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Average-case complexity

Worst-case complexity can be overly pessimistic.

Instead of measuring worst-case runtime, measure expected runtime over
a probability distribution on an ensemble of instances (Levin 1986).

Random k-satisfiability: use some random process to generate a Boolean
formula over n variables.

What is the expected runtime T (n) of an algorithm over the set of all
such formulas?
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This talk

SAT in the EC community

Many empirical results . . . but lack of rigorous runtime analysis

So, many opportunities to make progress!

Talk outline

Analysis of RLS on planted model

makes heavy use of a 1992 paper by Koutsoupias and Papadimitriou.

Uniform model

ideas about how low-density formulas might be easy for simple EAs
(w.h.p.)
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3-SAT

Some definitions.

A Boolean variable: x ∈ {true, false}
A set of n Boolean variables: {x, y, z, w}

A set of literals: {x, x̄, y, ȳ, z, z̄, w, w̄}
A clause: (x ∨ y ∨ z̄)

A Boolean formula: (x ∨ y ∨ z̄) ∧ (ȳ ∨ w̄ ∨ z) ∧ . . .

A formula F is satisfiable iff there exists an assignment (a mapping
A : {x, y, z, w} → {true, false}) such that F evaluates to true.
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Random 3-SAT

Uniform model: ΨU
n,m

Choose m length-3 clauses uniformly at random (without replacement)
from the set of nontrivial clauses on n variables.

Planted model: ΨP
n,p

First, choose an assignment x? to n variables uniformly at random. Then,
every length-3 clause that is satisfied by x? is included with probability p.
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Random 3-SAT

Uniform model: example

(x1 ∨ x2 ∨ x̄4) ∧(x̄2 ∨ x̄3 ∨ x4)

Planted model: example

x? = (1, 0, 0, 1)
(x1 ∨ x2 ∨ x̄4) ∧(x2 ∨ x̄3 ∨ x̄1)
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Preliminaries

Proposition (Chernoff bounds).

Let X1, X2, . . . , Xn be independent Poisson trials such that for
1 ≤ i ≤ n, Pr(Xi = 1) = pi, where 0 < pi < 1. Let
X =

∑n
i=1Xi, µ = E(X) =

∑n
i=1 pi. Then the following inequalities

hold for any 0 < δ ≤ 1.

Pr(X ≥ (1 + δ)µ) ≤ e−µδ
2/3

Pr(X ≤ (1− δ)µ) ≤ e−µδ
2/2

Andrew M. Sutton 6 / 23



Randomized local search

Fitness function

Given a formula F on n variables and m clauses,

f : {0, 1}n → {0, 1, . . . ,m}

counts the number of clauses satisfied by an assignment.

Algorithm 1: RLS

Choose x ∈ {0, 1}n uniformly at random;
while stopping criteria not met do

y ← x;
Choose i ∈ {1, . . . , n} uniformly at random;
yi ← 1− xi;
if f(y) > f(x) then x← y

*Note the strict inequality in the selection step.
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Potential function

Suppose x? is the planted solution to a formula F ∼ ΨP
n,p.

We define a potential function ϕ : {0, 1}n → {0, 1, . . . , n}:

ϕ(x) = d(x, x?).

Definition.

We call an assignment x bad if, for some ε > 0,

ϕ(x) >

(
1

2
+ ε

)
n.

An assignment which is not bad is called good.
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Randomly chosen solutions are likely to be good

Lemma 1

Suppose x is chosen uniformly at random from {0, 1}n. Then

Pr(x is bad) ≤ e−ε
2n.

Proof.
The probability that xi = x?i is exactly 1/2 for all i. Thus let
Xi := [xi = x?i ] and the lemma follows from the Chernoff bound with
µ = n/2 and δ = 2ε. �
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The underlying search space

Consider an orientation of a hypercube graph G = (V,E) where
V = {0, 1}n and

(x, y) ∈ E ⇐⇒ ϕ(y) < ϕ(x).

000

001
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011

100

101

110

x?
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The underlying search space

Definition.

We label the directed edge (x, y) in G deceptive if f(x) ≥ f(y).

Claim.

1 Each planted solution induces an orientation of G.

2 Each formula F induces a labeling of G.

What is the fraction of edges that are labeled deceptive?
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The underlying search space

G = (V,E), with vertices labeled by fitness, deceptive edges in red:
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x?
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Most “good” edges are nondeceptive

Let G′ = (V ′, E′) be the subgraph of G induced by the set of all good
nodes:

V ′ = {x ∈ {0, 1}n : x is good}
(x′, y′) ∈ E′ ⇐⇒ x′, y′ ∈ V ′ and ϕ(y) < ϕ(x).

