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Abstract. Robust techniques are developed for determining structure from mo-
tion in the uncalibrated case. The structure recovery is based on previous work [7]
in which it was shown that a camera undergoing unknown motion and having an
unknown, and possibly varying, focal length can be self-calibrated via closed-
form expressions in the entries of two matrices derivable from an instantaneous
optical flow field. Critical to the recovery process is the obtaining of accurate nu-
merical estimates, up to a scalar factor, of these matrices in the presence of noisy
optical flow data. We present techniques for the determination of these matrices
via least-squares methods, and also a way of enforcing a dependency constraint
that is imposed on these matrices. A method for eliminating outlying flow vectors
is also given. Results of experiments with real-image sequencesare presented that
suggest that the approach holds promise.

1 Introduction

In this paper we present robust techniques for estimating structure from motion in the
uncalibrated case. The structure recovery is based on a method for self-calibrating
a single moving camera from instantaneous optical flow, as developed in [7]. Here,
self-calibration amounts to automatically determining the unknown instantaneous ego-
motion and intrinsic parameters of the camera, and is analogous to self-calibrating a
stereo vision set-up from corresponding points [9, 17]. The method of self-calibration
rests on an equation that we term the differential epipolar equation for uncalibrated op-
tical flow, which relates optical flow to the ego-motion and intrinsic parameters of the
camera. This equation incorporates two matrices which encode information about the
ego-motion and internal geometry of the camera. Any sufficiently large subset of an op-
tical flow field determines the composite ratio of some of the entries of these matrices,
and, under certain assumptions, the moving camera can be self-calibrated by means of
closed-form expressions evolved from this ratio.

Once self-calibration is completed, scene reconstruction, up to a scalar factor, can be
carried out by employing a procedure, also described in [7], based on the results of self-
calibration and the optical flow data. In this way, the structure recovery is essentially
reduced to the determination of the critical composite ratio.



In this paper, we present various least-squares techniques and an outlier rejec-
tion scheme that facilitate robust estimation of the critical composite ratio. The self-
calibration and reconstruction methods are tested on sparse optical flow fields derived
from real-world image sequences of a calibration grid and an office.

The present work is most closely related to that of Viéville and Faugeras [25], which
was the first to tackle the problem of interpreting optical flow arising from an uncali-
brated camera. The approach of Ohta and Kanatani [18] is also related to this work,
but is concerned with the calibrated case and hence is not immediately applicable to
our more general situation. For examples of other work dealing with the ego-motion
of a calibrated camera see [10, 11]. A contrasting approach is given by Beardsley et
al. [5], involving the computation of projective and affine (rather than Euclidean) struc-
ture from motion. Other related papers include [1–4, 15, 19, 23, 26, 27].

2 Differential epipolar equation and a cubic constraint

Consider a camera with an associated coordinate frame such that the origin of the frame
coincides with the camera’s optical centre, two basis vectors span the focal plane, and
the other basis vector passes through the optical axis. Suppose that the camera un-
dergoes smooth motion. Denote by v and ! the camera’s instantaneous translational
velocity and instantaneous angular velocity with respect to the camera frame. Let P
be a static point in space, let x = [x1; x2; x3]T be the coordinates of the vector con-
necting C with P in the vector basis of the camera frame, and let p = [p1; p2; p3]T

be the coordinates of the perspective projection of P , through C, onto the image plane
fx 2 R3 j x3 = �fg, relative to the camera frame; here f is the focal length. To
account for the characteristics of the camera, we adopt a separate coordinate frame in
the image plane. Let [m1;m2]T be the coordinates of the image of P in the vector basis
of this frame. If we append to [m1;m2]T an extra entry equal to 1 to yield the vector
m = [m1;m2; 1]T , then the relation between p and m can be written as p = Am;
where A is a 3 � 3, possibly time-dependent, invertible matrix called the intrinsic-
parameter matrix. As the camera moves, the position of P relative to the image frame
will change accordingly and will be recorded in the function t 7! m(t). The asso-
ciated function t 7! [mT (t); _m(t)T ]T satisfies the differential epipolar equation for
uncalibrated optical flow

