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Abstract. Much work have been done in activity recognition using wearable
sensors organized in a body sensor network. The quality and communication re-
liability of the sensor data much affects the system performance. Recent studies
show the potential of using RFID radio information instead of sensor data for
activity recognition. This approach has the advantages of low cost and high relia-
bility. Radio-based recognition method is also amiable to packet loss and has the
advantages including MAC layer simplicity and low transmission power level. In
this paper, we present a novel wearable Radio Frequency Identification (RFID)
system using passive tags which are smaller and more cost-effective to recognize
human activities in real-time. We exploit RFID radio patterns and extract both
spatial and temporal features to characterize various activities. We also address
two issues - the false negative issue of tag readings and tag/antenna calibration,
and design a fast online recognition system. We develop a prototype system which
consists of a wearable RFID system and a smartphone to demonstrate the working
principles, and conduct experimental studies with four subjects over two weeks.
The results show that our system achieves a high recognition accuracy of 93.6%
with a latency of 5 seconds.
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1 Introduction

With the rapid advances of wireless networking and sensing technologies in recent
years, recognizing human activity based on wearable sensors has drawn much research
interest. In this paradigm, wearable sensors with sensing and wireless communication
capabilities are organized in a body sensor network (BSN) to capture different motion
patterns of a user. Continuous sensor readings are collected and processed at a central-
ized server for extracting useful features, training an appropriate activity model, and
recognizing a variety of activities. Recognizing people’s activities continuously in real-
time enables a wide range of applications, particularly in health monitoring, assistive
living, rehabilitation, and entertainment.

While BSNs have shown the effectiveness, they do have several limitations. First,
the human body affects the quality of the wireless links between sensor nodes causing
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packet loss [1]. This will result in incomplete sensor data received at the server, un-
dermining the accuracy and the real-time performance of the recognition system. To
improve packet delivery performance, the system can either use re-transmission mech-
anisms or increase the transmission power level [2]. However, this solution complicates
the underlying MAC protocol, increases sensor power consumption, and degrades the
real-time performance of the system. Moreover, in order to capture the user’s activi-
ties, BSN nodes are equipped with sensing, computing, storage, and communication
devices, making the sensor nodes large in size and high in cost. Finally, batteries are re-
quired to keep the sensor nodes alive, making energy consumption a challenging issue
in BSN. The daily maintenance of the system (e.g., monitoring the remaining power
and changing the batteries for multiple sensor nodes) is labor-intensive.

Recent studies show that Radio Frequency Identification (RFID) technologies have
the potential to build low-cost, reliable systems to detect certain activities such as mov-
ing trajectories or gestures based on radio information [3–5]. Motivated by these work,
we explore the possibility of using ultra-high frequency (UHF) RFID system for com-
plex human activity recognition. Our system is based on two observations: 1) there
exists heavy attenuation of the human body to radio communication band in which the
UHF RFID operates, and 2) RFID radio communication is highly affected by the tag-
antenna distance and orientation. Based on these observations, if we deploy an RFID
system on a human body, user motions may result in different radio patterns which can
differentiate activities. In our system, packet loss and fading provide useful information
for activity recognition. Thus, simple MAC protocols and low transmission power lev-
els are preferred. Further, we use passive tags instead of sensor nodes which are smaller
and lighter that can be embedded into the clothes and daily objects. The passive tags are
more cost-effective and, due to their simple structure and protective encapsulation, more
robust than the sensor nodes. Finally, the passive tags operate without batteries. Once
deployed, no further maintenance is required. The only device that requires battery
power in our sensing system is the RFID reader. According to our previous experience
in BSN-based recognition system [6] in which careful battery management is required
for every sensor node to keep the system operate, we argue in this paper that using only
one battery for the entire system significantly reduces the human-effort and increases its
reliability. Moreover, recent technical trends show that low-cost, low-power RFID read-
ers are becoming commonly available by integrating into the smartphones [7], making
our work potentially beneficial to the mobile users in the future.

