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Abstract

A new parameter estimation method is presented, applicable to many com-
puter vision problems. It operates under the assumption that the data (typi-
cally image point locations) are accompanied by covariance matrices charac-
terising data uncertainty. An MLE-based cost function is first formulated and
a new minimisation scheme is then developed. Unlike Sampson’s method or
the renormalisation technique of Kanatani, the new scheme has as its theoret-
ical limit the true minimum of the cost function. It also has the advantages of
being simply expressed, efficient, and unsurpassed in our comparative test-
ing.

1 Introduction

A wide class of computer vision problems may be couched in terms of an equation of the
form

θTu(x) = 0. (1)

Here θ = [θ1, . . . , θl]
T is a vector representing unknown parameters; x = [x1, . . . , xk]

T

is a vector representing the data; andu(x) = [u1(x), . . . , ul(x)]T is a vector with the data
transformed in such a way that: (i) each component is a quadratic form in the compound
vector [xT , 1]T , (ii) one component of u(x) is equal to 1. An ancillary constraint may
also apply that does not involve the data, and this can be expressed as ψ(θ) = 0 for
some scalar-valued function ψ. We consider the following estimation problem: Given a
collection (x1, . . . ,xn) of image data, determine θ 6= 0 satisfying the ancillary equation
(if applicable) together with the system of equations obtained from (1) by substituting xi

into x for each 1 ≤ i ≤ n. When n > l and noise is present, the corresponding system
of equations is overdetermined and as such may fail to have a non-zero solution. In this
situation, we are concerned with finding θ that best fits the data. The form of this vision
problem involving covariance information was first studied in detail by Kanatani [9], and
later by various others (see, e.g., [3, 10, 13, 18, 19]).

Estimating the coefficients of the epipolar equation [5] is one problem of this kind.
Consider a camera with an image plane that is equipped with a coordinate system. Any
3D point in the scene perspectively projected onto this plane gives rise to an image
point represented by a pair (m1,m2) of coordinates, or equivalently, by the vector m =



[m1,m2, 1]
T . A 3D point projected onto the image planes of two different cameras en-

dowed with two separate coordinate systems gives rise to a pair of corresponding points.
When represented by (m,m′), this pair satisfies the epipolar equation m′TFm = 0,
where F = [fij ] is a 3 × 3 fundamental matrix that incorporates information about the
relative orientation and internal geometry of the cameras [5]. The matrix F is subject to
the rank-2 constraint detF = 0. Let θ = [f11, f12, f13, f21, f22, f23, f31, f32, f33]

T be
the vector of parameters, let x = [m1,m2,m

′
1,m

′
2]
T be the vector of variables, and let

u(x) = [m1m
′
1,m2m

′
1,m

′
1,m1m

′
2,m2m

′
2,m

′
2,m1,m2, 1]

T

be the vector of transformed variables. Then m′TFm = θTu(x), showing that the
epipolar equation is subsumed by equation (1). The rank-2 constraint can in turn be
expressed as the ancillary constraint if we let

ψ(θ) = θ1(θ5θ9 − θ6θ8) + θ2(θ6θ7 − θ4θ9) + θ3(θ4θ8 − θ5θ7).

Conic fitting [1,22] and estimating the coefficients of the differential epipolar equation
[2, 20] are further examples of our general problem (see [3] for details).

2 Cost Functions and Estimators

A vast class of techniques for solving our problem rest upon the use of cost functions
measuring the extent to which the data and candidate estimates fail to satisfy (1). If—
for simplicity—the ancillary constraint is set aside, then, given a cost function J =

J(θ;x1, . . . ,xn), a corresponding estimate θ̂ is defined by

J(θ̂) = min
θ 6=0

J(θ;x1, . . . ,xn).

Since (1) does not change if θ is multiplied by a non-zero scalar, we consider only cost
functions satisfying J(tθ;x1, . . . ,xn) = J(θ;x1, . . . ,xn) for any non-zero scalar t.
The assignment of θ̂ (uniquely defined up to a scalar factor) to x1, . . . ,xn will be termed
the J-based estimator of θ.

Once an estimate has been generated by minimising a specific cost function, the ancil-
lary constraint (if it applies) can further be accommodated via an adjustment procedure.
One possibility is to use a general scheme delivering an ‘optimal correction’ described
in [9, Subsec. 9.5.2]. In what follows we shall confine our attention to the estimation
phase that precedes adjustment.

