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Introduction

There are many

» successful applications
e experimental studies
of Genetic Programming.

We want to
e arguein arigorous way about GP algorithms and
e contribute to their theoretical understanding

This is also important for the acceptance of our
algorithms outside our community.
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This Talk

Definition of two general problems for the
runtime analysis of genetic programming:

 Weighted ORDER
 Weighted MAJORITY

Rigorous runtime analysis of two mechanisms
for dealing with the bloat problem:

* Parsimony approach
* Multi-objective approach
Lot of open questions.
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Runtime Analysis of GP

* Rigorous runtime analysis of genetic
programming is relatively new.

* We want to understand in a rigorous way how
genetic programming works.

 We consider simple mutation-based
algorithms.

* Studies should enable analysis of more
complex algorithms in the future.
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Substitution

Substitution
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Insertion

Chosen node
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Frank Neumann

Deletion
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Baseline Algorithm
Algorithm 1 ((1+1) GP).
1. Choose an initial solution X.
2. Repeat

o SetY = X.
o Apply mutation to Y .
o [f selection favors Y over X then X :=Y.

(1+1) GP-single: select one operation of {insert, delete, substitute}
uniformly at random and applyitto.

Expected optimization time := Expected number of iterations
to obtain an optimal solution.
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Weighted ORDER and MAJORITY

e F:={J}, J has arity 2.

o L = {le,fl,...,mnpjn}

Each variable x; has a corresponding weight
w,; € R, 1 <1 <n

Without loss of generality, we assume
w12w2>...2wn>0
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Weighted ORDER and MAJORITY

Weighted ORDER: w. contributes to fitness if
X: IS expressed, i. e. x; is seen before T; in
an inorder parse.

Weighted MAJORITY: w; contributes to
fitness If x; is expressed, i. e. X, is present
and there are at least as many x; as ;.

Special case; w; = 1, 1 <7 <n
ORDER and MAJORITY
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Let n=6 and wy =13, wy =11, w3 =8, wy =7, w5 = 5, wg = 3

i) L1 T3 Ty

We get: ! = (z1,%4, 2, 71, T3, T6, 24, 3, T5, 3)
WORDER(X) = w; + ws = 13+ 11 = 24
WMAJORITY(X) = wy + we +wg +wy =13+ 11 +8+7 =239
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Parsimony Approach

Attach to each solution X a complexity value C(X)
* C(X): number of nodes in X.

MO-WORDER (X) = (WORDER (X), C(X))
MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

A solution X is called non-redundant if no variable can be deleted
without decreasing fitness.

Otherwise, we call X a redundant solution.
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Parsimony Approach

Parsimony approach:

* |f two solutions have same quality according
to F, select a solution of lowest complexity.

e Selection:

(1+1) GP-single on MO-F: Favor Y over X iff

(F(Y) > F(X)) V((F(Y) = F(X)) A (CY) < C(X))).

Denote by T;,,;: the complexity of the initial solution.
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Theorem:
The expected optimization of (1+1) GP-single on Weighted ORDER and Weighted

MAJORITY is O(Tjni + nlogn).
Proof ideas:
* Using single operations the difference between

complexity and the number of expressed variables
can not increase.

e AfterO(Tinit +nlogn) steps the current solution is
non-redundant, i. e. no deletion is possible without
decreasing fitness.

* Missing variables can be inserted at any position.

* Additional phase of O(n log n) steps gives optimal
solution (coupon collector).

Life Impact | The University of Adelaide
Frank Neumann



Multi-Objective GP

Consider the two objectives F and C as equally

Important:

1. A solution Y weakly dominates a solution X (denoted by Y > X) iff
(F(Y)>F(X)NC(Y) <C(X)).

2. A solution Y dominates a solution X (denoted by Y = X) iff (Y >
X)INFY)>FX)vCO(Y) < C(X)).
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Algorithm 5. SMO-GP

1. Choose an initial solution X.
2. Set P :={X}.

3. Repeat
e Choose X € P uniformly at random.
o SetY = X.

o Apply mutation to Y .
e If{Z€e€P|Z>Y}=10,
set P:=(P\{ZeP|Y =Z})u{Y}.

Multi-Operations: Choose the number of operations in

each mutation steps according to 1+Pois(1).

Expected optimization time := Expected number of fitness evaluations
to obtain the whole Pareto front.
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Theorem:
The expected optimization time of SMO-GP-single and SMO-GP-multi on MO-

ORDER and MO-MAJORITY is O(nT;,;; + n?logn).

Proof ideas:
* Population size is upper bounded by n+1.

 Empty solution is included in the population
after O(nT;,;;) steps.

* Other Pareto optimal solutions are obtained in
time O(n? log n) by introducing one of the
missing variables at any position (coupon
collector slowed by population of size n).
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Theorem:
Starting with a non-redundant initial solution, the expected optimization time

of SMO-GP-single on MO-WORDER and MO-WMAJORITY is O(n?).
Proof ideas:

* No redundant solutions are accepted during the
run of the algorithm.

* Population size is upper bounded by n+1.
 Empty solution is included in the population after
O(n?) steps.

e Afterwards remaining Pareto optimal solutions
are produced in time O(n3) (fitness-based
partitions for linear pseudo-Boolean functions
slowed down by population of size n).
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Summary

Summary:

* Weighted ORDER and MAJORITY are
generalizations of ORDER and MAJORITY
(similar to OneMax to linear functions for
binary strings)

« Parsimony approach provably reaches the
optimal solution quickly.

* Multi-objective approach provably computes
the Pareto front in expected polynomial time
when starting with non-redundant solution.
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Open Problems

e Determine the expected optimization time of (1+1) GP-multi which chooses
k according to 14+Pois(1) on MO-WORDER and WORDER, MO-WMA.-
JORITY, and WMAJORITY.

e Determine the expected optimization time of SMO-GP-multi on MO-
WORDER and MO-WMAJORITY.
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