
Life Impact | The University of Adelaide

Computa(onal	 Complexity	 Analysis	
of	 Mul(-‐Objec(ve	 Gene(c	

Programming	 	
Frank	 Neumann	

School	 of	 Computer	 Science	
The	 University	 of	 Adelaide	

Life Impact | The University of Adelaide

Introduc(on	

There	 are	 many	 	
•  successful	 applica(ons	
•  experimental	 studies	
of	 Gene(c	 Programming.	
	
We	 want	 to	
•  argue	 in	 a	 rigorous	 way	 about	 GP	 algorithms	 and	
•  contribute	 to	 their	 theore(cal	 understanding	

This	 is	 also	 important	 for	 the	 acceptance	 of	 our	
algorithms	 outside	 our	 community.	

Frank	 Neumann	

Life Impact | The University of Adelaide

This	 Talk	

Defini(on	 of	 two	 general	 problems	 for	 the	
run(me	 analysis	 of	 gene(c	 programming:	
•  Weighted	 ORDER	
•  Weighted	 MAJORITY	
Rigorous	 run(me	 analysis	 of	 two	 mechanisms	
for	 dealing	 with	 the	 bloat	 problem:	
•  Parsimony	 approach	
•  Mul(-‐objec(ve	 approach	 	
Lot	 of	 open	 ques(ons.	

Frank	 Neumann	

Life Impact | The University of Adelaide

Run(me	 Analysis	 of	 GP	

•  Rigorous	 run(me	 analysis	 of	 gene(c	
programming	 is	 rela(vely	 new.	

•  We	 want	 to	 understand	 in	 a	 rigorous	 way	 how	
gene(c	 programming	 works.	

•  We	 consider	 simple	 muta(on-‐based	
algorithms.	

•  Studies	 should	 enable	 analysis	 of	 more	
complex	 algorithms	 in	 the	 future.	

Frank	 Neumann	

Life Impact | The University of Adelaide

Subs(tu(on	

Frank	 Neumann	

or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.

(a) Before insertion (b) After insertion

(c) Before deletion (d) After deletion

�����������

�

�

�

�� � �

� �

(e) Before substitution

�����������	

�

�

�

�

� � �

� �

(f) After substitution

Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.

Life Impact | The University of Adelaide

Inser(on	

Frank	 Neumann	

or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.

� �

�����������

�

� �

�� � �

� �

(a) Before insertion
� �

���

���

�����	�	�
�

�

�

�

� �

�

� �

� ��

(b) After insertion

(c) Before deletion (d) After deletion

(e) Before substitution (f) After substitution

Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.

Life Impact | The University of Adelaide

Dele(on	

Frank	 Neumann	

or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.

(a) Before insertion (b) After insertion

�����������

�

�

�

�� � �

� �

(c) Before deletion

��

�

� � � �

(d) After deletion

(e) Before substitution (f) After substitution

Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.

Life Impact | The University of Adelaide

Baseline	 Algorithm	

Frank	 Neumann	

The outline of (1+1) GP is shown in Algorithm 1. It starts with an initial
solution X and produces in each iteration one single o↵spring Y by mutation.
Y replaces X if it is favored according the selection mechanism.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Repeat

• Set Y := X.

• Apply mutation to Y .

• If selection favors Y over X then X := Y .

We will consider the algorithm (1+1) GP-single which applies the mutation
operator HVL-Prime once in each mutation step, i.e. the mutation operator
given in Figure 4 is used for k = 1. Analyzing the computational complexity of
this algorithm, we are interested in the expected number of fitness evaluations
until the algorithm has found an optimal solution for the given problem F for
the first time. This is called the expected optimization time of the analyzed
algorithm.

The worst case results for (1+1) GP-single obtained in [7] depend on the
maximum size of the tree (denoted by T

max

) that is encountered during the
optimization process. To be more precise, the upper bound for (1+1) GP-single
is O(nT

max

) for ORDER and O(n2T
max

log log n) for MAJORITY. As T
max

is
not known in advance, it is more desirable to have runtime bounds that only
depend on the input and the size of the initial tree. In such a case, the user
has complete knowledge on how much worse such a bound can get. Especially,
in the light of the bloat problem, T

max

can be assumed to be quite large for
various types of problems. We will analyze our algorithms in dependence of the
tree size of the initial solution (denoted by T

init

).
The key point of our study is to examine how the complexity of a solution as

the secondary measure influences the runtime. The selection mechanism for the
(1+1) GP-single variant studied in [7] ((1+1) GP-single on F) and the selection
in our algorithm ((1+1) GP-single on MO-F) are shown in Figure 5. Note, that
using (1+1) GP-single on MO-F presents a parsimony approach which is quite
common in genetic programming to deal with the bloat problem.

3.1 Analysis

We start our analysis of (1+1) GP-single by presenting a general lower bound
on the expected optimization time. This bound holds independently of the
chosen fitness function and is a direct consequence of the coupon collector’s
theorem [22].

Theorem 2. Let X be the empty tree, then the expected time until (1+1) GP-
single has produced an optimal solution for MO-ORDER and MO-MAJORITY
is ⌦(n log n).

7

(1+1)	 GP-‐single:	 select	 one	 opera(on	 of	 {insert,	 delete,	 subs(tute}	 	
	 	 	 	 	 	 	 	 uniformly	 at	 random	 and	 apply	 it	 to	 Y.	

Expected	 op(miza(on	 (me	 :=	 Expected	 number	 of	 itera(ons	 	
to	 obtain	 an	 op(mal	 solu(on.	

