
A Comprehensive Benchmark Set and Heuristics for the
Traveling Thief Problem

Sergey Polyakovskiy
School of Computer Science
The University of Adelaide

Mohammad Reza
Bonyadi

School of Computer Science
The University of Adelaide

Markus Wagner
School of Computer Science
The University of Adelaide

Zbigniew Michalewicz
School of Computer Science
The University of Adelaide

Frank Neumann
School of Computer Science
The University of Adelaide

ABSTRACT
Real-world optimization problems often consist of several
NP-hard optimization problems that interact with each other.
The goal of this paper is to provide a benchmark suite that
promotes a research of the interaction between problems and
their mutual influence. We establish a comprehensive bench-
mark suite for the traveling thief problem (TTP) which com-
bines the traveling salesman problem and the knapsack prob-
lem. Our benchmark suite builds on common benchmarks
for the two sub-problems which grant a basis to examine the
potential hardness imposed by combining the two classical
problems. Furthermore, we present some simple heuristics
for TTP and their results on our benchmark suite.

Categories and Subject Descriptors
G.1.6 [Optimization]: Miscellaneous; I.2.8 [Problem
Solving, Control Methods, and Search]: Scheduling

General Terms
Experimentation, Algorithms

Keywords
Traveling thief problem, knapsack problem, interdepen-
dence, benchmarks

1. INTRODUCTION
Real-world optimization problems usually consist of sev-

eral problems that interact with each other. In order to solve
such problems it is important to understand and deal with
these interactions. So far, the research literature is lacking
systematic approaches for dealing with such interdependent
problems.

In this paper, we consider the Traveling Thief Problem
(TTP) [4] which is a combination of two of the most promi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM TBA ...$15.00.

nent combinatorial optimization problems, namely the trav-
eling salesperson problem (TSP) and the knapsack problem
(KP). Both problems have been considered in numerous the-
oretical and experimental studies, and very effective solvers
are known that perform well on a variety of benchmarks.

We present a benchmark suite for TTP which is based on
benchmark instances for the TSP and KP. The aim of this
benchmark suite is to give researchers the opportunities

• to study TTP as a combination of TSP and KP,

• to compare the problem instances, and

• to provide algorithms that can effectively solve prob-
lems with interdependencies.

We systematically construct the benchmarks so that the re-
sulting instances cover a wide range of features: from few
cities with few items and small knapsacks to many cities
with many items and large knapsacks. While we are confi-
dent that smaller instances can soon be solved to optimality,
the larger ones most likely remain unsolved for the years to
come.

It is important to note that the TTP is unlike many ca-
pacitated vehicle-routing problems in the area of Green Lo-
gistics (see, e.g., the survey article [7]). For example, the
fuel consumption based on load or geographical features is
considered in [5, 6] and the problem for several vehicles is
solved using integer programming. In our case, we add to
the routing problem not only a load-dependent feature, but
also the NP-hard optimization problem of deciding which
items are to be packed.

The remainder of this paper is organized as follows. First,
we define the traveling thief problem in Section 2. In Sec-
tion 3 we describe the systematic construction of the bench-
mark set. We present our heuristic algorithms in Section 4
and their results on the benchmarks in Section 5. We finish
with some concluding remarks.

2. TRAVELING THIEF PROBLEM
The Traveling Thief Problem is defined as follows. Given

is a set of cities N = {1, . . . , n} for which a distance dij ,
i, j ∈ N between any pair of cities is known. Every city i but
the first contains a set of items Mi = {1, . . . ,mi}. Each item
k positioned in the city i is characterized by its value pik and
weight wik, Iik ∼ (pik, wik). The thief must visit each of the
cities exactly once starting from the first city and returning

back to it in the end. Any item may be picked up into the
knapsack in any city until the total weight of collected items
does not exceed the maximum possible weight W . A renting
rate R is to be paid per each time unit being on a way. υmax
and υmin denote the maximal and minimum speeds that the
thief can move, respectively. The goal is to find a tour of
the maximal profit.