The system consists of a wearable RFID system for capturing radio patterns, and a
smartphone device for collecting and processing such patterns. To make use of the radio
patterns, we extract temporal and spatial features to characterize the radio patterns.
These features are carefully selected to tolerate large variances in tag performance,
avoiding labor intensive calibration which is typically required in many RFID and RSS-
based systems [3]. We design an effective algorithm to address the false negative issue
of tag readings in RFID systems. To achieve real-time recognition, we use a fixed-
length sliding window to control latency bound, and develop a fast, lightweight, online
algorithm based on Support Vector Machine (SVM) to be executed on smartphones.
We conduct comprehensive experiments involving multiple human subjects. The results
show that our system achieves a high recognition accuracy with a low delay.
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The rest of the paper is organized as follows. Section 2 introduces related work.
Hardware setup and preliminary experiment results are presented in Section 3. We
present the details of our system design in Section 4. Section 5 reports results of empir-
ical studies and Section 6 concludes the paper.

2 Related Work

Much work have been done based on sensor readings for activity recognition. These
sensing based solutions [6, 8] usually deploy accelerometer sensors on a human body
to capture body movement. The sensor nodes are self-organized into a BSN where
appropriate MAC and routing protocols are operated to ensure the quality of sensor data.
Different from these work, we exploit RFID radio information for activity recognition.

RFID has been used in indoor localization and activity recognition. For example,
fixed RFID readers and reference tags are deployed in the environment with known
locations to track the mobile tags or persons using RSS values [3,4]. In [5], the authors
use RFID for tracking hand movements in a table-size scale. The tags are placed in a
grid-like structure on a table with readers located at three corners. They use tag counting
information received at different readers to keep track of hand movements. Different
from the above work relying on fixed RFID readers or tags for tracking locations or
detecting simple moving patterns, we design a wearable RFID system to recognize
human activities involving complex movements of different body parts continuously.
In [6], wrist-worn HF RFID readers are used to capture the object usage information
by reporting the passive tags attached to objects within its reading range (less than 7
cm in reading distance). Different from this work, we use a UHF RFID system with a
larger reading range covering a user’s entire body, and exploit the RFID radio patterns
to recognize body movements.

Recent work have explored 2.4G RF radio information for activity recognition. In
[2], the authors use the radio communication patterns extracted from a BSN to recognize
activities. Their BSN consists of two on-body sensor nodes, which send simple fake
packets to the sink at a low power level. The communication patterns (i.e., such as
packet delivery ratio and the mean of RSSI values) from arrival packets within a time
window are extracted and used as a signature to recognize the corresponding activity.
Similar RSSI information of the radio communication have also used been in [9] for
activity recognition. Different from these work, we design a novel RFID system with
passive tags which can be potentially unobtrusive to user experience since tags can be
easily embedded into clothes. Unlike the sensor nodes, the passive tags do not rely on
battery power to operate. We discover rich RFID radio patterns and extract complex
features, and demonstrate how they are used in a real-time activity recognition system.

3 Preliminary Experimental Studies

In this section, we introduce our system hardware setup and conduct preliminary exper-
iments to show the tag reading performance under different conditions and the potential
of using radio patterns for activity recognition.
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Fig. 1. Hardware setup.
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Fig. 2. Average RSS values of tags at different positions with different transmission power levels
and tag-antenna orientations.

3.1 Hardware Setup

The hardware used in this work is shown in Fig. 1. We use Impinj R2000 RFID read-
er module powered by a Li battery with 9000mAh capacity. The size of the reader is
15×9×2.5 cm. We use UHF RFID tags with a credit card size. We have four antennas,
and each has a size of 7.8×7.8×0.5 cm. The transmission power level of each antenna
is adjustable from 0dbm to 30dbm with a minimum level of 0.1dbm. The RFID reader
module operates at 840-960MHz and supports UHF RFID standards such as ETSI EN
302 208-1. The agility of the module is -95dbm. When set to the tag inventory mode,
the reader can read as many tags as possible (maybe multiple readings per tag) using
an anti-collision protocol. For the reader we used, over 50 tag readings can be obtained
in one second. Each tag reading contains the tag ID1 and the RSS value. Tag read-
ings obtained from the reader are sent wirelessly through a Serial-to-WiFi adapter. The
readings are then received by a smartphone for processing. We use Samsung Nexus 3
smartphone with a dual-core 2.4G processor, running Android 4.0.

3.2 Reading RFID Tags

We first study the tag reading performance of the reader under different settings in
transmission power level, tag-antenna distance, and orientation.