2.1 Ordinary Least Squares Estimator

A straightforward estimator is derived from the cost function

JOLS(θ;x1, . . . ,xn) = ‖θ‖−2

n∑

i=1

θTAiθ,

where Ai = u(xi)u(xi)
T and ‖θ‖ = (θ2

1 + · · · + θ2

l )
1/2. Here each summand θTAiθ

is the square of the algebraic distance |θTu(xi)|. Accordingly, the JOLS-based estimate
of θ is termed the ordinary least squares (OLS) estimate and is denoted θ̂OLS. It is
uniquely determined, up to a scalar factor, by an eigenvector of

∑n
i=1

Ai associated with
the smallest eigenvalue.



2.2 Weighted Least Squares Estimator

The OLS estimator treats all data as being equally valuable. When information character-
ising the measurement errors is available, it is desirable that better data be weighted more
heavily than poorer data during the estimation process. We assume that the data come
equipped with a collection (Λx1

, . . . ,Λxn
) of positive definite k × k covariance matri-

ces. These matrices constitute repositories of prior information about the uncertainty of
the data.

Adopting a maximum likelihood approach and making some necessary concessions
to tractability, a strong case may be mounted for adoption of the weighted least squares
cost function given by

JWLS(θ;x1, . . . ,xn) =

n∑

i=1

θTAiθ

θTBiθ
, (2)

where Bi = ∂xu(xi)Λxi
∂xu(xi)

T and ∂xu(y) = [(∂ui/∂xj)(y)]1≤i≤l,1≤j≤k [3, 9].
The JWLS-based estimate of θ will be called the weighted least squares (WLS) estimate
and will be denoted θ̂WLS.

With the parameters to be estimated in matrix rather than in vector form, the function
JWLS underlying fundamental matrix estimation reduces to Zhang’s favoured gradient
weighted least squares cost function (see J2 in the appendix of [24]) given by

J(F ) =

n∑

i=1

(m′
i
TFmi)

2

mi
TFΛm′

i
F Tmi +m′

i
TF TΛmi

Fm′
i

.

Here all of the covariance matrices have the form Λm =
[
Λp 0

0
T

0

]
with Λp the 2 × 2

covariance matrix corresponding to the vector p = [m1,m2]
T that derives from the rep-

resentation m = [m1,m2, 1]
T .

3 Minimising JWLS

Minimising JWLS is a challenging problem. One strategy is to rely upon a general solver
such as the Levenberg-Marquardt method [14, Sec. 15.5], the downhill simplex method
of Nelder and Mead [14, Sec. 10.4], or one of the direction set methods of Powell [14,
Sec. 10.5]. However, such a solver will not take into account the special form of the
problem and may be unduly slow. A commonly adopted approach to minimising func-
tions involving fractional expressions is that ascribed to Sampson [15]. When applied
to JWLS, Sampson’s method (SMP) starts the search for a minimiser by substituting an
initial estimate into the denominators θTBiθ in (2), which transforms our problem into
one of minimising a quadratic form in θ; the latter problem is straightforward and reduces
to performing singular-value decomposition (SVD) of the matrix defining the form. This
process is then repeated with the newly obtained estimate plugged into the denominators
until a measure of convergence is obtained.

Kanatani showed that the SMP approach, involving a “freezing” of the denominators,
is subject to systematic bias. Accordingly, he devised the technique of renormalisation
(REN) in which an attempt is made at each iteration to undo the bias [9, Chap. 12].
We show in a companion paper [3] that the estimate θ̂REN obtained via REN does not
theoretically act to compute θ̂WLS. However, a case may be made that this is unimportant



given that θ̂REN and θ̂WLS are both first-order approximations to θ̂ML and as such are
likely to be statistically equivalent.

In this section we derive a straightforward minimisation scheme that is a genuine
means of theoretically determining the minimiser of JWLS.

3.1 Variational Equation

As a minimiser of JWLS, θ̂WLS satisfies ∂θJWLS(θ;x1, . . . ,xn) = 0
T , where ∂θJWLS

denotes the row vector of the partial derivatives of JWLS with respect to θ. We term this
the variational equation. Direct computation shows that

[∂θJWLS(θ;x1, . . . ,xn)]T = 2Xθθ, (3)

where Xθ is the l × l symmetric matrix

Xθ =

n∑

i=1

Ai

θTBiθ
−

n∑

i=1

θTAiθ

(θTBiθ)2
Bi. (4)

Thus the variational equation can be rephrased as

Xθθ = 0. (5)

This is a non-linear equation and is unlikely to admit solutions in closed form.

