# Towards the Rigorous Analysis of Evolutionary Algorithms on Random *k*-Satisfiability Formulas

Andrew M. Sutton



Worst-case complexity can be overly pessimistic.

Instead of measuring worst-case runtime, measure *expected* runtime over a probability distribution on an ensemble of instances (Levin 1986).

Random k-satisfiability: use some random process to generate a Boolean formula over n variables.

What is the expected runtime T(n) of an algorithm over the set of all such formulas?

(人間) (人) (人) (人) (人) (人)

#### SAT in the EC community

Many empirical results ....

but lack of rigorous runtime analysis

#### So, many opportunities to make progress!

# Talk outline Analysis of RLS on planted model makes heavy use of a 1992 paper by Koutsoupias and Papadimitriou. Uniform model ideas about how low-density formulas might be easy for simple EAs (w.h.p.)

#### Some definitions.

| A Boolean variable:             | $x \in \{true, false\}$                                                                  |
|---------------------------------|------------------------------------------------------------------------------------------|
| A set of $n$ Boolean variables: | $\{x, y, z, w\}$                                                                         |
| A set of <i>literals</i> :      | $\{x, \bar{x}, y, \bar{y}, z, \bar{z}, w, \bar{w}\}$                                     |
| A clause:                       | $(x \lor y \lor \bar{z})$                                                                |
| A Boolean formula:              | $(x \lor y \lor \overline{z}) \land (\overline{y} \lor \overline{w} \lor z) \land \dots$ |

A formula F is *satisfiable* iff there exists an assignment (a mapping  $\mathcal{A} : \{x, y, z, w\} \rightarrow \{true, false\}$ ) such that F evaluates to true.

#### Uniform model: $\Psi_{n,m}^{U}$

Choose m length-3 clauses uniformly at random (without replacement) from the set of nontrivial clauses on n variables.

#### Planted model: $\Psi_{n,p}^{\mathrm{P}}$

First, choose an assignment  $x^*$  to n variables uniformly at random. Then, every length-3 clause that is satisfied by  $x^*$  is included with probability p.

 $(x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$ 

#### Planted model: example

 $x^* = (1, 0, 0, 1)$  $(x_1 \lor x_2 \lor \bar{x}_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_1)$ 

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

 $(x_1 \lor x_2 \lor \overline{x}_4) \land (\overline{x}_2 \lor \overline{x}_3 \lor x_4)$ 

#### Planted model: example

 $x^* = (1, 0, 0, 1)$  $(x_1 \lor x_2 \lor \bar{x}_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_1)$ 

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

$$(x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$$

#### Planted model: example

 $x^* = (1, 0, 0, 1)$  $(x_1 \lor x_2 \lor \bar{x}_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_1)$ 

3

・ロ・ ・四・ ・ヨ・ ・ ヨ・

$$(x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$$

#### Planted model: example

 $\begin{aligned} \boldsymbol{x}^{\star} &= (1,0,0,1) \\ (x_1 \lor x_2 \lor \bar{x}_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_1) \end{aligned}$ 

3

・ロ・ ・四・ ・ヨ・ ・ ヨ・

$$(x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$$

#### Planted model: example

$$x^\star = (1,0,0,1) \ (x_1 \lor x_2 \lor ar x_4) \land (x_2 \lor ar x_3 \lor ar x_1)$$

æ

・ロト ・回ト ・ヨト ・ヨト

$$(x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$$

#### Planted model: example

$$x^{\star} = (1, 0, 0, 1) (x_1 \lor x_2 \lor \bar{x}_4) \land (x_2 \lor \bar{x}_3 \lor \bar{x}_1)$$

æ

・ロト ・回ト ・ヨト ・ヨト

#### **Proposition** (Chernoff bounds).

Let  $X_1, X_2, \ldots, X_n$  be independent Poisson trials such that for  $1 \leq i \leq n$ ,  $\Pr(X_i = 1) = p_i$ , where  $0 < p_i < 1$ . Let  $X = \sum_{i=1}^n X_i, \mu = E(X) = \sum_{i=1}^n p_i$ . Then the following inequalities hold for any  $0 < \delta \leq 1$ .

$$\Pr(X \ge (1+\delta)\mu) \le e^{-\mu\delta^2/3}$$
$$\Pr(X \le (1-\delta)\mu) \le e^{-\mu\delta^2/2}$$

イロト 不得 トイヨト イヨト 二日

#### Fitness function

Given a formula F on n variables and m clauses,

```
f: \{0,1\}^n \to \{0,1,\ldots,m\}
```

counts the number of clauses satisfied by an assignment.