Let yik ∈ {0, 1} be a binary variable equal to one when
the item k is picked up in the city i. In addition, let Wi

denote the total weight of collected items when the thief
leaves the city i. Therefore, the objective function for a
tour Π = (x1, . . . , xn), xi ∈ N and a packing plan P =
(y21, . . . , ynmi) takes the following form:

Z(Π, P) =

n∑
i=1

mi∑
k=1

pikyik

−R

(
dxnx1

υmax − νWxn

+

n−1∑
i=1

dxixi+1

υmax − νWxi

)

where ν = υmax−υmin
W

is a constant value. The minuend is
the sum over all packed items’ profits and the subtrahend is
the amount that the thief pays for the knapsack’s rent equal
to the total traveling time along Π multiplied by R.

A numeric example of the TTP problem is provided via
the graph given in Figure 1. Each node but the first has an
assigned set of items, e.g. node 2 is associated with item
I21 of profit p21 = 20 and weight w21 = 2, and with item
I22 of profit p22 = 30 and weight w22 = 3. Let’s assume
that the maximum weight W = 3, the renting rate R =
1 and υmax and υmin are set as 1 and 0.1, respectively.
Then the optimum objective value Z(Π, P) = 50 for Π =
(1, 2, 4, 3) and P = (0, 0, 0, 1, 1, 0). Specifically, the thief
collects no items traveling from city 1 to city 3 via cities 2
and 4. Therefore, this part of the tour costs 15. Only in
the city 3 items I32 and I33 are picked up, that gives total
profit of 80. However, on the way from city 3 back to city 1
the thief’s knapsack has weight of 2. In fact, it reduces the
speed and results in increased cost of 15. Consequently, the
final objective value is Z(Π, P) = 80− 15− 15 = 50.

Figure 1: Illustrative Example

3. BENCHMARK SET
Herein we propose a new benchmark of instances in order

to promote a correct comparison among different approaches
to the TTP problem. It is mainly motivated by a desire to
(1) have a combination of well-known test suites for each
sub-problem, and (2) a correct adjustment of constant vari-
ables involved in the objective function. Specifically, from
an experimental point of view, it is important to keep a

balance between two components of the problem. It means
that the near-optimal solution of one sub-problem must not
dominate over the optimal solution of another sub-problem.
Therefore, solving the shortest tour problem to optimality
must not make the knapsack packing aspect negligible. Vice
versa, the most profitable loading plan must not reduce the
importance of a shorter tour.

To handle this task the most known set of test instances
for each sub-problem was considered. The TSP library col-
lected by Reinelt [2, 9] is to be the main departure point
when one is going to evaluate his/her approach’s perfor-
mance on the TSP. It consists of over 100 instances with
sizes ranging from 14 to 85,900 cities and is derived from
industrial applications and geographic problems. Since its
creation in 1990, an extensive investigation has been carried
out and now all the symmetric TSP library instances are
solved to optimality.

The knapsack problem was thoroughly studied by
Martello, Pisinger and Toth [8]. Their work deals with the
0-1 knapsack and proposes the exact dynamic programming
algorithm called COMBO to tackle it. Furthermore, they pro-
pose and investigate a test benchmark wealthy in ways to
generate KP data. COMBO adopts a set of valid inequalities
along with a new initial core problem that allows it to solve
instances with up to 10,000 items in less than 0.2 seconds.
The authors generated fifteen different types of KP vary-
ing weights and profits of items to investigate which aspects
result in challenges for KP solvers in general and for their
approach in particular. From their work, we pick several of
the hardest cases and combine them with instances of the
TSP library.

To generate our TTP instances we first consider the in-
stances of the TSP library. First, we select the 81 instances
that possess “EUC 2D” or “CEIL 2D” marks for their edge
weight type tag. Despite the mark derived from the TSP li-
brary we assume that over the entire TTP benchmark suite
all distances between the cities are integer values rounded
up to the next integer. The resulting set has instances with
the number of cities ranging from 51 and up to 85,900.

