ON SOME FUNCTIONALS ON BERGMAN SPACES

WOJCIECH CHOJNACKI

Summary. We prove that if Ω is an open subset of C with nontrivial Bergman space, then the functionals $f \mapsto f^{(k)}(w)$ ($w \in \Omega$, $k \in \mathbb{N} \cup \{0\}$) on the Bergman space of Ω are nonzero and linearly independent.

Let Ω be an open subset of C. Let $L^2H(\Omega)$ be the Bergman space of Ω , that is, the space of all holomorphic Lebesgue square integrable functions on Ω . Suppose that $L^2H(\Omega) \neq \{0\}$. For each $w \in \Omega$ and each $n \in \mathbb{N} \cup \{0\}$, let $\delta_w^{(n)}$ denote the linear continuous functional on $L^2H(\Omega)$ defined by

$$\delta_w^{(n)}(f) = f^{(n)}(w) \quad (f \in L^2 H(\Omega)).$$

M. Skwarczyński [3] showed that the functionals $\delta_w^{(0)}$ ($w \in \Omega$) are nonzero and linearly independent. Refining an argument of Skwarczyński, we prove the following generalization of that result.

Theorem. The functionals $\delta_w^{(n)}$ $(w \in \Omega, n \in \mathbb{N} \cup \{0\})$ are nonzero and linearly independent.

Proof. Suppose that there exist $a_i \in \mathbb{C} \setminus \{0\}$, $w_i \in \Omega$, and $n_i \in \mathbb{N} \cup \{0\}$ $(1 \le i \le N)$ such that $(n_i, w_i) \ne (n_j, w_j)$ whenever $i \ne j$ $(1 \le i \le N, 1 \le j \le N)$ and

(1)
$$\sum_{i=1}^{N} a_i \delta_{w_i}^{(n_i)} = 0.$$

Let $I_1 = \{i \in \{1, \dots, N\} : w_i = w_1\}$ and $I_2 = \{1, \dots, N\} \setminus I_1$. Let $m = \max\{n_i : i \in I_1\}$ and let $j \in I_1$ satisfy $n_j = m$. By a theorem of Skwarczyński-Wiegerinck [3, 4], being nontrivial, the space $L^2H(\Omega)$ is in fact infinite-dimensional. Hence the space

$$H = \bigcap_{0 \leqslant k \leqslant m-1} \ker \delta_{w_1}^{(k)} \cap \bigcap_{\substack{0 \leqslant k \leqslant n_i \\ i \in I_2}} \ker \delta_{w_i}^{(k)}$$

is nontrivial. Let f be any nonzero element of H. Let

$$r = \min\{k \in \mathbf{N} \cup \{0\}: f^{(m+k)}(w_1) \neq 0\}.$$

For each $z \in \Omega \setminus \{w_1\}$, set $g(z) = (z - w_1)^{-r} f(z)$. Since all the derivatives of f at w_1 of order no greater than m + r - 1 vanish, g can be extended in a unique way to a holomorphic function on Ω . Choose $\delta > 0$ so that the disc $D(w_1, \delta) = \{z \in C : |z - w_1| < \delta\}$ is contained in Ω . Then

$$\int_{\Omega} |g|^2 d\lambda \leqslant \max\{|g(z)|^2 \colon z \in D(w_1, \delta)\} \,\lambda(D(w_1, \delta))$$
$$+ \delta^{-2r} \int_{\Omega \setminus D(w_1, \delta)} |f|^2 d\lambda,$$

which shows that g is in $L^2H(\Omega)$; here λ stands for the Lebesgue measure on Ω . Now an easy computation establishes that $g \in H$ and that

(2)
$$g^{(m)}(w_1) = \frac{m!}{(m+r)!} f^{m+r}(w_1) \neq 0.$$

Hence

$$\sum_{i=1}^{N} a_i \delta_{w_i}^{(n_i)}(g) = a_j g^{(m)}(w_1).$$

The latter identity jointly with (1) and (2) implies that $a_j = 0$, a contradiction. The proof is complete.

We conclude with two remarks. First, Example II.1 in [2] and the examples of finite-dimensional Bergman spaces in [3, 4] show that the natural generalization of the theorem established to open subsets of \mathbb{C}^n $(n \geq 2)$ is in general not valid. Second, it follows from the above theorem that any domain in \mathbb{C} with nontrivial Bergman space has property \mathscr{A} as introduced in [1]. Therefore Theorem 3.1 of [1] is subsumed in Theorem 3.2 of that same paper.

References

- W. Chojnacki, On some holomorphic dynamical systems, Quart. J. Math. Oxford Ser. (2) 39 (1988), 159–172.
- M. Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. (Rozprawy Mat.) 173 (1980), 1–64.
- 3. ______, Evaluation functionals on spaces of square integrable holomorphic functions, Prace Mat.-Fiz., WSP, Radom, 1982, pp. 64–72 (Polish).
- J. J. O. O. Wiegerinck, Domains with finite-dimensional Bergman space, Math. Z. 187 (1984), 559–562.

В. Хойнацки, О некоторых функционалах на простанствах Бергмана

В работе доказывается, что если Ω — открытое подмножество с нетривиальным простанством Бергмана, то функционалы $f \mapsto f^{(k)}(w) \ (w \in \Omega, \ k \in \mathbb{N} \cup \{0\})$ на простанстве Бергмана множества Ω ненулевы и линейно независимы.

Institute of Applied Mathematics and Mechanics, University of Warsaw, PKiN, P.O. Box 18, 00-901 Warszawa

(Instytut Matematyki Stosowanej i Mechaniki, Uniwersytet Warszawski)