#### Algorithm 1: RLS

```
 \begin{array}{l} {\rm Choose}\ x\in\{0,1\}^n\ {\rm uniformly\ at\ random};\\ {\rm \textbf{while\ stopping\ criteria\ not\ met\ do}}\\ y\leftarrow x;\\ {\rm Choose\ }i\in\{1,\ldots,n\}\ {\rm uniformly\ at\ random};\\ y_i\leftarrow 1-x_i;\\ {\rm if\ }f(y)>f(x)\ {\rm then\ }x\leftarrow y \end{array}
```

\*Note the strict inequality in the selection step.

(ロ) (四) (注) (注) (注) (

### Potential function

Suppose  $x^{\star}$  is the planted solution to a formula  $F \sim \Psi_{n,p}^{\mathrm{P}}$ .

We define a potential function  $\varphi: \{0,1\}^n \to \{0,1,\ldots,n\}$ :

$$\varphi(x) = d(x, x^\star).$$

#### Definition.

We call an assignment x bad if, for some  $\epsilon > 0$ ,

$$\varphi(x) > \left(\frac{1}{2} + \epsilon\right)n.$$

An assignment which is not bad is called good.

イロン 不同 とくほう イヨン

#### Lemma 1

Suppose x is chosen uniformly at random from  $\{0,1\}^n$ . Then

 $\Pr(x \text{ is bad}) \le e^{-\epsilon^2 n}.$ 

#### Proof.

The probability that  $x_i = x_i^*$  is exactly 1/2 for all i. Thus let  $X_i := [x_i = x_i^*]$  and the lemma follows from the Chernoff bound with  $\mu = n/2$  and  $\delta = 2\epsilon$ .

(ロ) (部) (E) (E) (E)

# The underlying search space

Consider an orientation of a hypercube graph G=(V,E) where  $V=\{0,1\}^n$  and

$$(x,y)\in E\iff \varphi(y)<\varphi(x).$$



3

《口》 《聞》 《臣》 《臣》

#### Definition.

We label the directed edge (x, y) in G deceptive if  $f(x) \ge f(y)$ .

#### Claim.

Search planted solution induces an orientation of G.

**2** Each formula F induces a labeling of G.

#### What is the fraction of edges that are labeled deceptive?

G = (V, E), with vertices labeled by fitness, deceptive edges in red:



A B M A B M

A >

Let  $G^\prime = (V^\prime, E^\prime)$  be the subgraph of G induced by the set of all good nodes:

$$\begin{split} V' &= \{x \in \{0,1\}^n : x \text{ is good}\}\\ (x',y') \in E' \iff x',y' \in V' \text{ and } \varphi(y) < \varphi(x). \end{split}$$

#### Lemma.

Let  $(x,y) \in E'$ . The probability that (x,y) is labeled deceptive during the construction of F is at most  $2e^{-cpn^2}$  for a constant c.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

#### Proof.

Let S := set of **all clauses** on n variables that are:

- $\blacksquare$  satisfied by  $x^\star$
- $\blacksquare$  unsatisfied by x
- $\blacksquare$  satisfied by y
- Let U := set of **all clauses** on n variables that are:
  - $\blacksquare$  satisfied by  $x^\star$
  - $\blacksquare$  satisfied by x
  - $\blacksquare$  unsatisfied by y

The edge (x, y) is labeled deceptive iff F has at least as many clauses in U as in S.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Most "good" edges are nondeceptive

Let  $R_U(R_S)$  be the number of clauses from U(S) in the formula. Then the probability that (x, y) is labeled deceptive is  $\Pr(R_U \ge R_S)$ .

 $R_{U}\left(R_{S}\right)$  is a binomial random variable with  $|U|\left(|S|\right)$  trials and probability p.

W.L.O.G., suppose  $x^{\star} = (1, 1, ..., 1)$ .

Since d(x, y) = 1, x and y differ in the (say) *i*-th bit.