Lemma.

Let (x, y) ∈ E′. The probability that (x, y) is labeled deceptive during

the construction of F is at most 2e−cpn
2

for a constant c.
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Most “good” edges are nondeceptive

Proof.
Let S := set of all clauses on n variables that are:

satisfied by x?

unsatisfied by x

satisfied by y

Let U := set of all clauses on n variables that are:

satisfied by x?

satisfied by x

unsatisfied by y

The edge (x, y) is labeled deceptive iff F has at least as many clauses in
U as in S.
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Most “good” edges are nondeceptive

Let RU (RS) be the number of clauses from U (S) in the formula. Then
the probability that (x, y) is labeled deceptive is Pr(RU ≥ RS).

RU (RS) is a binomial random variable with |U | (|S|) trials and
probability p.

W.L.O.G., suppose x? = (1, 1, . . . , 1).

Since d(x, y) = 1, x and y differ in the (say) i-th bit.

Since x is good, ϕ(x) ≤ (1/2 + ε)n.

Claim.

|S| =
(
n− 1

2

)
, |U | =

(
n− 1

2

)
−
(
n− ϕ(x)

2

)
.

E.g., x = 0001, y = 1001, =⇒ (x1 ∨ x2 ∨ x̄4) ∈ S
E.g., x = 0101, y = 1101, =⇒ (x̄1 ∨ x̄2 ∨ x3) ∈ U
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Most “good” edges are nondeceptive

So the probability that (x, y) is labeled deceptive is

Pr(RU ≥ RS) ≤ Pr(RU ≥ a) + Pr(RS ≤ a) ≤ 2e−cpn
2

.

The inequality comes from the Chernoff bound and c is a constant
depending only on ε. �

Lemma.

The fraction of deceptive edges in G′ is at most ne−n(cpn−ln 2).

Proof.
By the previous lemma, the fraction of deceptive edges in G′ is at most
|E′| × 2e−cpn

2

and |E′| ≤ |E| = n2n−1. �
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Analysis for RLS

Claim.

Starting from a random initial solution x(0), RLS gets to a local optimum
x̂ in expected polynomial time.

We can think of RLS moving through G. RLS moves along an edge
(x, y) of G when it replaces the current solution x with a neighboring
solution y of better fitness.
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Analysis for RLS

Theorem 1.

Probability RLS finds x? in expected polynomial time starting from a
good initial solution x(0) is at least 1− ne−n(cpn−ln 2).

Proof.
If x(0) ∈ V ′ and RLS never moves along a deceptive edge, then the
following are true.

1 RLS never leaves G′

2 x̂ = x?

The probability that an arbitrary edge in G′ is deceptive is at most
ne−n(cpn−ln 2). �

Theorem 2.

Suppose p = Ω(1/n). Then the probability that RLS succeeds on any
random planted formula F is 1− o(1).

Proof.
x(0) ∈ V ′ w.h.p., and finds x? w.h.p. �

Andrew M. Sutton 18 / 23



The uniform model

Now consider a formula F ∼ ΨU
n,m.

Definition.

The clause density of F is m/n.

Low-density formulas are underconstrained, high-density formulas are
overconstrained.

Satisfiability threshold conjecture

For all k ≥ 3 there exists a real number rc(k) such that

lim
n→∞

Pr{F is satisfiable} =

{
1 m/n < rc(k);

0 m/n > rc(k).
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The uniform model
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The pure literal heuristic

Definition.

A literal ` is called pure in a set of clauses if its negation does not occur
in that set.

Example:
(x1 ∨ x̄2 ∨ x̄4) ∧ (x̄2 ∨ x4 ∨ x3)

Pure literals: x1, x̄2, x3.

Algorithm 2: The pure literal heuristic (PLH).

while C contains pure literals do
Select a literal ` which is pure in C ;
`← true;
C ← C \ {C ∈ C : ` ∈ C};
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The pure literal heuristic

Theorem (due to Broder et al., 1993).

Let F ∼ ΨU
n,m be a uniform random 3-SAT formula where m/n < 1.63.

PLH succeeds on F with probability 1− o(1).
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Ideas for the (1+1) EA

If PLH succeeds on a 3-SAT formula F , then PLH must succeed on every
subset of clauses from F .

The (1+1) EA can simulate the first step of PLH since, as long as there
are pure literals in F , a fitter solution can be obtained by setting them
correctly.

Open question.

Can the (1+1) EA efficiently simulate PLH?
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