3.2 Fundamental Numerical Scheme

Closed-form solutions of the variational equation may be infeasible, so in practice θ̂WLS

has to be found numerically. We assume that θ̂WLS lies close to θ̂OLS so as to guarantee
that, when seeded with θ̂OLS, the numerical method that we are going to develop gen-
erates an estimate that coincides with θ̂WLS. Adopting θ̂OLS as an initial guess θ0, we
construct a sequence {θk} of successive updates. Under favourable conditions, the se-
quence will converge. Exploiting the assumption about the accuracy of the initial guess,
we take the corresponding limit for the final estimate. In practice, the limit will be identi-
fied with the final term of {θk} stopped after a finite number of steps. The stopping rule
will be the choice of the first k such that the distance of some kind between θk−1 and θk,
say ‖θk−1 − θk‖, is less than a pre-assigned quantity.

A straightforward algorithm for numerically solving the variational equation can be
derived by realising that a vector θ satisfies (5) if and only if it falls into the null space
of the matrix Xθ . Thus if θk−1 is a tentative guess, then an improved guess can be
obtained by picking a vector θk from that eigenspace of Xθk−1

which most closely ap-
proximates the null space of Xθ; this eigenspace is, of course, the one corresponding to
the eigenvalue closest to zero. The fundamental numerical scheme implementing this idea
is presented in Figure 1. It can be regarded as a variant of the Newton-Raphson method.
As it turns out, the scheme is computationally efficient and accurate, and is more direct
than alternative approaches (cf. [10]).

4 Experimental Results

The fundamental numerical scheme and other algorithms were tested on the problem of
estimating the fundamental matrix [4,6–8,10,11,13,16,17,21–25]. Experiments reported



1. Set θ0 = θ̂OLS.

2. Assuming that θk−1 is known, compute the matrix Xθk−1
.

3. Compute a normalised eigenvector of Xθk−1
corresponding to the eigen-

value closest to zero (in absolute value) and take this eigenvector for θk.

4. If θk is sufficiently close to θk−1, then terminate the procedure; otherwise
increment k and return to Step 2.

Figure 1: Fundamental numerical scheme.

here are synthetic as these permit precise control of the conditions under which perfor-
mance can be evaluated. In our tests, no special knowledge of the domain was utilised.
Furthermore, no attempt was made to eliminate outliers, our experiments at this stage
comparing general techniques for solving problems of the form specified in (1). The
rank-2 constraint was not enforced as a post-process (it turns out that the fundamental
numerical scheme always generated fundamental matrices which, when scaled to unit
Frobenius norm, had determinants smaller than 10−11).

Our experiments proceeded as follows. A realistic stereo camera configuration was
first selected with non co-planar optical axes, and slightly differing left and right camera
intrinsic parameters. Randomly chosen 3D points were then projected onto the images so
as to generate many pairs of corresponding points. A range of tests was then conducted.
Each test was carried out with respect to an average level of noise, σ, defined as the
expected value of the trace of the covariance matrices employed in the test.

For a given test, image points were perturbed by adding inhomogeneous anisotropic
noise at some average level σ, consistent with covariance matrices generated via the
method described below. Figure 2 depicts a typical image, showing a subset of (unper-
turbed) image points together with associated ellipses. Each of the ellipses represents a
level set of the probability density function describing the noise spread around the ellipse
centre, and as such captures graphically the covariances employed.

The following procedure was adopted for generating covariance matrices associated
with image points, prescribing anisotropic and inhomogeneous noise at a given average
level σ. Given an image point p, the scale α of a prospective covariance matrix Λp

was first selected from a uniform distribution in the range [0, 2σ]. (Similar results were
obtained using other distributions.) Next, an eccentricity parameter β was generated from
a uniform distribution between 0 and 0.5. An intermediate covariance matrix was then
formed by setting Λ′p = α

[ β 0

0 1−β

]
. This matrix was then ‘rotated’ by an angle γ selected

from a uniform distribution between 0 and 2π to generate the final covariance Λp =

OγΛ
′
pOγ

T with Oγ =
[

cos γ − sin γ
sin γ cos γ

]
. Since E [TrΛ] = E

[
TrΛ′

]
= E [α] = σ, where

TrA denotes the trace of the matrix A, the noise generated by employing Λp has the
average level σ.