Since x is good,  $\varphi(x) \leq (1/2 + \epsilon)n$ .

# Claim. $|S| = \binom{n-1}{2}, \quad |U| = \binom{n-1}{2} - \binom{n-\varphi(x)}{2}.$ E.g., $x = 0001, \quad y = 1001, \implies (x_1 \lor x_2 \lor \bar{x}_4) \in S$ E.g., $x = 0101, \quad y = 1101, \implies (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \in U$

So the probability that (x, y) is labeled deceptive is

$$\Pr(R_U \ge R_S) \le \Pr(R_U \ge a) + \Pr(R_S \le a) \le 2e^{-cpn^2}$$

The inequality comes from the Chernoff bound and c is a constant depending only on  $\epsilon.$ 

#### Lemma.

The fraction of deceptive edges in G' is at most  $ne^{-n(cpn-\ln 2)}$ .

#### Proof.

By the previous lemma, the fraction of deceptive edges in G' is at most  $|E'| \times 2e^{-cpn^2}$  and  $|E'| \le |E| = n2^{n-1}$ .

イロト 不得 トイヨト イヨト 二日

# Analysis for RLS

#### Claim.

Starting from a random initial solution  $x^{(0)}$ , RLS gets to a local optimum  $\hat{x}$  in expected polynomial time.

We can think of RLS moving through G. RLS moves along an edge (x, y) of G when it replaces the current solution x with a neighboring solution y of better fitness.



#### Theorem 1.

Probability RLS finds  $x^{\star}$  in expected polynomial time starting from a good initial solution  $x^{(0)}$  is at least  $1-ne^{-n(cpn-\ln 2)}$ .

#### Proof.

If  $x^{(0)} \in V'$  and RLS never moves along a deceptive edge, then the following are true.

**()** RLS never leaves G'

$$\hat{x} = x^{\star}$$

The probability that an arbitrary edge in G' is deceptive is at most  $ne^{-n(cpn-\ln 2)}$ .

#### Theorem 2.

Suppose  $p=\Omega(1/n).$  Then the probability that RLS succeeds on any random planted formula F is 1-o(1).

**Proof.**  $x^{(0)} \in V'$  w.h.p., and finds  $x^*$  w.h.p.

# The uniform model

Now consider a formula  $F \sim \Psi_{n,m}^{U}$ .

#### Definition.

```
The clause density of F is m/n.
```

Low-density formulas are *underconstrained*, high-density formulas are *overconstrained*.

#### Satisfiability threshold conjecture

For all  $k \geq 3$  there exists a real number  $r_c(k)$  such that

$$\lim_{n \to \infty} \Pr\{F \text{ is satisfiable}\} = \begin{cases} 1 & m/n < r_c(k); \\ 0 & m/n > r_c(k). \end{cases}$$

3

# The uniform model



2

<ロ> <同> <同> < 回> < 回>

#### Definition.

A literal  $\ell$  is called pure in a set of clauses if its negation does not occur in that set.

#### Example:

$$(x_1 \vee \bar{x}_2 \vee \bar{x}_4) \land (\bar{x}_2 \vee x_4 \vee x_3)$$

Pure literals:  $x_1$ ,  $\bar{x}_2$ ,  $x_3$ .

**Algorithm 2**: The pure literal heuristic (PLH).

while  $\mathscr{C}$  contains pure literals do Select a literal  $\ell$  which is pure in  $\mathscr{C}$ ;  $\ell \leftarrow true$ ;  $\mathscr{C} \leftarrow \mathscr{C} \setminus \{C \in \mathscr{C} : \ell \in C\}$ ;

(日) (同) (三) (三)

# The pure literal heuristic

#### **Theorem** (due to Broder et al., 1993).

Let  $F \sim \Psi_{n,m}^{U}$  be a uniform random 3-SAT formula where m/n < 1.63. PLH succeeds on F with probability 1 - o(1).



If PLH succeeds on a 3-SAT formula  $F, {\rm then}$  PLH must succeed on every subset of clauses from F.

The (1+1) EA can simulate the first step of PLH since, as long as there are pure literals in F, a fitter solution can be obtained by setting them correctly.

#### Open question.

Can the (1+1) EA efficiently simulate PLH?

(日) (同) (三) (三)