Life Impact | The University of Adelaide
Frank	 Neumann	

Weighted ORDER and MAJORITY

Each variable xi has a corresponding weight

Without loss of generality, we assume

• If substitute, replace a randomly chosen leaf of
X � with a new leaf u ⌅ L selected uniformly at
random.

• If insert, randomly choose a node v in X � and
select u ⌅ L uniformly at random. Replace v with
a join node whose children are u and v, with the
order of the children chosen randomly.

• If delete, randomly choose a leaf node v of X �,
with parent p and sibling u. Replace p with u and
delete p and v.

4. If f(X �) ⇤ f(X), set X := X �.

5. Go to 2.

(1+1) GP* di�ers from (1+1) GP by accepting only solu-
tion that are strict improvements (see Algorithm 2).

Algorithm 2 (Acceptance for (1+1) GP*).

4’. If f(X �) > f(X), set X := X �.

For each of (1+1) GP and (1+1) GP* we consider two
further variants which di�er in using one application of HVL-
Prime (“single”) or in using more than one (“multi”). For
(1+1) GP-single and (1+1) GP*-single, we set k = 1, so that
we perform one mutation at a time according to the HVL-
Prime framework. For (1+1) GP-multi and (1+1) GP*-multi,
we choose k = 1+Pois(1), so that the number of mutations at
a time varies randomly according to the Poisson distribution.
We will analyze these four algorithms in terms of the

expected number of fitness evaluations to produce an opti-
mal solution for the first time. This is called the expected
optimization time of the algorithm.

2.4 The ORDER problem
We consider two separable problems called ORDER and

MAJORITY that have an independent, additive fitness struc-
ture. They both have multiple solutions, which we feel is
a key property of a model GP problem because it holds
generally for all real GP problems. They also both use the
same primitive set, where x̄i is the complement of xi:

• F := {J}, J has arity 2.

• L := {x1, x̄1, . . . , xn, x̄n}

ORDER represents problems where the primitive sets in-
clude conditional functions, which gives rise to conditional
execution paths. GP classification problems, for example,
often employ a numerical comparison function (e.g. greater
than X, less than X, or equal to X). This sort of function has
two arguments (subtrees), one branch which will be executed
only when the comparison returns true, the other only when
it returns false [5]. Thus, a conditional function results in a
branching or conditional execution path, so the GP algorithm
must identify and appropriately position the conditional func-
tions to achieve the correct conditional execution behavior
for all inputs.
ORDER is an abstracted simplification of this challenge:

the conditional execution paths of a program are determined
by tree inspection rather than execution. Instead of evalu-
ating a condition test and then executing the appropriate
condition body explicitly, an ORDER program’s conditional

execution path is determined by simply inspecting whether
a primitive or its complement occurs first in an in-order
leaf parse. Correct programs for the ORDER problem must
express each positive primitive xi before its corresponding
complement x̄i. This correctness requirement is intended to
reflect a property commonly found in the GP solutions to
problems where conditional functions are used: there exist
multiple solutions, each with a set of di�erent conditional
paths.

Algorithm 3 (f(X) for ORDER).

1. Derive conditional execution path P of X:

Init: l an empty leaf list, P an empty conditional exe-
cution path

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 Generate P by parsing l front to rear and adding
(“expressing”) a leaf to P only if it or its com-
plement are not yet in P (i.e. have not yet been
expressed).

2. f(X) = |{xi ⌅ P}|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x3, x̄6), P = (x1, x̄4, x2, x3, x̄6) and f(X) = 3
because x1, x2, x3 ⌅ P .

2.5 The MAJORITY problem
MAJORITY is a GP equivalent of the GA OneMax prob-

lem [3]. MAJORITY reflects a general (and thus weak)
property required of GP solutions: a solution must have
correct functionality and no incorrect functionality. Like
ORDER, MAJORITY is a simplification that uses tree in-
spection rather than program execution. A correct program
in MAJORITY must exhibit at least as many occurrences
of a primitive as of its complement and it must exhibit all
the positive primitives of its terminal (leaf) set. Both the
independent sub-solution fitness structure and inspection
property of MAJORITY are necessary to make our analysis
tractable.

Algorithm 4 (f(X) for MAJORITY).

1. Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear
of l as it is visited.

1.2 For i ⇥ n: if count(xi ⌅ l) ⇤ count(x̄i ⌅ l) and
count(xi ⌅ l) ⇤ 1, add xi to S

2. f(X) = |S|.

For example, for a tree X, with (after the inorder parse) l =
(x1, x̄4, x2, x̄1, x̄3, x̄6, x1, x4), S = (x1, x2, x4) and f(X) = 3.

3. ANALYSIS FOR ORDER
Here we present bounds for ORDER on the number of

runtime evaluations needed in the execution of (1+1) GP
and (1+1) GP*.
We will analyze this GP problem using fitness-based par-

titions [2]. This requires us to compute the probability of
improving the fitness from k to k + 1 for each value of k

alization is similar as the generalization of OneMax to the class of linear pseudo-
Boolean functions in the investigations of evolutionary algorithms working on
binary strings [6]. The analysis of linear pseudo-Boolean has played a key role in
the analysis of evolutionary algorithms working on binary string [31, 5, 14]. This
class of functions has also been examined in the context of ant colony optimiza-
tion, but determining the exact optimization time of simple ACO algorithms
for this class of functions is still a challenging open problem [16].