The following procedure was adopted for generating covariance matrices associated
with points of the form x = [pT ,p′T ]T , where p and p′ are corresponding points. First,
covariance matrices Λp and Λp′ were generated using the recipe given above. Next,



Figure 2: True image points and associated covariance ellipses

covariance matrices Λx were constructed by setting Λx =
[
Λp 0

0 Λ
p′

]
.

Each method under test was then challenged to compute the fundamental matrix. For
each σ, the fundamental matrix was computed 250 times from a given set of 60 corre-
sponding (true) points, but with fresh covariance matrices and perturbations generated
each time. (Similar results were observed in trials using between 40 and 100 pairs.) For
each fundamental matrix obtained, an error measure was computed as the sum of the
distances of the underlying true points to the epipolar lines derived from the estimated
fundamental matrix, in both the left and right images. A composite error measure was
then obtained by averaging this error over all 250 trials. This entire process was then
repeated for different average levels of noise (with σ varying from 1 to 10 pixels in steps
of 1).

Note that the error measure used in the experiment took advantage of the fact that the
underlying true points were known. Were these unknown, an alternative measure might
be the sum of the Mahalanobis distances from the data points to the estimated epipolar
lines.

The methods tested were as follows:

• OLS = ordinary least squares scheme,
• SMP = Sampson-like scheme,
• REN = renormalisation scheme,
• LM = Levenberg-Marquardt scheme,
• FNS = fundamental numerical scheme.

Here, SMP is effectively Sampson’s method with covariances (see Section 3). The REN
scheme chosen was a second-order method; in tests carried out in a companion paper, it
performed as well as any of the renormalisation variants (see the SORIII scheme in [3]).

A Levenberg-Marquardt (LM) scheme was included so as to provide a baseline in
both accuracy and timing trials; specifically, the MINPACK routine LMDER was used to
directly minimise JWLS, with the analytical derivatives of JWLS, as in (3), supplied so as
to improve the execution time.



The OLS method uses the LINPACK routine DSVDC to perform SVD, and the EIS-
PACK routine RS is used in those methods requiring computation of eigenvalues and as-
sociated eigenvectors, since the matrices involved are symmetric. It should also be noted
that the various iterative schemes were supplied with similar stopping conditions so as to
enable fair comparison.

Table 1 shows the average epipolar-distance pixel errors obtained for each method.
Figure 3 depicts the tabular data in graphical form. We note that errors mount approxi-
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Figure 3: Fundamental matrix estimation errors (in pixels) vs. average noise level

mately linearly with increasing noise. The tests reveal that LM and FNS perform almost
identically. In turn, REN generates answers in a very small neighbourhood of those de-
livered by FNS. Finally, SMP lags behind systematically, while OLS is by far the least
successful method.

4.1 Timing Tests

Timing tests were conducted on the various schemes. Stopping conditions were devised
so as to place similar demands upon each of the iterative methods. None of the schemes’
timings were affected significantly by change in noise level. Figure 4 shows histogram
timing data for the OLS, SMP, LM, and FNS methods. In each case, the bar denotes the
time taken to complete a single test, averaged over the complete suite of experiments.
REN was not included as SORIII is a particularly slow (but accurate) form of renormal-
isation. FNS typically converged within 4 or 5 iterations. Oscillation was not found to
be a practical problem. Interestingly, FNS emerges as being significantly faster than LM,
while generating essentially the same results.



AVERAGE SCHEME

NOISE LEVEL OLS SMP REN LM FNS

1 0.317 0.214 0.210 0.210 0.210
2 0.642 0.432 0.414 0.414 0.414
3 0.982 0.668 0.631 0.630 0.630
4 1.317 0.893 0.826 0.825 0.825
5 1.729 1.195 1.094 1.094 1.094
6 2.085 1.443 1.302 1.303 1.303
7 2.532 1.736 1.548 1.549 1.549
8 2.898 2.001 1.748 1.749 1.749
9 3.319 2.258 1.950 1.949 1.949

10 3.771 2.559 2.181 2.181 2.181

Table 1: Fundamental matrix estimation errors (in pixels) vs. average noise level
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Figure 4: Timing results for various methods
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