes the correct balance between tractability and
authenticity.

For each experiment, our maximum likelihood method outperformed
the point-based direct ellipse fit by several orders of magnitude. The
variance of the ML estimator is also substantially less than the point-
based estimates. The stability of the ML estimate is apparent in
the overlayed ellipse plots. Substantially only a single blue ellipse
(ML) is evident for each experiment in contrast to numerous grey
curves (DEF).
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Fig. 14. Experiment 4. Estimation results on a sequence of real quantised
images (64× 64 pixels and 32 grey levels) where the lens was defocused to
induce a blurred image. We permuted the sequence of images in the bottom
left panel so that the error of the point-based direct ellipse fit is sorted in
descending order. The bottom right panel shows the estimates for the entire
sequence overlayed on a single figure. The dotted black line demarcates the
true ellipse.
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Fig. 15. Experiment 5. Estimation results on a sequence of real quantised
images (32× 32 pixels and 32 grey levels) where the lens was defocused to
induce a blurred image. We permuted the sequence of images in the bottom
left panel so that the error of the point-based direct ellipse fit is sorted in
descending order. The bottom right panel shows the estimates for the entire
sequence overlayed on a single figure. The dotted black line demarcates the
true ellipse.

X. CONCLUSION

We have developed and tested a coherent mathematical framework
for estimating the parameters of a planar shape from a single
low-resolution, photon-limited digital image. Our work unifies the
uncertainty due to discretisation, photon noise, and quantisation into a
unique manageable statistical model. We have presented a careful and

Actual image Synthesised im-
age

0 50 100 150 200 250

Permuted Video Frame

10
-3

10
-2

10
-1

Fig. 16. Experiment 6. Estimation results on a sequence of real quantised
images (16× 16 pixels and 32 grey levels) where the lens was defocused to
induce a blurred image. We permuted the sequence of images in the bottom
left panel so that the error of the point-based direct ellipse fit is sorted in
descending order. The bottom right panel shows the estimates for the entire
sequence overlayed on a single figure. The dotted black line demarcates the
true ellipse.

meticulous exposition of each component of the model. Comprehensive
experiments on real and synthetic data have also demonstrated the
groundbreaking accuracy of our approach. The ideas presented in
this report provide new foundations for working on image processing
problems at the limits of resolution. Our future work will focus on
generalising the method to other more complicated shapes, with one
possible approach being the use of level-set methods and dynamic
implicit surfaces. The main problem to resolve is how to compute the
area of intersection of a pixel with a particular shape.

APPENDIX A: AREA OF INTERSECTION OF AN ELLIPSE AND A

RECTANGLE

The problem of determining the area of intersection between a
rectangle and an ellipse in the case that the sides of the rectangle
are parallel to the semi-axes of the ellipse was addressed in 1963 by
Groves [33] in the military context of devising mathematical methods
for the evaluation of small arms. Our exposition of the solution,
including several diagrams, is based on Groves’ systematic account.

We shall assume that the ellipse is described by the ellipse equation
in standard form ( x

A

)2
+
( y
B

)2
= 1, (A1)

where A and B represent the ellipse’s semi-major and semi-minor
axis lengths, respectively. Furthermore, we shall assume that the
rectangle is centred at a point (x̄, ȳ) and has width w and height
h (see Fig. 17). Groves’ solution for computing the intersection
area between an arbitrary rectangle and a standard ellipse involves
partitioning the rectangle into sub-rectangles Ai (i = 1 . . . 4) such that
each sub-rectangle is entirely contained in one of the four quadrants
of the Cartesian coordinate system. Then, for each part, one constructs
an equivalent first-quadrant rectangle A1

i and calculates its area of
intersection, Si, with the ellipse (see Fig. 18). If S denotes the total
area of intersection for the original rectangle, then S =

∑4
i=1 Si.

Each first quadrant rectangle A1
i will be specified by four non-negative
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(x̄− w
2 , ȳ + h
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2 , ȳ − h
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x
A
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+
(
y
B

)2
= 1

Fig. 17. General situation.

y

(
x
A

)2
+
(
y
B

)2
= 1

A2 A1
2

A3 A1
3 A4 A1

4

A1 A1
1

x

Fig. 18. A partitioning of the rectangle into four sub-rectangles A1, A2, A3,
and A4 together with equivalent rectangles A1

1, A
1
2, A

1
3, and A1

4 all located
in the first quadrant of the Cartesian coordinate system.

numbers (ai, bi, ci, di), where (ai, bi) are the coordinates of the vertex
of A1

i closest to the origin, and ci is the width and di is the height of
A1
i in x and y directions, respectively (see Fig. 19 for an example).