We think that understanding the behavior of simple GP algorithms on W-
ORDER and WMAJORITY will play a similar role in the computational com-
plexity analysis of GP. In this paper, we present first steps in understanding
the behavior of simple GP algorithms for these problems. In many cases, we
consider GP algorithms carrying out one single mutation operation in each mu-
tation step. This is comparable to randomized local search for binary strings.
Our analyses provide important insights for the combination of the original
function value and the complexity of the tree. We explicitly state that it is very
interesting and challenging to analyze GP algorithms where a larger number of
operations is possible in the mutation steps and list such topics for future work
in the conclusions.

The outline of the paper is as follows. In Section 2, we introduce the prob-
lems that we consider in this paper. Section 3, examines the impact of the
complexity as a secondary measure and presents runtime analyses for (1+1) GP
on WORDER and WMAJORITY. In Section 4, we turn to multi-objective op-
timization and analyze the time until SMO-GP has computed the whole Pareto
front. We finish with some conclusions and topics for future work.

2 Preliminaries

We consider tree-based genetic programming, where a possible solution to a
given problem is given by a syntax tree. The inner nodes of such a tree are
labelled by function symbols from a set F and the leaves of the tree are labelled
by terminals from a set T .

We examine the problems Weighted ORDER (WORDER) and Weighted
MAJORITY (WMAJORITY) which are generalizations of ORDER and MA-
JORITY analyzed in [7]. For both, the only function is the join operation
(denoted by J). The terminal set T is a set of 2n variables, where x̄

i

is the
complement of x

i

:

• F := {J}, J has arity 2.

• T := {x
1

, x̄
1

, . . . , x
n

, x̄
n

}

A valid tree for n = 6 is shown in Figure 1. We attach to each variable
x
i

a weight w
i

2 R, 1 i n, such that the variables can di↵er in their
contribution to the overall fitness of a tree. Without loss of generality, we
assume that w

1

� w
2

� . . . � w
n

> 0 holds throughout this paper. This
assumption allows for an easier presentation, but is no restriction to the general

3

alization is similar as the generalization of OneMax to the class of linear pseudo-
Boolean functions in the investigations of evolutionary algorithms working on
binary strings [6]. The analysis of linear pseudo-Boolean has played a key role in
the analysis of evolutionary algorithms working on binary string [31, 5, 14]. This
class of functions has also been examined in the context of ant colony optimiza-
tion, but determining the exact optimization time of simple ACO algorithms
for this class of functions is still a challenging open problem [16].

We think that understanding the behavior of simple GP algorithms on W-
ORDER and WMAJORITY will play a similar role in the computational com-
plexity analysis of GP. In this paper, we present first steps in understanding
the behavior of simple GP algorithms for these problems. In many cases, we
consider GP algorithms carrying out one single mutation operation in each mu-
tation step. This is comparable to randomized local search for binary strings.
Our analyses provide important insights for the combination of the original
function value and the complexity of the tree. We explicitly state that it is very
interesting and challenging to analyze GP algorithms where a larger number of
operations is possible in the mutation steps and list such topics for future work
in the conclusions.

The outline of the paper is as follows. In Section 2, we introduce the prob-
lems that we consider in this paper. Section 3, examines the impact of the
complexity as a secondary measure and presents runtime analyses for (1+1) GP
on WORDER and WMAJORITY. In Section 4, we turn to multi-objective op-
timization and analyze the time until SMO-GP has computed the whole Pareto
front. We finish with some conclusions and topics for future work.

2 Preliminaries

We consider tree-based genetic programming, where a possible solution to a
given problem is given by a syntax tree. The inner nodes of such a tree are
labelled by function symbols from a set F and the leaves of the tree are labelled
by terminals from a set T .

We examine the problems Weighted ORDER (WORDER) and Weighted
MAJORITY (WMAJORITY) which are generalizations of ORDER and MA-
JORITY analyzed in [7]. For both, the only function is the join operation
(denoted by J). The terminal set T is a set of 2n variables, where x̄

i

is the
complement of x

i

:

• F := {J}, J has arity 2.

• T := {x
1

, x̄
1

, . . . , x
n

, x̄
n

}

A valid tree for n = 6 is shown in Figure 1. We attach to each variable
x
i

a weight w
i

2 R, 1 i n, such that the variables can di↵er in their
contribution to the overall fitness of a tree. Without loss of generality, we
assume that w

1

� w
2

� . . . � w
n

> 0 holds throughout this paper. This
assumption allows for an easier presentation, but is no restriction to the general

3

Life Impact | The University of Adelaide
Frank	 Neumann	

Weighted ORDER and MAJORITY

Weighted ORDER: wi contributes to fitness if
xi is expressed, i. e. xi is seen before in
an inorder parse.

Weighted MAJORITY: wi contributes to
fitness if xi is expressed, i. e. xi is present
and there are at least as many xi as .

Special case:

 ORDER and MAJORITY

wi = 1, 1 i n

x̄i

x̄i

Life Impact | The University of Adelaide

We	 get:	 	

Frank	 Neumann	

JJ"J

JJ"J JJ"J

JJ"J JJ"JJJ"J JJ"J

JJ"JJJ"Jx
1

x̄
4

x̄
1

x̄
3

x̄
6

x̄
5

x
2

x
3

x
4

x
3

Figure 1: Example tree X with C(X) = 19

Init: l an empty leaf list, S is an empty statement list.

1. Parse the tree X inorder and insert each leaf at the rear of l as it is visited.

2. Generate S by parsing l front to rear and adding (“expressing”) a leaf to
S only if it or its complement are not yet in S (i.e. have not yet been
expressed).

3. WORDER (X)=
P

xi2S

w
i

.