mTW _m+mTCm = 0; (1)

where C and W are 3 � 3 matrices explicitly expressible in terms of v, !, A and _A.
The function t 7! [mT (t); _m(t)T ]T is a single trajectory of an optical flow field. An
optical flow field at a given instant t is a set of vectors of the form [m(t)T ; _m(t)T ]T

that describe the instantaneous position and velocity of the images of various elements
of the scene. More precisely, such a set constitutes a true image motion field which,
as is usual, we assume to correspond to an observed image velocity field or optical
flow field. Eq. (1) relates optical flow, ego-motion and camera parameters. A similar
constraint, termed the first-order expansion of the fundamental motion equation, was
derived using quite different means by Viéville and Faugeras [25]. In contrast with the



above, however, it takes the form of an approximation rather than a strict equality. A
simpler form of (1), applying to the calibrated case, was first derived by Maybank [16]
and was subsequently exploited by many authors (cf. [2, 3, 12]).

The matrix C is symmetric, and hence it is uniquely determined by the entries
c11; c12; c13; c22; c23; c33. The matrix W is antisymmetric, and so it is uniquely deter-
mined by the entries w12; w13; w23. Define the joint projective form �(C;W ) of C
and W to be the composite ratio (c11 : c12 : c13 : c22 : c23 : c33 : w12 : w13 : w23).
Eq. (1) is essentially a constraint on �(C;W ), the equation remaining valid whenever
C andW are multiplied by a common scalar factor. It turns out that

wTCw = 0; (2)

where w = [�w23; w13;�w12]T . Again (2) can be interpreted as a constraint on
�(C;W )—more precisely, as a cubic constraint. It implies that �(C;W ) lies on a
seven-dimensional manifold that does not depend on the optical flow entering (1), a
fact already noted in [25].

As indicated in the Introduction, the differential epipolar equation (1) forms the
basis for a method of self-calibration. We use this equation along with (2) to determine
�(C;W ) from noisy optical flow. Knowing�(C;W ) allows in turn recovery of some
of the parameters describing the ego-motion and internal geometry of the camera. For
details, the reader is referred to [7].

3 Estimating �(C;W )

We now turn to the problem of estimating�(C;W ) from optical flow that is perturbed
by noise and outliers.

Ohta and Kanatani [18] (see also [13, Chap. 12]) present a method for estimating
ego-motion and structure from noise-contaminated calibrated optical flow. It relies on a
model of noise in the measurement of flow velocity adopted from the outset, and takes
the form of an optimal estimation algorithm accompanied by a measure of the relia-
bility of the estimates. Our problem is not directly amenable to Ohta and Kanatani’s
sophisticated analysis for two reasons. First, we deal with uncalibrated flow, and, sec-
ond, we cannot assume the position of a flow vector to be unperturbed. Our goal is to
develop methods capable of dealing with sparse optical flow obtained via the tracking
of features, and not only with dense optical flow calculated across a grid. Nevertheless,
we draw upon various ideas present in [18].

Let S = f[mi
T ; _mi

T ]T j i = 1; : : : ; ngwith n � 7 be a data set representing mea-
surements of a portion of instantaneous optical flow. We shall consider ways in which
estimates of �(C;W ) can be derived from S. Note that a pair of matrices (C;W ) is
uniquely determined by the vector

�C;W = [c11; c12; c13; c22; c23; c33; w12; w13; w23]
T :

When (C;W ) is understood, �C;W will often be contracted to �. Furthermore, ob-
serve that the ratio �(C;W ) can be identified, to within sign, with the vector �C;W

satisfying the normalisation condition k�C;W k = 1;where k�C;Wk = (c11
2+c12

2+



� � �+ w23
2)1=2: It is therefore always possible to represent an estimate of �(C;W )

as a normalised vector b� = �
bC;cW

for some pair (bC;cW ). Here, adhering to a custom
in statistics, we use bx to denote an estimate of x.