Groves derived formulae for (ai, bi, ci, di) in terms of the original
rectangle by enumerating the different ways in which the rectangle
can span the four quadrants. There are nine possible cases: (1–4) the
rectangle is completely in one of the four quadrants; (5) partly in
quadrant I and II; (6) partly in quadrant II and III; (7) partly in
quadrant III and IV; (8) partly in quadrant IV and I; and (9) one
vertex of the rectangle is in each of the four quadrants. These nine

y

(
x
A

)2
+
(
y
B

)2
= 1

A1
1

x

(a1, b1)

(a1, b1 + d1) (a1 + c1, b1 + d1)

(a1 + c1, b1)

Fig. 19. Representation of A1
1.

cases are all simultaneously handled by the following formulae:

A1
1 : a1 = max

{
0, x̄− w

2

}
,

b1 = max

{
0, ȳ − h

2

}
,

c1 = max
{

0, x̄+
w

2
− a1

}
,

d1 = max

{
0, ȳ +

h

2
− b1

}
; (A2)

A1
2 : a2 = max

{
0,−x̄− w

2

}
,

b2 = max

{
0, ȳ − h

2

}
,

c2 = max
{

0,−x̄+
w

2
− a2

}
,

d2 = max

{
0, ȳ +

h

2
− b2

}
; (A3)

A1
3 : a3 = max

{
0,−x̄− w

2

}
,

b3 = max

{
0,−ȳ − h

2

}
,

c3 = max
{

0,−x̄+
w

2
− a3

}
,

d3 = max

{
0,−ȳ +

h

2
− b3

}
; (A4)

A1
4 : a4 = max

{
0, x̄− w

2

}
,

b4 = max

{
0,−ȳ − h

2

}
,

c4 = max
{

0, x̄+
w

2
− a4

}
,

d4 = max

{
0,−ȳ +

h

2
− b4

}
. (A5)

which can also be expressed as a function of i,

A1
i : ai = max

{
0, (−1)

1
2
(i2−1)x̄− w

2

}
,

bi = max

{
0, (−1)

1
2
(i2+i−2)ȳ − h

2

}
,

ci = max
{

0, (−1)
1
2
(i2−i)x̄+

w

2
− ai

}
,

di = max

{
0, (−1)

1
2
(i2+i−2)ȳ +

h

2
− bi

}
. (A6)

If the original rectangle does not overlap with the ith quadrant, then
A1
i will reduce to a line segment with no area (either ci or di will

be zero) and the area of intersection Si will be zero.
Dropping the subscripts, we now focus exclusively on deriving

formulae for the intersection area of a rectangle in the first quadrant.
Let the four vertices of the rectangle be indexed in the following
manner according to their coordinates:

v2 : (a, b+ d), v3 : (a+ c, b+ d),

v1 : (a, b), v4 : (a+ c, b). (A7)

There are six distinct intersection cases that need to be considered,
depending on which vertices are inside the ellipse. These are:

I. no vertices inside the ellipse,
II. v1 inside; v2, v3 and v4 outside,
III. v1 and v4 inside; v2 and v3 outside,
IV. v1 and v2 inside; v3 and v4 outside,
V. v1, v2 and v4 inside; v3 outside

VI. all vertices inside the ellipse.
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Fig. 20. Case II: v1 inside, and v2, v3, and v4 outside.
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√
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θ3 = arccos
(
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√
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)
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√
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Fig. 21. Case II. The area of intersection SII = RI −RII −RIII +RIV .

a) Case I: This case is identified by the condition( a
A

)2
+

(
b

B

)2

≥ 1 (A8)

which indicates that the vertex closest to the origin, v1, is outside the
ellipse. Consequently, the area of intersection, denoted by SI , is zero.

b) Case II: The conditions required to identify this case are

( a
A

)2
+

(
b

B

)2

< 1 (v1 inside), (A9)( a
A

)2
+

(
b+ d

B

)2

≥ 1 (v2 outside) (A10)

and (a+ c

A

)2
+

(
b

B

)2

≥ 1 (v4 outside); (A11)

see Fig. 20. If we partition the first quadrant into four regions as
illustrated in Fig. 21, then the area of intersection is given by