Figure 2: Computation of WORDER (X)

case as our algorithms treat positive and negative variables in the same way,
and do not give preference to any specific variable.

For a given syntax tree X, the value of the tree is computed by parsing the
tree inorder. The weight w

i

of a variable x
i

contributes to the fitness i↵ x
i

is
positive and contained in the set S of the evaluation function. For WORDER
x
i

is contained in S i↵ it is present in the tree and there is no x̄
i

that is visited
in the inorder parse before x

i

. For WMAJORITY, x
i

is contained in S i↵ x
i

is
present in the tree and the number of x

i

variables in X is at least as high as
the number of x̄

i

variables in X. For a given tree X their evaluation is shown
in Figures 2 and 3. ORDER and MAJORITY as special cases where w

i

= 1,
1 i n, holds.

We illustrate both problems by an example. Let n = 6 and w
1

= 13, w
2

= 11,
w

3

= 8, w
4

= 7, w
5

= 5, w
6

= 3. For the tree X show in Figure 1, we get (after
the inorder parse)

l = (x
1

, x̄
4

, x
2

, x̄
1

, x̄
3

, x̄
6

, x
4

, x
3

, x̄
5

, x
3

)

4

Let n = 6 and w1 = 13, w2 = 11, w3 = 8, w4 = 7, w5 = 5, w6 = 3

JJ"J

JJ"J JJ"J

JJ"J JJ"JJJ"J JJ"J

JJ"JJJ"Jx
1

x̄
4

x̄
1

x̄
3

x̄
6

x̄
5

x
2

x
3

x
4

x
3

Figure 1: Example tree X with C(X) = 19

Init: l an empty leaf list, S is an empty statement list.

1. Parse the tree X inorder and insert each leaf at the rear of l as it is visited.

2. Generate S by parsing l front to rear and adding (“expressing”) a leaf to
S only if it or its complement are not yet in S (i.e. have not yet been
expressed).

3. WORDER (X)=
P

xi2S

w
i

.

Figure 2: Computation of WORDER (X)

case as our algorithms treat positive and negative variables in the same way,
and do not give preference to any specific variable.

For a given syntax tree X, the value of the tree is computed by parsing the
tree inorder. The weight w

i

of a variable x
i

contributes to the fitness i↵ x
i

is
positive and contained in the set S of the evaluation function. For WORDER
x
i

is contained in S i↵ it is present in the tree and there is no x̄
i

that is visited
in the inorder parse before x

i

. For WMAJORITY, x
i

is contained in S i↵ x
i

is
present in the tree and the number of x

i

variables in X is at least as high as
the number of x̄

i

variables in X. For a given tree X their evaluation is shown
in Figures 2 and 3. ORDER and MAJORITY as special cases where w

i

= 1,
1 i n, holds.

We illustrate both problems by an example. Let n = 6 and w
1

= 13, w
2

= 11,
w

3

= 8, w
4

= 7, w
5

= 5, w
6

= 3. For the tree X show in Figure 1, we get (after
the inorder parse)

l = (x
1

, x̄
4

, x
2

, x̄
1

, x̄
3

, x̄
6

, x
4

, x
3

, x̄
5

, x
3

)

4

Init: l an empty leaf list, S is an empty statement list.

1. Parse the tree X inorder and insert each leaf at the rear of l as it is visited.

2. For i n: if count(x
i

2 l) � count(x̄
i

2 l) and count(x
i

2 l) � 1, add x
i

to S

3. Return WMAJORITY (X)=
P

xi2S

w
i

.

Figure 3: Computation of WMAJORITY (X)

For WORDER, we get S = (x
1

, x̄
4

, x
2

, x̄
3

, x̄
6

, x̄
5

) and

WORDER(X) = w
1

+ w
2

= 13 + 11 = 24.

For WMAJORITY, we get S = (x
1

, x
2

, x
3

, x
4

) and

WMAJORITY(X) = w
1

+ w
2

+ w
3

+ w
4

= 13 + 11 + 8 + 7 = 39.

The complexity C of a given tree X is the number of nodes it contains. For the
tree X given in Figure 1, C(X) = 19 holds.

There are two problems we will consider. The first one is the single-objective
problem of one computing a solution X which maximizes F . During the opti-
mization run, our algorithms are allowed to use the function C as an additional
criteria if two solutions have the same function value with respect to F . The
second problem is the computation of the Pareto front for the multi-objective
problem given by F and C.

We study genetic programming algorithms which take into account the orig-
inally given problem as well as the complexity of a given solution. We can
formulate this as a multi-objective problem which assigns di↵erent objective
values to a given solution. Throughout this paper, we assume that we have one
objective function F that should be maximized and have the complexity C of a
GP-syntax tree as the second objective which should be minimized. F can be
considered as the original problem at hand, and the minimization of C allows
to cope with the bloat problem. Our algorithms work with the multi-criteria
fitness function MO-F(X)= (F(X), C(X)).

Consequently, we obtain the following problems when adding the complexity
of a solution X as the second criteria.

• MO-WORDER (X) = (WORDER (X), C(X))

• MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

For the special case where w
i

= 1, 1 i n, holds, we obtain the problems

• MO-ORDER (X) = (ORDER (X), C(X))

5

Init: l an empty leaf list, S is an empty statement list.

1. Parse the tree X inorder and insert each leaf at the rear of l as it is visited.

2. For i n: if count(x
i

2 l) � count(x̄
i

2 l) and count(x
i

2 l) � 1, add x
i

to S

3. Return WMAJORITY (X)=
P

xi2S

w
i

.