First, Fig. 2(a) shows the RSS values obtained at different positions in the detection
area of an antenna. The antenna is placed on the top of the area facing downward with
the transmission power level set to 20dbm. The tag under test is placed in an area 0cm
to 240cm perpendicular to, and -120cm to 120cm parallel to the antenna face (nega-
tive values for positions on the right side of the antenna). The tag-antenna angle is 0
degree, i.e., the tag face is parallel to the antenna face. As shown in Fig. 2(a), the RSS

1 We use the Electronic Product Code (EPC) stored on a tag as its ID.
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Fig. 3. (a) Wearable RFID system, (b) average RSS readings with different motions over time.

gets stronger when the tag is placed closer to the antenna. Specifically, in the direction
perpendicular to the antenna face, the tag can be stably read when placed within the
distance of 60cm to 90cm. For a distance less than 60cm or larger than 90cm, the tag is
not detected in some locations. In the direction parallel to the antenna face, the tag can
be stably read when placed in the distance of -60cm to 60cm. For locations out of this
range, the tag is not detected sometimes.

Next, we change the antenna’s transmission power level to 30dbm and repeat the
previous experiment. The results are shown in Fig. 2(b). It is clear that all the RSS
values get increased as compared to the 20dbm results in Fig. 2(a), and the antenna’s
reading range covers the entire 240cm × 240cm area with no miss detection. Finally,
we repeat the first experiment with a power level of 20dbm, but we turn the tag-antenna
orientation from 0 degree to 90 degrees. The results are shown in Fig. 2(c). We observe
that the antenna’s reading area has changed significantly. Tags can be read farther in the
positions parallel to the antenna’s face but significantly closer (no more than 60cm ) in
the direction perpendicular to the antenna’s face compared to Fig. 2(a).

In summary, the tag RSS values are affected by factors including tag-antenna dis-
tance, orientation, and transmission power. Moreover, human body is known to affect
RFID communication [4], which is also observed in our experiments (detailed experi-
ment results are omitted due to page limits). If the tags and antennas are worn on the
user’s body, the above factors will change by the movements of different body parts
when performing activities, and can be potentially used for activity recognition.

3.3 Potential of Activity Recognition

In this section, we demonstrate the potential of using RFID radio patterns extracted
from RSS values for activity recognition. The experiment is carried out by one male
subject performing three basic motions including standing, sitting, and walking. Four
antennas and 36 tags are attached to the user as shown in Fig. 3(a) and introduced later
in Section 4.1. During this experiment, we use the all antenna inventory mode of the
reader which automatically activates the antennas for tag reading. Under this mode, the
readings from the four antennas are mixed together. Also the four tags attached around
the same body part share the same tag ID.

The average RSS values of tags attached to different body parts are shown in Fig.
3(b). From this figure, it is clear that different motions result in different RSS pattern-
s. For the sitting activity, the RSS values of tags attached to the body, right leg, and
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left/right ankles are clearly stronger and more stable than other activities. For the s-
tanding activity, the RSS readings of the above mentioned body parts are also relatively
more stable than the walking activity but the RSS values are lower than the sitting ac-
tivity. Additionally, it can be seen from Fig. 3(b) that the RSS values of tags attached
to the left wrist and left arm are stronger and more stable than other activities. For the
walking activity, rhythmic variances in RSS values can be observed for tags attached to
nearly every part of the human body, and they seem matched with arms and legs waving
during the walking activity.

4 System Design

The above preliminary studies have shown the feasibility and potential of using RFID
radio patterns for activity recognition. In this section, we present the detailed design of
the proposed RFID-based real-time activity recognition system including sensing, data
segmentation, feature extraction and recognition algorithm.

4.1 Antenna / Tag Placement

We present the antenna and tag placement strategies in this section and show a subject
wearing the antennas and tags in Fig. 3(a).

Antenna Placement. As suggested by Fig. 2 in our preliminary studies, we place
four antennas on a human body – two antennas (one on the chest and the other on
the back) for detecting hand/arm movements, and one antenna on each of the feet for
detecting lower body movements (as shown in Fig. 3(a)). Such placement ensures a
total coverage of different body parts, and also meet user’s comfort need.