3.1 Seven-point estimator

If n = 7, then an estimate of �(C;W ) can be obtained by solving a system of seven
equations

mT
i W _mi +m

T
i Cmi = 0 (3)

and equation (2). All these equations are homogeneous in the components of �, and
effectively provide seven constraints for the ratio �(C;W ). Note that mTW _m +
mTCm depends linearly on �, being expressible as

mTW _m+mTCm = �Tum; _m; (4)

where

um; _m =

2
6666666666664

m2
1

2m1m2

2m1m3

m2
2

2m2m3

m3
3

m1 _m2 �m2 _m1

m1 _m3 �m3 _m1

m2 _m3 �m3 _m2

3
7777777777775
:

Therefore the space of solutions to system (3) is spanned by two normalised linearly
independent solutions b�1 and b�2. Accordingly, an un-normalised solution b� to the full
system of equations can be represented as �b�1 + (1� �)b�2 for some scalar parameter
�. Substituting�b�1+(1��)b�2 into (2) leads to a cubic constraint on �. This equation
has either one or three real solutions, which in turn give rise to one or three normalised
estimates b� = b�=kb�k.

3.2 Least squares estimator based on algebraic distances

If n � 8, then the linear homogeneous equations forming system (3) provide n�1 � 7
constraints for �(C;W ). We can use these equations to estimate �(C;W ) without
immediate recourse to the cubic constraint (2). The redundancy in system (3) suggests
a least squares solution. In order to develop such a solution, a cost function has to
be specified. Given a single piece of data [mT ; _mT ]T and a parameter � to be fit,
we take the algebraic distance jmTW _m + mTCmj between [mT ; _mT ]T and the
hypersurface

M� = f[nT ; _nT ]T j nTW _n+ nTCn = 0g



for the residual or the measure of the agreement between [mT ; _mT ]T and �. The resid-
ual square error

J1(�;S) =
nX
i=1

jmT
i W _mi +m

T
i Cmij

2

then serves as a natural cost function. This choice can be viewed as a generalisation of
the criterion used by Bookstein [6] for conic fitting. The J1-based best-fit estimate of
�(C;W ) is a unique (up to a sign) normalised vector b� such that

J1(b�;S) = min
k�k = 1

J1(�;S): (5)

With errors ascribed to the umi; _mi
, the J1-based minimisation can be viewed as a

method of orthogonal regression, also termed total least squares regression or principal
component regression. The estimate b� can be computed explicitly. In fact, in view of
(4),

jmTW _m+mTCmj2 = �TMm; _m�; (6)

where

Mm; _m = um; _mum; _m
T

and further

J1(�;S) = �
T
D�;

where

D =
nX

i=1

Mmi; _mi
:

The gradient of J1 with respect to �, traditionally written as a row vector,

r�J1(�;S) =

�
@J1
@c11

(�;S);
@J1
@c12

(�;S); : : : ;
@J1
@w23

(�;S)

�
is given by

[r�J1(�;S)]
T = 2D�: (7)

The minimisation condition (5) implies that

[r�J1(b�;S)]T = 2�b�
for some (unknown) scalar Lagrange multiplier �. This together with (7) shows that b�
is an eigenvector of D with eigenvalue �. If � is a normalised eigenvector of D with
eigenvalue �, then

� = ��T � = J1(�;S) � J1(b�;S) = b�T�b� = �;

showing that � is the smallest eigenvalue of D. Therefore b� is recognised as the nor-
malised eigenvector (or the principal component) corresponding to the smallest eigen-
value of D. Both b� and � can be efficiently calculated by employing the method of
singular value decomposition.



3.3 Least squares estimator based on Euclidean distances

The algebraic distance underlying the J1-based estimation method has no geometric
significance. In contrast, the expression

�(�;m; _m) =
jmTW _m+mTCmjp

k2Cm+W _mk2 + kWmk2
(8)

is geometrically meaningful being an approximation of the Euclidean distance between
[mT ; _mT ]T and M�. More generally, if M is a hypersurface in Rk defined by M =
fx 2 Rk j f(x) = 0g and z 2 Rk is a point close to M, then the Euclidean distance
between z and M is to a first order approximation equal to jf(z)j=krf(z)k—a fact
exploited in vision-related statistical formulations first by Sampson [22] and later by
a number of authors (cf. [13, 14, 24, 28]). Adopting �(�;m; _m) as a statistically more
adequate residual, we introduce a cost function