Figure 3: Computation of WMAJORITY (X)

For WORDER, we get S = (x
1

, x̄
4

, x
2

, x̄
3

, x̄
6

, x̄
5

) and

WORDER(X) = w
1

+ w
2

= 13 + 11 = 24.

For WMAJORITY, we get S = (x
1

, x
2

, x
3

, x
4

) and

WMAJORITY(X) = w
1

+ w
2

+ w
3

+ w
4

= 13 + 11 + 8 + 7 = 39.

The complexity C of a given tree X is the number of nodes it contains. For the
tree X given in Figure 1, C(X) = 19 holds.

There are two problems we will consider. The first one is the single-objective
problem of one computing a solution X which maximizes F . During the opti-
mization run, our algorithms are allowed to use the function C as an additional
criteria if two solutions have the same function value with respect to F . The
second problem is the computation of the Pareto front for the multi-objective
problem given by F and C.

We study genetic programming algorithms which take into account the orig-
inally given problem as well as the complexity of a given solution. We can
formulate this as a multi-objective problem which assigns di↵erent objective
values to a given solution. Throughout this paper, we assume that we have one
objective function F that should be maximized and have the complexity C of a
GP-syntax tree as the second objective which should be minimized. F can be
considered as the original problem at hand, and the minimization of C allows
to cope with the bloat problem. Our algorithms work with the multi-criteria
fitness function MO-F(X)= (F(X), C(X)).

Consequently, we obtain the following problems when adding the complexity
of a solution X as the second criteria.

• MO-WORDER (X) = (WORDER (X), C(X))

• MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

For the special case where w
i

= 1, 1 i n, holds, we obtain the problems

• MO-ORDER (X) = (ORDER (X), C(X))

5

Life Impact | The University of Adelaide

Parsimony	 Approach	

A]ach	 to	 each	 solu(on	 X	 a	 complexity	 value	 C(X)	
•  C(X):	 number	 of	 nodes	 in	 X.	

Frank	 Neumann	

Init: l an empty leaf list, S is an empty statement list.

1. Parse the tree X inorder and insert each leaf at the rear of l as it is visited.

2. For i n: if count(x
i

2 l) � count(x̄
i

2 l) and count(x
i

2 l) � 1, add x
i

to S

3. Return WMAJORITY (X)=
P

xi2S

w
i

.

Figure 3: Computation of WMAJORITY (X)

For WORDER, we get S = (x
1

, x̄
4

, x
2

, x̄
3

, x̄
6

, x̄
5

) and

WORDER(X) = w
1

+ w
2

= 13 + 11 = 24.

For WMAJORITY, we get S = (x
1

, x
2

, x
3

, x
4

) and

WMAJORITY(X) = w
1

+ w
2

+ w
3

+ w
4

= 13 + 11 + 8 + 7 = 39.

The complexity C of a given tree X is the number of nodes it contains. For the
tree X given in Figure 1, C(X) = 19 holds.

There are two problems we will consider. The first one is the single-objective
problem of one computing a solution X which maximizes F . During the opti-
mization run, our algorithms are allowed to use the function C as an additional
criteria if two solutions have the same function value with respect to F . The
second problem is the computation of the Pareto front for the multi-objective
problem given by F and C.

We study genetic programming algorithms which take into account the orig-
inally given problem as well as the complexity of a given solution. We can
formulate this as a multi-objective problem which assigns di↵erent objective
values to a given solution. Throughout this paper, we assume that we have one
objective function F that should be maximized and have the complexity C of a
GP-syntax tree as the second objective which should be minimized. F can be
considered as the original problem at hand, and the minimization of C allows
to cope with the bloat problem. Our algorithms work with the multi-criteria
fitness function MO-F(X)= (F(X), C(X)).

Consequently, we obtain the following problems when adding the complexity
of a solution X as the second criteria.

• MO-WORDER (X) = (WORDER (X), C(X))

• MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

For the special case where w
i

= 1, 1 i n, holds, we obtain the problems

• MO-ORDER (X) = (ORDER (X), C(X))

5

A	 solu(on	 X	 is	 called	 non-‐redundant	 if	 no	 variable	 can	 be	 deleted	
without	 decreasing	 fitness.	

Otherwise,	 we	 call	 X	 a	 redundant	 solu(on.	

Life Impact | The University of Adelaide

Parsimony	 Approach	

Parsimony	 approach:	
•  If	 two	 solu(ons	 have	 same	 quality	 according	
to	 F,	 select	 a	 solu(on	 of	 lowest	 complexity.	

•  Selec(on:	 	
	

Frank	 Neumann	

• (1+1) GP-single on F : Favor Y over X i↵

F (Y) � F (X).

• (1+1) GP-single on MO-F: Favor Y over X i↵

(F (Y) > F (X)) _ ((F (Y) = F (X)) ^ (C(Y) C(X))).

Figure 5: Selection for (1+1) GP

Proof. In order to produce an optimal solution for the given problems, each
positive variable has to be introduced at least once into the tree. The probability
to introduce one specific variable x

i

in the next step is at most 1

3

· 1

n

. Using the
coupon collector’s theorem, the result follows immediately.

Theorem 2 shows that we can not expect a better upper bound then O(n log n).
This is a typical bound for many simple evolutionary algorithms as they usually
encounter the coupon collector e↵ect. In the following, we present upper bounds
on the runtime of (1+1) GP-single working with the multi-criteria fitness func-
tions. Theorem 2 implies that the upper bounds presented in the following are
tight.