Tag Placement. To capture the movement of different body parts, RFID tags are
attached to nine body parts including both wrists, arms, ankles, legs, and the body.
To increase the reliability of tag readings, we attach four tags at each body part. For
example, for the right wrist, we attach four tag located at the front, left, right, and back
of the wrist. This redundant tag placement strategy ensures that no matter how the user
moves his/her wrist, at least one tag will face the antenna and can be read by the reader
with high probability. A total number of 36 tags are attached on the user’s body with
each tag having an unique ID.

Inventory Mode. Instead of using the all antenna inventory mode used for our pre-
liminary experiment, we use single antenna inventory mode to discriminate the readings
of one antenna from others. The four antennas connected to the RFID reader are acti-
vated sequentially to detect tags within their reading ranges. The dwell time of each
antenna is set to the default value of two seconds and the time to complete an inven-
tory cycle is eight seconds. The tag readings obtained during the activation time of an
antenna is a series of tag IDs and their RSS values.

The transmission power level of the RFID reader is a key parameter in our system,
and it influences the system’s performance on both recognition accuracy and battery
consumption. We find the optimal transmission power level by experiments in Section
5.3. We also evaluate the effect of different antenna and tag placement strategies in
Section 5.2.
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4.2 Data Segmentation and Completion

Given the continuous flow of tag readings, we first apply a sliding window to segmen-
t the data. In this paper, we focus on real-time activity recognition with a restricted
recognition latency defined by the application. We use a fixed window size specified
by L combined with the real-time activity recognition algorithm introduced later to
achieve stable time performance. L is a key parameter in our system for it affects both
the recognition accuracy and latency.

As mentioned in the introduction, one of the challenges in existing RFID systems is
false negative readings [4,5], caused by miss detection – a tag is in the antenna’s reading
range, but not detected. In addition, in our system if the sliding window size is too short
for the reader to complete readings for all four antennas, it may also cause false negative
readings. To address this issue, we use recent historical data to complete the current
readings. The intuition behind this approach is temporal locality – tags recently detected
are likely to be detected again with similar RSS values. We illustrate the method in Fig.
4, assuming the false negative reading is caused by a short window size of 4s. While the
data from antenna 0 and 1 are missing in the current data because the current window
is only long enough to complete two antennas’ readings, we use the last window’s data
to complete the current data. The same strategy is applied to the case of miss detection,
technical details are omitted in this paper due to page limits.

4.3 Temporal and Spatial Features

For each data segment, we extract both temporal and spatial features to characterize the
radio patterns. An known performance issue of tag readings commonly exists in RFID-
based systems is that readings from different combinations of tags and antennas may be
different even with the same condition [4]. One possible solution is through calibration.
However, data calibration [4] is infeasible in our system because the complexity of our
feature set. As a result, we carefully design our feature set that can tolerate the tag
performance issue.

Temporal Features. The data in each segment are composed of series of RSS val-
ues arranged by receiving time with each series representing the RSS values of a specific
tag read by a specific antenna. Seven features are extracted from each RSS series in-
cluding the mean, variance, max, min, mean crossing rate, frequency domain energy
and entropy of the RSS values to characterize its radio patterns temporally. The tempo-
ral features are extracted for each RSS series independently from the others. As a result,
data calibration is not required for there is no cross-reference between readings from
different tags and antennas.
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Spatial Features. To characterize the radio patterns spatially, we extract the corre-
lation coefficients of RSS series for different tags read by different antennas. The cor-
relation coefficient quantifies the degree of dependency between a pair of RSS reading
series by observing the similarity in their changing patterns. As shown by our prelimi-
nary experiment results, the RSS values are stronger with a closer tag-antenna distance
and a smaller tag-antenna angle when the transmission power level is fixed. The per-
formance issue of tag readings may cause different RSS values obtained by different
combinations of tags and antennas even with the same condition but cannot fundamen-
tally change their changing patterns caused by body movements.

4.4 Real-time Recognition Algorithm

The design goal of our system is to achieve real-time activity recognition. We identify
two key requirements described as follows.

1. Online. An recognition algorithm is offline if it requires the complete instance of
an activity to be presented for recognition [6]. Offline systems cannot perform real-
time recognition for they need to wait for the current activity to finish before recog-
nition and the waiting time is uncertain. To achieve real-time recognition, the algo-
rithm must be online that can recognize the current activity without being presented
with the complete activity instance, i.e., only using data already obtained.

