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Average-case complexity

Worst-case complexity can be overly pessimistic.

Instead of measuring worst-case runtime, measure expected runtime over
a probability distribution on an ensemble of instances (Levin 1986).

Random k-satisfiability: use some random process to generate a Boolean
formula over n variables.

What is the expected runtime T'(n) of an algorithm over the set of all
such formulas?

Andrew M. Sutton 1/23



This talk

SAT in the EC community

Many empirical results . .. but lack of rigorous runtime analysis

So, many opportunities to make progress!

m Analysis of RLS on planted model
o makes heavy use of a 1992 paper by Koutsoupias and Papadimitriou.

m Uniform model

o ideas about how low-density formulas might be easy for simple EAs
(w.h.p.)
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3-SAT

Some definitions.

A Boolean variable:  z € {true, false}
A set of n Boolean variables: {z,y,z,w}
A set of literals:  {z,Z,y,7,z,Z, w,w}
A clause: (zVyVZ)
A Boolean formula: (xVyVZ)A(GVaoVz)A...

A formula F' is satisfiable iff there exists an assignment (a mapping
A A{z,y, z,w} — {true, false}) such that F evaluates to true.
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Random 3-SAT

Uniform model: \II%T

Ly TN

Choose m length-3 clauses uniformly at random (without replacement)
from the set of nontrivial clauses on n variables.

Planted model: TP

n,p

First, choose an assignment z* to n variables uniformly at random. Then,
every length-3 clause that is satisfied by x* is included with probability p.
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Random 3-SAT

Uniform model: example

Planted model: example
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Random 3-SAT

Uniform model: example

($1 V o V i‘4) /\(52 V3V $4)

Planted model: example

T = (1,0,0, 1)
(l‘l V xo V i‘4) /\(.’1?2 V3V 571)
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Preliminaries

Proposition (Chernoff bounds).

Let X¢, X5,...,X,, be independent Poisson trials such that for
1<i<n, Pr(X;=1)=p;, where 0 <p; < 1. Let

X =>",X,,p=E(X)=>",pi. Then the following inequalities
hold for any 0 < § < 1.

(14 0)u) < e~/
(1= 8)p) < /2

Pr(X
Pr(X

Y

IN
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Randomized local search

Fitness function

Given a formula F' on n variables and m clauses,
f:{0,1}" = {0,1,...,m}

counts the number of clauses satisfied by an assignment.

Algorithm 1: RLS

Choose z € {0,1}™ uniformly at random;
while stopping criteria not met do

Y < x,
Choose ¢ € {1,...,n} uniformly at random;
Yi < 1 — g

if f(y) > f(z) then z + y

*Note the strict inequality in the selection step.
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Potential function

Suppose z* is the planted solution to a formula F' ~ \Ifg_’p.

We define a potential function ¢ : {0,1}" — {0,1,...,n}:

o(x) =d(x,z*).

Definition.

We call an assignment = bad if, for some € > 0,

o(z) > (; I e) n.

An assignment which is not bad is called good.
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Randomly chosen solutions are likely to be good

Suppose z is chosen uniformly at random from {0,1}". Then

Pr(z is bad) < o

Proof.

The probability that x; = z} is exactly 1/2 for all 4. Thus let

X, := [z; = x}] and the lemma follows from the Chernoff bound with
w=n/2and d = 2e. O
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The underlying search space

Consider an orientation of a hypercube graph G = (V| E) where
V ={0,1}" and

(z,y) € £ <= p(y) < p(z).
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/ /
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100 110
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The underlying search space

Definition.
We label the directed edge (z,y) in G deceptive if f(z) > f(y).

@ Each planted solution induces an orientation of G.

@ Each formula F' induces a labeling of G.

What is the fraction of edges that are labeled deceptive?
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The underlying search space

G = (V, E), with vertices labeled by fitness, deceptive edges in red:

5

/ /

)
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7
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Most “good” edges are nondeceptive

Let G’ = (V', E’) be the subgraph of G induced by the set of all good
nodes:

V' ={x € {0,1}" : x is good}
(2',y)e B < ',y € V' and p(y) < p(z).