A variable x
i

is called expressed if it contributes to the overall fitness of
our original problem F . This is the case if a variable is positive and contained
in the statement list S of our evaluation function. We call a solution X non-
redundant if the number of expressed variables is k and its complexity is 2k�1.
Furthermore, the empty tree is called non-redundant as well. For the problems
we consider, any tree that does not fall into the non-redundant category can
be improved with respect to complexity without decreasing its fitness. Solu-
tions where such improvements with respect to the complexity are possible are
called redundant. The key idea of our analysis is to show that the algorithm
quickly eliminates redundant variables. After these redundant variables have
been removed, the algorithm can introduce missing variables at any position of
the tree.

We present upper bounds for (1+1) GP-single on MO-WORDER and MO-
WMAJORITY which are tight if T

init

= O(n log n) holds.

Theorem 3. The expected optimization of (1+1) GP-single on MO-WORDER
is O(T

init

+ n log n).

Proof. For our analysis we consider two phases. First we analyze the time until
the tree has become non-redundant. Afterwards, we bound the time to obtain
an optimal solution.

We claim that after an expected number O(T
init

+ n log n) steps the tree is
non-redundant. Let k be the number of expressed variables and s be the number

8

Denote by Tinit the complexity of the initial solution.

Life Impact | The University of Adelaide Frank	 Neumann	

	
Proof	 ideas:	
•  Using	 single	 opera(ons	 the	 difference	 between	
complexity	 and	 the	 number	 of	 expressed	 variables	
can	 not	 increase.	

•  A`er	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 steps	 the	 current	 solu(on	 is	
non-‐redundant,	 i.	 e.	 no	 dele(on	 is	 possible	 without	
decreasing	 fitness.	

•  Missing	 variables	 can	 be	 inserted	 at	 any	 posi(on.	
•  Addi(onal	 phase	 of	 O(n	 log	 n)	 steps	 gives	 op(mal	
solu(on	 (coupon	 collector).	 	

	
	
	
	

• (1+1) GP-single on F : Favor Y over X i↵

F (Y) � F (X).

• (1+1) GP-single on MO-F: Favor Y over X i↵

(F (Y) > F (X)) _ ((F (Y) = F (X)) ^ (C(Y) C(X))).

Figure 5: Selection for (1+1) GP

Proof. In order to produce an optimal solution for the given problems, each
positive variable has to be introduced at least once into the tree. The probability
to introduce one specific variable x

i

in the next step is at most 1

3

· 1

n

. Using the
coupon collector’s theorem, the result follows immediately.

Theorem 2 shows that we can not expect a better upper bound then O(n log n).
This is a typical bound for many simple evolutionary algorithms as they usually
encounter the coupon collector e↵ect. In the following, we present upper bounds
on the runtime of (1+1) GP-single working with the multi-criteria fitness func-
tions. Theorem 2 implies that the upper bounds presented in the following are
tight.

A variable x
i

is called expressed if it contributes to the overall fitness of
our original problem F . This is the case if a variable is positive and contained
in the statement list S of our evaluation function. We call a solution X non-
redundant if the number of expressed variables is k and its complexity is 2k�1.
Furthermore, the empty tree is called non-redundant as well. For the problems
we consider, any tree that does not fall into the non-redundant category can
be improved with respect to complexity without decreasing its fitness. Solu-
tions where such improvements with respect to the complexity are possible are
called redundant. The key idea of our analysis is to show that the algorithm
quickly eliminates redundant variables. After these redundant variables have
been removed, the algorithm can introduce missing variables at any position of
the tree.

We present upper bounds for (1+1) GP-single on MO-WORDER and MO-
WMAJORITY which are tight if T

init

= O(n log n) holds.

Theorem 3. The expected optimization of (1+1) GP-single on MO-WORDER
is O(T

init

+ n log n).

Proof. For our analysis we consider two phases. First we analyze the time until
the tree has become non-redundant. Afterwards, we bound the time to obtain
an optimal solution.

We claim that after an expected number O(T
init

+ n log n) steps the tree is
non-redundant. Let k be the number of expressed variables and s be the number

8

The expected optimization of (1+1) GP-single onWeighted ORDER andWeighted
MAJORITY is O(Tinit + n log n).

Theorem:	

Life Impact | The University of Adelaide

Mul(-‐Objec(ve	 GP	

Frank	 Neumann	

Summing up the runtimes for the two phases, the expected optimization
time of (1+1) GP-single on MO-WORDER is O(T

init

+ n log n).

We now transfer the previous result to the problem WMAJORITY. The
analysis carried out in [7] for (1+1) GP-single on MAJORITY has to take into
account random walk arguments for dealing with plateaus in the search space
which leads to a runtime bound of O(n2T

max

log log n) for MAJORITY.
Using MO-WMAJORITY we do not face the di�culty of a plateau dur-

ing the optimization as the (1+1) GP variants considered in [7]. The random
walk is averted as solutions with the same WMAJORITY-value, but a higher
complexity are not accepted by the algorithm. In fact, the additional search di-
rection given by the information on the size of the tree leads to a similar fitness
landscape as for MO-WORDER. This leads to the following result.

Theorem 4. The expected optimization time of (1+1) GP-single on MO-WMA-
JORITY is O(T

init

+ n log n).

Proof. The proof of Theorem 3 for MO-WORDER has only used the fact that
the di↵erence s � k can not increase during the run of the algorithm and that
later on (in the second phase) each non-expressed variable can be inserted at any
position in the current tree. Both properties also hold for MO-WMAJORITY
which implies that we get the same upper bound of O(T

init

+ n log n).