2. Continuous. To achieve real-time, the recognition result must be generated before
the delay bound. Considering that the recognition system works iteratively to gen-
erate recognition results, we adapt the real-time concept from the signal processing
field [10] to activity recognition systems. The acceptable recognition latency is
specified by the sliding window size L which determines the data collection time.
The processing time must be less than the data collection time [10] so that the
recognition results can be obtained before the next data segment arrives, providing
continuous recognition results without extra delays.

While the online property of our recognition system is guaranteed in our system for
activity instances are generated only using the data already obtained, the continuous
property is determined by the execution time of the recognition algorithm. We design a
fast recognition algorithm based on a multi-class support vector machine (SVM) with
radial basis function kernel. SVM is widely used in activity recognition [2]. The advan-
tage of using SVM for activity recognition includes: 1) designed on a sound theoretical
basis, SVM is promising to have accurate and robust classification results; 2) SVM s-
cales well to the number of features; 3) the model training can be performed on very
few training cases; and 4) the recognition can be executed fast at runtime [2]. The per-
formance of our recognition algorithm is determined not only by its time complexity
but also the hardware platform. We have implemented the recognition algorithm on
Android smartphone, and will evaluate its real-time performance in the next section.

5 Empirical Studies

In this section, we present empirical studies to evaluate the performance of our system.
The experiments are conducted in an area of our office building, including two rooms
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Table 1. Four subjects involved.

Subject Gender Height (cm) Weight (kg) Body Type
1 Male 177 70 Normal
2 Female 159 45 Slim
3 Male 180 75 Normal
4 Male 193 110 Strong

Table 2. Eight activities studied.

No. Activity No. Activity
1 Sitting 5 Cleaning Table
2 Standing 6 Vacuuming
3 Walking 7 Riding Bike
4 Cleaning Window 8 Going Up/Down Stairs
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Fig. 5. Sliding window size vs. recognition ac-
curacy.
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Fig. 6. Breakdown of precision and recall.

and a corridor, as well as outdoors. Our data collection involves four subjects (three
males and one female). The subjects are carefully selected to represent different heights
and body types as summarized in Table 1. Each subject is required to perform eight
activities as summarized in Table 2. Each activity is performed for at least five minutes.
The data collection is carried out over a period of two weeks and a total number of over
200 activity instances are collected.

5.1 Recognition Accuracy and Real-time Performance

In the first experiment, we evaluate the recognition accuracy which is defined by the
number of correctly classified instances over the number of the total instances, and the
latency which is determined by the sliding window size.

The recognition accuracies with different sliding window sizes are illustrated in Fig.
5. As we can see from the figure, when the sliding window size is small (i.e. from 1s
to 4s), the recognition accuracy rapidly grows from 65.8% to 91.8%. The recognition
accuracy reaches its peak at 93.6% when sliding window size is 5s. It is interesting
to see that the recognition accuracy drops slowly afterwards and stabilizes at around
86% when the sliding window size increases further. This result suggests that a larger
sliding window does not always result in a higher recognition accuracy.We breakdown
the precision and recall of different activities with a window size of 5s and show the
results in Fig. 6. Fig. 6 shows that the precision and recall for most of the activities
are above 0.9. By analyzing the results, we find that some of the walking activity are
recognized as going up/down stairs, a few instances of the walking, cleaning table, and
cleaning window activities are recognized as vacuuming. Overall, our system achieves
the best recognition accuracy of 93.6% when the sliding window size is set to 5s.

Next, we evaluate the real-time performance of the system. The online property is
guaranteed by using only the current and historical data for recognition. The continuous
property is determined by the execution time of the recognition algorithm. Fig. 7 com-
pares the data collection time and the maximum processing time on our smartphone
(data completion + feature extraction + recognition) under different sliding window
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Table 3. Antenna placement configurations.

Configuration Back Chest Left
Foot

Right
Foot

Upper Antennas X X

Lower Antennas X X

Mixed Antennas X X

Table 4. Tag placement configurations.