J2(�;S) =
nX
i=1

j�(�;mi; _mi)j
2:

A similar cost function can be devised starting from the principles underpinning
Kanatani’s approach to statistical optimisation (cf. [13, Chap. 12] and [18]). With er-
rors ascribed to the [mi

T ; _mi
T ]T rather than to the umi; _mi

, the J2-based minimisation
can be viewed as a variant of the method of orthogonal regression. Due to the compli-
cated way in whichC andW enter J2, it is not clear whether the J2-based estimate of
�(C;W ) can be given an explicit form. To evolve a numerical estimate, various stan-
dard iterative techniques can be employed like the Newton-Raphson method, the steep-
est descent method, the Levenberg-Marquardt method, the downhill simplex method,
and various direction set methods of Powell (cf. [20]). Alternatively, one might attempt
to develop algorithms especially adopted to cope with the task of minimisation of J2.
Two such algorithms are proposed next.

3.4 Iteratively reweighted least squares estimator

Let b� be a normalised estimate corresponding to a pair (bC;cW ), and let

J3(�; b�;S) = nX
i=1

je�(�; b�;mi; _mi)j
2;

where

e�(�; b�;m; _m) =
jmTW _m+mTCmjq

k2 bCm+ cW _mk2 + kcWmk2
:

The denominator in the expression for e� does not depend on �, and so minimisation
of J3(�;S) subject to the constraint k�k2 = 1 leads to an estimator falling into the
category of weighted least squares techniques. Let

D
b�
=

nX
i=1

�i(b�)Mmi; _mi
(9)



where

�i(b�) = �
k2 bCmi + cW _mik

2 + kcWmik
2
��1

:

Employing Lagrange multipliers, we verify at once that the J3-based estimate can be
identified with the eigenvector of D

b�
corresponding to the smallest eigenvalue. Using

this observation, we can now propose the following iteratively reweighted least squares
estimator that seeks to minimise J2:

1. Compute b�0 using least-square fitting based on J1.
2. Assuming that b�k�1 is known, compute the matrixD

b�k�1
.

3. Compute a normalised eigenvector of D
b�k�1

corresponding to the smallest

eigenvalue and take this eigenvector for b�k.
4. If b�k is sufficiently close to b�k�1, then terminate the procedure; otherwise in-

crement k and return to Step 2.

3.5 Modified iteratively reweighted least squares estimator

Typically, an estimate evolved by the algorithm in the previous subsection will be
different from the sought-after estimate based on minimisation of J2—the iteratively
reweighted least squares techniques are susceptible to statistical bias (cf. [13, Chap. 9],
[29]). In an attempt to eliminate this shortcoming, we put forward a modified algorithm.
While in some aspects the proposed technique resembles Kanatani’s technique of renor-
malisation [13, Chap. 9], it is different from the latter in that it is formulated in a purely
deterministic, probability-free fashion, and that it impinges on the standard, rather than
generalised, eigenvalue analysis.

Let

�1 =

2
41 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

3
5 ; �1 =

2
40 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

3
5 ;

�2 =

2
40 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

3
5 ; �2 =

2
40 0 0 0 0 0 �1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

3
5 ;

�3 =

2
40 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

3
5 ; �3 =

2
40 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0 0

3
5 :

A fundamental property of these matrices is that, for each � 2 f1; 2; 3g,

��� = [c�1; c�2; c�3]
T and ��� = [w�1; w�2; w�3]

T :

Using this property, we find that

mTC2m =
3X

�;�;
=1

m�c��c�
m
 =
3X

�;�;
=1

c��m�m
c�
 =
3X

�=1

�T��
TmmT���:



Likewise

mTCW _m =
3X

�=1

�
T
��

Tm _m
T
���;

_m
T
W

2
_m =

3X
�=1

�
T
��

T
_m _m

T
���;

mTW
2
m =

3X
�=1

�
T
��

TmmT���:

Combining the last four identities with

k2Cm+W _mk2 + kWmk2

= 4mTC2m+ 4mTCW _m� _mTW 2
_m �mTW 2m;

we see that

k2Cm +W _mk2 + kWmk2 = �TNm; _m�; (10)

where

Nm; _m = 4
3X

�=1

��
TmmT�� + 4

3X
�=1

��
Tm _mT��

�
3X

�=1

��
T

_m _mT�� �
3X

�=1

��
TmmT��:

Now, in view of (6) and (10),

�(�;m; _m) =
�TMm; _m�

�TNm; _m�

implying that

J2(�;S) =
nX

i=1

�TMmi; _mi
�

�TNmi; _mi
�
:

Hence, immediately,

[r�J2(�;S)]
T = 2X��; (11)

where

X� =
nX
i=1

Mmi; _mi

�
T
Nmi; _mi

�
�

nX
i=1

�
T
Mmi; _mi

�

(�TNmi; _mi
�)2

Nmi; _mi
: (12)



Again the minimiser b� satisfies [r�J2(b�;S)]T = 2�b� for some Lagrange multiplier
�. Combining this with (11), we conclude that b� is an eigenvector of X

b�
with � as the

associated eigenvalue. Now

b�TX
b�
b� = �b�T b� = �:

On the other hand, recourse to (12) reveals that b�TX
b�
b� = 0. Therefore � = 0 and,

consequently,

X
b�
b� = 0: (13)

This is a non-linear constraint on b� which one might hope to resolve by employing a
method of successive approximations of some kind. The following scheme for solving
(13) suggests itself naturally:

1. Compute b�0 using least-square fitting based on J1.
2. Assuming that b�k�1 is known, compute the matrixX

b�k�1
.

3. Compute a normalised eigenvector of X
b�k�1

corresponding to the smallest

eigenvalue and take this eigenvector for b�k.
4. If b�k is sufficiently close to b�k�1, then terminate the procedure; otherwise in-

crement k and return to Step 2.

Observe that, on account of (9) and (12),

X� = D� �E� ;

where

E� =
nX

i=1

�
T
Mmi; _mi

�

(�TNmi; _mi
�)2

Nmi; _mi
:

ThereforeX� can be viewed a modification ofD�. Accordingly, the estimator embod-
ied by the above algorithm can be viewed as a modification of the iteratively reweighted
least squares estimator from the previous subsection.

Note that other more refined schemes for solving (13) may readily be developed.
One such scheme may be obtained by linearising the left-hand side of (13) to incorpo-
rate the matrix-valued derivative of the mapping � 7!X�.

3.6 Enforcing the cubic constraint

An estimate b� obtained by any of the methods considered above may fail to satisfy
equation (2). A corrective procedure for modifying estimates to accommodate this con-
straint is therefore needed.

Given a (normalised) estimate b� = �
bC; cW

, possibly failing to satisfy (2), defineb�� = �
bC�; cW �

by

bC� =
bC � P bCP

k�
bC � P bCP ;cW

k
and cW � =

cW
k�
bC � P bCP ;cW

k
;



Fig. 1. Image sequence of a calibration grid.

where

P = I + kbwk�2cW 2
:

Note that the vector b�� comes automatically normalised. It is easily verified that if b�
satisfies (2), then P bCP = 0 and hence b� = b��. Since P bw = bw and bwT

P = bwT ,
it follows that bwT bC� bw = 0, which in turn immediately implies that bw�

T bC� bw� = 0.
Thus passing from b� to b�� gives a sought-after modification procedure.

3.7 Robust estimation

Typically, a data set comprises two sub-

Fig. 2. Optical flow for calibration grid.

sets: a large, dominant subset of valid
data or inliers, and a relatively small sub-
set of outliers or contaminants. Least
squares minimisation is by nature global
and hence vulnerable to distortion by
outliers. To obtain robust estimates, out-
liers have to be detected and rejected.
To identify the outliers, we employ
Rousseeuw’s least median of squares re-
gression (LMS), as presented in [21].