4 Multi-Objective Algorithms

The previous section has shown that using the complexity of the syntax tree as a
secondary measure can provably lead to better upper bounds on the runtime of
simple genetic programming algorithms. Depending on the complexity that one
allows for a given problem, the value of the best solution for the original problem
F may vary. In the case of multi-objective optimization, we are interested in the
di↵erent trade-o↵s between the original problem F and the complexity C. In
this section, we analyze simple multi-objective genetic programming algorithms
until they have computed the whole Pareto front for a given problem MO-F(X)
= (F(X), C(X)).

4.1 Multi-Objective Genetic Programming

The idea in multi-objective optimization is to treat the given criteria as equally
important. We consider the following relations on search points which will later
on be used in the selection step of our algorithms.

1. A solution Y weakly dominates a solution X (denoted by Y ⌫ X) i↵
(F (Y) � F (X) ^ C(Y) C(X)).

2. A solution Y dominates a solution X (denoted by Y � X) i↵ (Y ⌫
X) ^ (F (Y) > F (X) _ C(Y) < C(X)).

10

Consider	 the	 two	 objec(ves	 F	 and	 C	 as	 equally	
important:	
	
	
	

Life Impact | The University of Adelaide Frank	 Neumann	

3. Two solutions X and Y are called incomparable i↵ neither X ⌫ Y nor
Y ⌫ X holds.

A solution is called Pareto optimal i↵ it is not dominated by any other
solution in the search space S. The set of Pareto optimal solutions is called
the Pareto optimal set and the set of corresponding objective vectors is called
the Pareto front. The classical goal in multi-objective optimization is to com-
pute for each objective vector of the Pareto front a corresponding Pareto op-
timal solution. We introduce and analyze an algorithm called Simple Multi-
Objective Genetic Programming (SMO-GP) which is motivated by the Simple
Multi-Objective Optimizer (SEMO) algorithm that has frequently been consid-
ered in the computational complexity analysis of evolutionary multi-objective
optimization algorithms for binary search spaces [20, 11, 25, 24, 23, 9, 12].
SMO-GP starts with a single solution and produces in each iteration one single
o↵spring Y by mutating an individual of the current population P . The popu-
lation consists in each iteration of a set of solutions that are non-dominated by
any other solution seen so far during the run of the algorithm. In the selection
step, the o↵spring Y is added to the population P i↵ it is not dominated by any
other solution in P . If Y is added to P all solutions that are weakly dominated
by Y are removed from P .

Algorithm 5. SMO-GP

1. Choose an initial solution X.

2. Set P := {X}.
3. Repeat

• Choose X 2 P uniformly at random.

• Set Y := X.

• Apply mutation to Y .

• If {Z 2 P | Z � Y } = ;,
set P := (P \ {Z 2 P | Y ⌫ Z}) [{Y }.

We consider the algorithms SMO-GP-single and SMO-GP-multi. Both use
the mutation operator given in Figure 4. For SMO-GP-single k =1 holds, and
for SMO-GP-multi the parameter k is chosen according to 1 + Pois(1). Our
goal is to investigate the expected number of iterations until our algorithms
have computed a population which contains for each Pareto optimal objective
vector a corresponding solution. We call this the expected optimization time of
the multi-objective genetic programming algorithms.

Our multi-objective model trades o↵ the function value against the com-
plexity value. A special Pareto optimal solution of the multi-objective model is
the empty tree which has the lowest possible complexity value. The following
lemma bounds the expected time until the empty tree has been included into
the population P when considering an arbitrary problem MO-F. We denote by
T
init

the size of the tree of the initial solution and analyze the time to include
the empty tree in dependence of T

init

and the number of di↵erent fitness values
of the problem F .

11

Expected	 op(miza(on	 (me	 :=	 Expected	 number	 of	 fitness	 evalua(ons	 	
to	 obtain	 the	 whole	 Pareto	 front.	
	

Mul(-‐Opera(ons:	 Choose	 the	 number	 of	 opera(ons	 in	
each	 muta(on	 steps	 according	 to	 1+Pois(1).	

Life Impact | The University of Adelaide Frank	 Neumann	

	
Proof	 ideas:	
•  Popula(on	 size	 is	 upper	 bounded	 by	 n+1.	
•  Empty	 solu(on	 is	 included	 in	 the	 popula(on	
a`er	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 steps.	

•  Other	 Pareto	 op(mal	 solu(ons	 are	 obtained	 in	
(me	 O(n2	 log	 n)	 by	 introducing	 one	 of	 the	
missing	 variables	 at	 any	 posi(on	 (coupon	
collector	 slowed	 by	 popula(on	 of	 size	 n).	 	

	

Theorem:	
The expected optimization time of SMO-GP-single and SMO-GP-multi on MO-
ORDER and MO-MAJORITY is O(nTinit + n2 log n).

Lemma 6. Let T
init

be the size of the initial solution and k be the number of
di↵erent fitness values of a problem F. Then the expected time until the popula-
tion of SMO-GP-single and SMO-GP-multi applied to MO-F contains the empty
tree is O(kT

init

).

Proof. As the problem F has at most k di↵erent fitness values, the population
size of the algorithms is bounded by k. At each time step we consider the
solution with the lowest complexity in the population. This solution is selected
for mutation with probability at least 1/k. A single deletion operation applied
to this individual leads to a new solution of lower complexity. The probability
for such a mutation step is at least 1/(3ek). Summing up the di↵erent values
for the minimal tree size in the population, we get

TinitX

i=1

3ek = 3ekT
init

= O(kT
init

)

as an upper bound on the expected time until the empty tree is included in the
population.

