# Computational Complexity Analysis of Multi-Objective Genetic Programming

Frank Neumann School of Computer Science The University of Adelaide



## Introduction

There are many

- successful applications
- experimental studies

of Genetic Programming.

We want to

- argue in a rigorous way about GP algorithms and
- contribute to their theoretical understanding

This is also important for the acceptance of our algorithms outside our community.



# This Talk

Definition of two general problems for the runtime analysis of genetic programming:

- Weighted ORDER
- Weighted MAJORITY

Rigorous runtime analysis of two mechanisms for dealing with the bloat problem:

- Parsimony approach
- Multi-objective approach

Lot of open questions.



## Runtime Analysis of GP

- Rigorous runtime analysis of genetic programming is relatively new.
- We want to understand in a rigorous way how genetic programming works.
- We consider simple mutation-based algorithms.
- Studies should enable analysis of more complex algorithms in the future.



#### Substitution







Frank Neumann

#### Insertion



Chosen node



Frank Neumann

#### Deletion





Frank Neumann

## **Baseline Algorithm**

#### Algorithm 1 ((1+1) GP).

- 1. Choose an initial solution X.
- 2. Repeat
  - Set Y := X.
  - Apply mutation to Y.
  - If selection favors Y over X then X := Y.

(1+1) GP-single: select one operation of {insert, delete, substitute} uniformly at random and apply it to Y.

Expected optimization time := Expected number of iterations to obtain an optimal solution.



## Weighted ORDER and MAJORITY

- $F := \{J\}, J$  has arity 2.
- $L := \{x_1, \overline{x}_1, \dots, x_n, \overline{x}_n\}$

# Each variable $x_i$ has a corresponding weight $w_i \in \mathbb{R}, 1 \leq i \leq n$

#### Without loss of generality, we assume

 $w_1 \geq w_2 \geq \ldots \geq w_n > 0$ 



# Weighted ORDER and MAJORITY

Weighted ORDER:  $w_i$  contributes to fitness if  $x_i$  is expressed, i. e.  $x_i$  is seen before  $\overline{x_i}$  in an inorder parse.

Weighted MAJORITY:  $w_i$  contributes to fitness if  $x_i$  is expressed, i. e.  $x_i$  is present and there are at least as many  $x_i$  as  $\overline{x_i}$ .

## Special case: $w_i = 1, 1 \le i \le n$ ORDER and MAJORITY





We get:  $l = (x_1, \bar{x}_4, x_2, \bar{x}_1, \bar{x}_3, \bar{x}_6, x_4, x_3, \bar{x}_5, x_3)$ WORDER $(X) = w_1 + w_2 = 13 + 11 = 24$ WMAJORITY(X) =  $w_1 + w_2 + w_3 + w_4 = 13 + 11 + 8 + 7 = 39$ 

Frank Neumann

## Parsimony Approach

Attach to each solution X a complexity value C(X)

• C(X): number of nodes in X.

MO-WORDER (X) = (WORDER (X), C(X))MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

A solution X is called non-redundant if no variable can be deleted without decreasing fitness.

Otherwise, we call X a redundant solution.



## Parsimony Approach

Parsimony approach:

- If two solutions have same quality according to F, select a solution of lowest complexity.
- Selection:

(1+1) GP-single on MO-F: Favor Y over X iff

 $(F(Y) > F(X)) \lor ((F(Y) = F(X)) \land (C(Y) \le C(X))).$ 

Denote by  $T_{init}$  the complexity of the initial solution.



Life Impact | The University of Adelaide

Frank Neumann

#### Theorem:

The expected optimization of (1+1) GP-single on Weighted ORDER and Weighted MAJORITY is  $O(T_{init} + n \log n)$ .

Proof ideas:

- Using single operations the difference between complexity and the number of expressed variables can not increase.
- After  $O(T_{init} + n \log n)$  steps the current solution is non-redundant, i. e. no deletion is possible without decreasing fitness.
- Missing variables can be inserted at any position.
- Additional phase of O(n log n) steps gives optimal solution (coupon collector).



## Multi-Objective GP

# Consider the two objectives F and C as equally important:

- 1. A solution Y weakly dominates a solution X (denoted by  $Y \succeq X$ ) iff  $(F(Y) \ge F(X) \land C(Y) \le C(X)).$
- 2. A solution Y dominates a solution X (denoted by  $Y \succ X$ ) iff  $(Y \succeq X) \land (F(Y) > F(X) \lor C(Y) < C(X)).$



#### Algorithm 5. SMO-GP

- 1. Choose an initial solution X.
- 2. Set  $P := \{X\}$ .
- 3. Repeat
  - Choose  $X \in P$  uniformly at random.
  - Set Y := X.
  - Apply mutation to Y.
  - If  $\{Z \in P \mid Z \succ Y\} = \emptyset$ , set  $P := (P \setminus \{Z \in P \mid Y \succeq Z\}) \cup \{Y\}$ .

Multi-Operations: Choose the number of operations in each mutation steps according to 1+Pois(1).

Expected optimization time := Expected number of fitness evaluations to obtain the whole Pareto front.



#### Theorem:

The expected optimization time of SMO-GP-single and SMO-GP-multi on MO-ORDER and MO-MAJORITY is  $O(nT_{init} + n^2 \log n)$ .

#### Proof ideas:

- Population size is upper bounded by n+1.
- Empty solution is included in the population after  $O(nT_{init})$  steps.
- Other Pareto optimal solutions are obtained in time O(n<sup>2</sup> log n) by introducing one of the missing variables at any position (coupon collector slowed by population of size n).



#### Theorem:

Starting with a non-redundant initial solution, the expected optimization time of SMO-GP-single on MO-WORDER and MO-WMAJORITY is  $O(n^3)$ .

#### Proof ideas:

- No redundant solutions are accepted during the run of the algorithm.
- Population size is upper bounded by n+1.
- Empty solution is included in the population after O(n<sup>2</sup>) steps.
- Afterwards remaining Pareto optimal solutions are produced in time O(n<sup>3</sup>) (fitness-based partitions for linear pseudo-Boolean functions slowed down by population of size n).



# Summary

#### Summary:

- Weighted ORDER and MAJORITY are generalizations of ORDER and MAJORITY (similar to OneMax to linear functions for binary strings)
- Parsimony approach provably reaches the optimal solution quickly.
- Multi-objective approach provably computes the Pareto front in expected polynomial time when starting with non-redundant solution.



## **Open Problems**

- Determine the expected optimization time of (1+1) GP-multi which chooses k according to 1+Pois(1) on MO-WORDER and WORDER, MO-WMA-JORITY, and WMAJORITY.
- Determine the expected optimization time of SMO-GP-multi on MO-WORDER and MO-WMAJORITY.