The LMS technique is applied to
a collection of samples, each being a
seven-element subset of S. The size of
samples is such that it is minimal to al-
low an estimate of �(C;W ) to be deter-

mined from a single sample. The collection is assumed to be large enough to comprise
a sample containing no outlying data. Ideally, the estimator should consider the set of
all seven-element samples. In practice, to make the search computationally feasible, the
sample space is reduced to a family of q randomly chosen samples.1 The number q is
determined as follows. Assume that the proportion of outliers in S does not exceed �,

1 It is important that such a family be chosen so that points forming samples are evenly spread
throughout the whole image.



where 0 < � < 1. The probability P that a family of q samples contains at least one
sample that is outlier-free is then approximately given by

P = 1� (1� (1� �)7)q :

Consequently,

q =

�
log(1� P )

log(1� (1 � �)7)

�
;

where [x] denotes the integral part of x. We exploit this formula by assuming that P =
0:95 and � = 0:52. If after a first run the LMS estimator finds out that the level of
contamination is essentially different from the initial value 0:5, we re-run the LMS
procedure taking the estimated contamination level for an updated value of �.

With q fixed, the LMS estimate of �(C;W ) is obtained by executing the following
steps:

1. Using a random selection scheme3, choose a family S0 consisting of q subsets
of S, each subset containing seven elements.

2. For each s 2 S0, compute three estimates b�s;k (k 2 f1; 2; 3g) by using the
seven-point algorithm from Subsection 3.1 (all three estimates may coincide).

3. For each (s; k) 2 S0 � f1; 2; 3g, determine the median

Ms;k = med
i=1;:::;n

�(b�s;k;mi; _mi)
2:

4. Letting (sq ; kq) 2 S0 � f1; 2; 3g be such that

Msq;kq = min
(s;k)2S0�f1;2;3g

Ms;k;

take b�sq;kq for the LMS estimate of �(C;W ).

With the LMS estimate at hand, outliers within S are identified by using the follow-
ing procedure:

1. Take �̂ = 1:4826
�
1 + 5

n�7

�p
Msq;kq for the robust standard deviation of the

measurements.
2. Declare [mi

T ; _mi
T ]T to be an outlier if and only if �(b�sq;kq ;mi; _mi) > 2:5�̂:

Finally, an overall algorithm for generating a robust estimate of �(C;W ) can be
formulated as follows:

1. Extract outliers from S by using the above procedure.
2. Compute an estimate b� by applying to the remaining elements of
S (a refinement of) the iterative algorithm from Subsection 3.5 to
solve (13).

3. Modify b� to b�� by using the procedure from Subsection 3.6.

2
0:5 is roughly the breakdownpoint of the LMS estimator. The breakdown point of an estimator
is the smallest proportion of the data that can have an arbitrarily large effect on its value.

3 Such a scheme should be sufficiently regular to avoid clustered outcomes.



Fig. 3. Grid reconstruction from various views.

4 Experimental results

In order to assess the applicability of the approach, two tests with real image sequences
were performed. The three images shown in Figure 1 were captured by a Phillips CCD
camera with a 12.5-mm lens. Corners were localised to sub-pixel accuracy with the use
of a corner detector, correspondences between the images were obtained, and the opti-
cal flow depicted in Figure 2 was computed by exploiting these correspondences (thus
no use was made of intensity-based methods of flow computation). The LMS proce-
dure was used to eliminate outliers, and a general solver was then employed to resolve
(13), which resulted in an estimate of �(C;W ). Finally, closed-form expressions were
employed to self-calibrate the system. With self-calibration completed, the pleasing re-
construction displayed in Figure 3 was finally obtained.

The images in Figure 4 were captured using a Nikon-N90/Kodak-DCS420 camera.
The process outlined above produced the reconstruction depicted in Figure 5. To convey
clearly the patterns of the calibration grid, reconstructed points in 3-space have been
connected by line segments. Note that coplanarity of three dimensional points on the
wall and table is well preserved, as is the orthogonality of groups of points on the
different faces of the pillar. This simple reconstruction is again visually pleasing and
suggests that the approach holds promise.
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