4.2 ORDER and MAJORITY

We now examine how SMO-GP-single and SMO-GP-multi can compute the
Pareto front for the multi-objective problems given by MO-ORDER and MO-
MAJORITY. In the following, we show that both algorithms compute the whole
Pareto front for both problems in expected time O(nT

init

+ n2 log n).
We remark that a lower bound of ⌦(n2 log n) holds for both algorithms and

both problems when starting with the empty tree. This bound can be obtained
by using the coupon collector’s theorem in a similar way as in Theorem 2 and
taking into account the additional factor of n for the population size.

Theorem 7. The expected optimization time of SMO-GP-single and SMO-GP-
multi on MO-ORDER is O(nT

init

+ n2 log n).

Proof. Due to Lemma 6, the empty tree is produced for any MO-F problem
having k di↵erent fitness values after an expected number of O(kT

init

) steps.
The number of di↵erent fitness values for ORDER is n + 1 which implies that
the empty tree is introduced into the population after an expected number of
O(nT

init

) steps. This solution will never be removed from the population as it
is the unique solution having complexity 0.

Assuming that the empty tree has been introduced into the population, we
analyze the time until the algorithm has produced solutions that are Pareto
optimal and have ORDER-values 1, 2, . . . , n. Each tree having i leaves has
exactly i � 1 inner nodes. Hence, a solution that has ORDER-value i has
complexity at least 2i� 1, 1 i n. A solution with ORDER-value i is Pareto
optimal i↵ it has complexity exactly 2i � 1. We assume that the population
contains all Pareto optimal solutions with ORDER-value j, 0 j i. Then
choosing the Pareto optimal solution X with ORDER (X)= i for mutation

12

Life Impact | The University of Adelaide Frank	 Neumann	

	
Proof	 ideas:	
•  No	 redundant	 solu(ons	 are	 accepted	 during	 the	
run	 of	 the	 algorithm.	

•  Popula(on	 size	 is	 upper	 bounded	 by	 n+1.	
•  Empty	 solu(on	 is	 included	 in	 the	 popula(on	 a`er	
O(n2)	 steps.	

•  A`erwards	 remaining	 Pareto	 op(mal	 solu(ons	
are	 produced	 in	 (me	 O(n3)	 (fitness-‐based	
par((ons	 for	 linear	 pseudo-‐Boolean	 func(ons	
slowed	 down	 by	 popula(on	 of	 size	 n).	

Starting with a non-redundant initial solution, the expected optimization time
of SMO-GP-single on MO-WORDER and MO-WMAJORITY is O(n3).

Theorem:	

Life Impact | The University of Adelaide
Frank	 Neumann	

Summary

Summary:
•  Weighted ORDER and MAJORITY are

generalizations of ORDER and MAJORITY
(similar to OneMax to linear functions for
binary strings)

•  Parsimony approach provably reaches the
optimal solution quickly.

•  Multi-objective approach provably computes
the Pareto front in expected polynomial time
when starting with non-redundant solution.

Life Impact | The University of Adelaide

Open	 Problems	

Frank	 Neumann	

means that syntax trees grow during the optimization process without provid-
ing additional benefit. One way of dealing with the bloat problem is to take
the complexity as an additional criterion to measure the quality of a solution.
We have studied the (1+1) GP on multi-criteria fitness functions for WORDER
and WMAJORITY. These problems are generalizations of ORDER and MA-
JORITY analyzed in [7] and we have given better upper bounds than the ones
presented in [7].

Afterwards, we analyzed a multi-objective genetic programming algorithm
called SMO-GP. This algorithm is inspired by the SEMO algorithm which has
been considered in several studies on the computational complexity of evolution-
ary multi-objective optimization. We are optimistic that it can serve for further
studies on the computational complexity of multi-objective genetic program-
ming. We have shown that the Pareto fronts of MO-ORDER and MO-MAJ-
ORITY are computed by SMO-GP within a small amount of time. Furthermore,
we have extended our investigations to MO-WORDER and MO-WMAJORITY
which can encounter an exponential number of trade-o↵ objective vectors. How-
ever, the size of the Pareto front is linear with respect to the problem dimension
and SMO-GP-single computes this Pareto front in expected polynomial time
when starting with a non-redundant solution.

We finish with two interesting topics for future work.

• Determine the expected optimization time of (1+1) GP-multi which chooses
k according to 1+Pois(1) on MO-WORDER and WORDER, MO-WMA-
JORITY, and WMAJORITY.

• Determine the expected optimization time of SMO-GP-multi on MO-
WORDER and MO-WMAJORITY.

Acknowledgement

The author thanks Christian Igel, Aneta Neumann, Una-May O’Reilly, and
Markus Wagner for interesting discussions on the topic of this paper.

References

[1] E. Alfaro-Cid, J. J. M. Guervós, F. F. de Vega, A. I. Esparcia-Alcázar, and
K. Sharman. Bloat control operators and diversity in genetic programming:
A comparative study. Evolutionary Computation, 18(2):305–332, 2010.

[2] A. Auger and B. Doerr, editors. Theory of Randomized Search Heuristics:
Foundations and Recent Developments. World Scientific, 2011.

[3] W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, editors. Genetic
Programming, First European Workshop, EuroGP’98, Paris, France, April
14-15, 1998, Proceedings, volume 1391 of Lecture Notes in Computer Sci-
ence. Springer, 1998.

16