SII = RI −RII −RIII +RIV

=

(
π

4
AB

)
︸ ︷︷ ︸

RI

−
(

(θ2 − θ1)AB

2
+
aB

2A

√
A2 − a2

)
︸ ︷︷ ︸

RII

−
(
θ3AB

2
+
bA

2B

√
B2 − b2

)
︸ ︷︷ ︸

RIII

+

(
ab

)
︸ ︷︷ ︸
RIV

(A12)

=
π

4
AB + ab

−

(
AB

2
arcsin

( a
A

)
+
aB

2

√
1−

( a
A

)2)
︸ ︷︷ ︸

RII

−

π
4
AB − AB

2
arcsin

√1−
(
b

B

)2


︸ ︷︷
RIII

+
bA

2

√
1−

(
b

B

)2

︸

(A13)

=
AB

2

arcsin

√1−
(
b

B

)2
− arcsin

( a
A

)

− a

A

√
1−

( a
A

)2
− b

B

√
1−

(
b

B

)2

+ 2
( a
A

)( b

B

) .

(A14)

In (A12) regions RII and RIII are each partitioned into the sum of
two terms: the area of an ellipse sector (first term) and the area of a
right-angled triangle (second term). The angles θk (k = 1, 3) that are
formed between the x axis and corresponding points (xk, yk) on the
ellipse are found from the first of the following parametric ellipse
equations:

x = A cos θ =⇒ θ = arccos
x

A
,

y = B sin θ =⇒ θ = arcsin
y

B
. (A15)

In (A13) we use the complementary angle relation, arccosx = π
2
−

arcsinx, to write the ellipse sector area in RII and RIII in terms
of the arcsine function. For further simplification, let

θ = arcsin

√1−
(
b

B

)2
− arcsin

( a
A

)
. (A16)

Then

sin θ =

√
1−

(
b

B

)2
√

1−
( a
A

)2
−
( a
A

)( b

B

)
(A17)

or

θ = arcsin

√1−
(
b

B

)2
√

1−
( a
A

)2
−
( a
A

)( b

B

). (A18)

In (A17) we used the angle-difference identity for sine followed by
the Pythagorean trigonometric identity. In conclusion,

SII =
AB

2
F

(
a

A
,
b

B

)
, (A19)

where

F (U, V ) = arcsin
(√

1− U2
√

1− V 2 − UV
)

− U
√

1− U2 − V
√

1− V 2 + 2UV. (A20)

c) Case III: The situation is identified by the conditions(a+ c

A

)2
+

(
b

B

)2

< 1 (v4 inside) (A21)

and ( a
A

)2
+

(
b+ d

B

)2

≥ 1 (v2 outside). (A22)
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y
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= 1

x(a, b)

(a, b+ d)

(a+ c, b+ d)

(a+ c, b)

Fig. 22. Case III: v1 and v2 inside, and v3 and v4 outside. The area of
intersection equals the joint area of the falling and rising striped region minus
the rising striped region. Both these regions are captured by case II.

The illustration Fig. 22 suggests that the area SIII is simply the
difference between two areas of the type considered in the second
case. Thus

SIII =
AB

2

(
F

(
a

A
,
b

B

)
− F

(
a+ c

A
,
b

B

))
. (A23)

d) Case IV: The conditions required to identify this case are( a
A

)2
+

(
b+ d

B

)2

< 1 (v2 inside) (A24)

and (a+ c

A

)2
+

(
b

B

)2

≥ 1 (v4 outside). (A25)

This area is also difference between two areas of the type considered
in Case II:

SIV =
AB

2

(
F

(
a

A
,
b

B

)
− F

(
a

A
,
b+ d

B

))
. (A26)

e) Case V: The three conditions required to identify this case
are ( a

A

)2
+

(
b+ d

B

)2

< 1 (v2 inside) (A27)(a+ c

A

)2
+

(
b

B

)2

< 1 (v4 inside). (A28)

and (a+ c

A

)2
+

(
b+ d

B

)2

≥ 1 (v3 outside). (A29)

Applying the result given in Case II, the area is

SV =
AB

2

(
F

(
a

A
,
b

B

)
− F

(
a+ c

A
,
b

B

)
− F

(
a

A
,
b+ d

B

))
.

(A30)
f) Case VI: The sole condition required to identify this case is(a+ c

A

)2
+

(
b+ d

B

)2

≤ 1 (v3 inside). (A31)

Since all of the vertices are inside the ellipse, the intersection area is
simply SV I = cd.
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