Configuration Left
Wrist

Right
Wrist

Left
Arm

Right
Arm Body Left

Leg
Right
Leg

Left
Ankle

Right
Ankle

Upper Tags X X X X X

Lower Tags X X X X X

Mixed Tags X X X X X
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Fig. 8. Recognition accuracy under different an-
tenna configurations.
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Fig. 9. Recognition accuracy under different tag
configurations.

sizes. As shown in the figure, our system performs real-time recognition even when the
delay bound is down to 1s (by fixing the sliding window size to 1s). The maximum
processing time is always less than the data collection time and remains low (around
450ms) when the sliding window size grows.

5.2 Antenna and Tag Placement

We evaluate the performance of different antenna and tag placement strategies in this
experiment. We designed three placement configurations for both the antennas and the
tags as shown in Tables 3 and 4, respectively. Note that we assume the user wears all the
tags when choosing different antenna configurations and wears all the antennas when
choosing different tag configurations.

The recognition accuracies under different antenna configurations are illustrated in
Fig. 8. To compute the accuracy of each activity, we use the same metric as in [2]
defined as follows.

activity accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

The metric for the overall accuracy is the same as we used in our first experiment.
Fig. 8 shows that the lower antennas are effective to activities involving more lower
body movements (e.g., sitting, standing, and walking), and the upper antennas are more
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Table 5. Optimal transmission power levels for
different subjects.
````````Subject

Power Level 20dbm 25dbm 30dbm

1 85.2% 90.2% 89.1%
2 94.6% 93.2% 92.8%
3 89.9% 93.9% 91.6%
4 84.2% 91.0% 87.0%

effective to activities (e.g., cleaning window, cleaning table, and vacuuming) with more
upper body movements. The Mixed Antennas configuration achieves the highest overall
accuracy of 85.1%. For different tag configurations, the results are illustrated in Fig. 9.
We have similar observations as in the antenna configuration experiment. The Lower
Tag and the Mixed Tag configurations achieve similar overall accuracy of 88.8% and
87.8%, respectively.

In summary, the antennas and tags attached to the lower and upper body are ef-
fective in recognizing activities involving different lower and upper body movements,
respectively. A good choice is to use the mixed configuration that places the tags and
antennas on one side of the upper body and the other side of the lower body.

5.3 Antenna Transmission Power Level and Battery Consumption

In this experiment, we evaluate the system’s performance with different antenna trans-
mission power levels (i.e., 20dbm, 25dbm, and 30dbm). Fig. 10 illustrates the overall
recognition accuracies of different power levels. The recognition accuracy is above 90%
for all transmission power levels and the highest accuracy of 94.0% is achieved at pow-
er level of 25dbm. We further study the optimal power levels for different subjects. As
shown in Table 5, we discover that for all three male subjects, the optimal recognition
accuracy is achieved at the power level of 25dbm, followed by 30dbm and 20dbm. This
result explains the reason for the overall optimal power level of 25dbm shown in Fig.
10. For the female subject, the optimal power level is 20dbm. It is possibility because
the female subject is smaller in size and the fading effect is stronger with a lower trans-
mission power level. This result suggests that the optimal power level is not the highest
level but the one most sensitive to RSS radio patterns resulted from different activities.

To evaluate battery consumption, for the RFID reader, we measure the output cur-
rent for the battery. The battery output current is 180mA, 223mA, and 253mA, for the
transmission power level of 20dbm, 25dbm, and 30dbm, respectively. For the smart-
phone, we use a battery monitoring software built on top of the Android OS’s battery
consumption APIs to record the battery consumption data. The results show our recog-
nition software introduces an additional consumption of about 38mA. Though the read-
er consumes a larger amount of battery power compared to BSN-based systems [2, 6],
according to our previous experience in data collection using a BSN [6], we find that
managing only one battery for the reader is much easier than managing batteries for
multiple nodes in a BSN.
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6 Conclusion

In this paper, we present a novel wearable RFID systems for real-time activity recogni-
tion. We implemented the prototype system, and the experiment results show our system
achieves high accuracy and low delay. As our first prototype, there are some limitations.
For example: 1) the current devices are a little cumbersome; 2) a large number of tags
and antennas are used. In our future work, we plan to improve our system design by: 1)
using smaller RFID readers, or smartphone integrated RFID readers; 2) studying more
antenna and tag placement strategies and exploring the minimum number of tags and
antennas necessary to achieve better system performance.
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