Let (z,y) € E’. The probability that (x;y) is labeled deceptive during
the construction of F' is at most 2e~“P™ for a constant c.
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Most “good” edges are nondeceptive

Proof.
Let S := set of all clauses on n variables that are:

m satisfied by z*
m unsatisfied by x
m satisfied by y
Let U := set of all clauses on n variables that are:
m satisfied by z*
m satisfied by =
m unsatisfied by y

The edge (z,y) is labeled deceptive iff F' has at least as many clauses in
UasinS.
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Most “good” edges are nondeceptive

Let Ry (Rs) be the number of clauses from U (.S) in the formula. Then
the probability that (z,y) is labeled deceptive is Pr(Ry > Rg).

Ry (Rg) is a binomial random variable with |U] (]S]) trials and
probability p.

W.L.O.G,, suppose z* = (1,1,...,1).

Since d(x,y) = 1, x and y differ in the (say) i-th bit.

Since z is good, ¢(z) < (1/2 + €)n.

n—1 n—1 n—
S = U = —
s=("51) w=("3")-(
E.g., x =0001, y=1001, = (1’1 VoV i’4) es
Eg.,z=0101, y=1101, = (Z1VZ2Va3) €U
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Most “good” edges are nondeceptive

So the probability that (x,y) is labeled deceptive is
Pr(Ry > Rs) < Pr(Ry > a) 4+ Pr(Rs <a) < 9p—cpn®

The inequality comes from the Chernoff bound and c¢ is a constant

depending only on e. O
The fraction of deceptive edges in G’ is at most ne~"(cPn—1n2)

Proof.

By the previogs lemma, the fraction of deceptive edges in G’ is at most
|E'| x 2¢=P"" and |E'| < |E| = n2"L. O
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Analysis for RLS

Starting from a random initial solution (%), RLS gets to a local optimum
Z in expected polynomial time.

We can think of RLS moving through GG. RLS moves along an edge
(x,y) of G when it replaces the current solution z with a neighboring
solution y of better fitness.

/‘ /
‘/ /

T*
4
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Analysis for RLS

Probability RLS finds x* in expected polynomial time starting from a
good initial solution z() is at least 1 — ne~"(cPn—In2),

Proof.
If (9 € ¥V’ and RLS never moves along a deceptive edge, then the
following are true.

@ RLS never leaves G’
Q@ t=uo"

The probability that an arbitrary edge in G’ is deceptive is at most
ne—n(cpn—1n2)_ 0

Suppose p = Q(1/n). Then the probability that RLS succeeds on any
random planted formula F'is 1 — o(1).

Proof.
z(® € V’ w.h.p., and finds z* w.h.p. O
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The uniform model

Now consider a formula F' ~ ¥V .

Definition.

The clause density of F' is m/n.

Low-density formulas are underconstrained, high-density formulas are
overconstrained.

Satisfiability threshold conjecture

For all k > 3 there exists a real number 7.(k) such that

1 .
lim Pr{F is satisfiable} = { m/n < ro(k);

n—oo

0 m/n>r.(k).
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The uniform model

Pr{F is satisfiable}
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The pure literal heuristic

Definition.

A literal £ is called pure in a set of clauses if its negation does not occur
in that set.

Example:
(x1 VTV Tg) A (T2 V xg Vx3)

Pure literals: x1, X2, 3.

Algorithm 2: The pure literal heuristic (PLH).

while & contains pure literals do
Select a literal £ which is pure in €;
L 0 <+ true;
C+—E\{Ce¥:LteC};
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The pure literal heuristic

Theorem (due to Broder et al., 1993).

Let F' ~ \Il,[f)m be a uniform random 3-SAT formula where m/n < 1.63.
PLH succeeds on F' with probability 1 — o(1).

1

Pr{F is satisfiable}
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Ideas for the (1+1) EA

If PLH succeeds on a 3-SAT formula F', then PLH must succeed on every
subset of clauses from F'.

The (141) EA can simulate the first step of PLH since, as long as there
are pure literals in F, a fitter solution can be obtained by setting them
correctly.

Open question.
Can the (1+1) EA efficiently simulate PLH?
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