For each TSP instance, we generate a knapsack compo-
nent using the code from [1]. Three ways to generate a KP
data are selected respecting the evaluated hardness for solv-
ing and the recommendations reported in [8]. Each way
results in a unique knapsack type. In the following, we
distinguish between uncorrelated, uncorrelated with similar
weights and bounded strongly correlated types.

For the uncorrelated type a weight wik and a profit pik
of item k are uniformly distributed random integer values in[
1, 103

]
. Loose correlation or no correlation among the profit

and weight of each item makes an instance easy to solve
to optimality even for large-sized problems [8]. However,
this may be not straightforward for the TTP problem and
a behavior of algorithms stays of a particular interest for
research.

Addressing the uncorrelated type with similar weights we
employ for wik and pik integer values uniformly distributed
within

[
103, 103 + 10

]
and

[
1, 103

]
respectively. Producing

items with similar weights complicates KP by increasing the
core problem’s size. It has already been shown that this
type of 0-1 knapsack instances is more time consuming to
be solved [8]. Consequently, having all items of almost equal
weight but definitely different profit may require an addi-

tional effort to develop an algorithm which intelligently deal
with this aspect in TTP, too.

Oppositely to the uncorrelated case, strongly correlated
problems are typically very difficult. The bounded strongly
correlated type adopts the bounded knapsack problem where
multiple copies of an item are allowed to be selected com-
plying with a maximum number restriction. As previously
shown, its transformation to a 0-1 knapsack problem com-
plicates the problem [8]. It significantly increases the com-
putation time while it forces the cardinality constraints in
COMBO to loose their effect. This indicates that specialized
algorithms for the bounded version should be developed. To
set up the initial bounded instance, we choose the inter-
val

[
1, 103

]
for an item’s integer weight wik uniformly dis-

tributed generation and we set pik based on this as wik+100.
To diversify the size of the knapsack component, we distin-

guish between four values of an item factor F ∈ {1, 3, 5, 10}.
In our benchmarks, F describes how many items per city
are available. We use the same number of items for every
city setting F = mi for any i ∈ N , i ≥ 2. As assumed in
the problem statement, the first city does not contain any
item. Therefore, for a number of n cities we produce totally
F × (n− 1) items.

Next, for each TSP library instance, knapsack type and
item factor we generate 10 instances. Each instance falls
into its capacity category C ∈ {1, . . . , 10} according to
the instance number. The capacity category value C re-
sults in a unique maximum Knapsack weight value of W =(
C
11

) n∑
i=1

F∑
k=1

wik. Effectively, C is the factor by which the

capacity of the smallest knapsack (in the set of 10) is mul-
tiplied.

As noted above, we try to manage the potential objective
value by searching for a balance between TSP and KP com-
ponents through the constant variables. Specifically, we set
the same values for υmax = 1 and υmin = 0.1 over all in-
stances. However, each instance gets its individual value R

defined as R =
Z(POPT)

TIME(Πlinkern,POPT)
, where Z

(
POPT

)
cor-

responds to the optimal profit of the KP component and
TIME

(
Πlinkern, POPT

)
denotes the total traveling time

along the near-optimal TSP tour Πlinkern obtained via the
Chained Lin-Kernighan heuristic [3]1 while picking the items
according to the optimal KP component’s solution POPT .
Such selection of R guarantees the existence of at least one
TTP solution with zero objective value.

Consequently, our final benchmark set based on 81 TSP
instances, three KP types, four item factors and ten capacity
categories contains 81 × 3 × 4 × 10 = 9, 720 different TTP
instances in total.2

4. HEURISTIC ALGORITHMS
We create solutions for TTP instances in two stages. First,

we use the Chained Lin-Kernighan heuristic [3] to quickly
construct a good TSP tour. We do this without considering
the knapsack part of the TTP problem. Once we have this
tour, it remains fixed for the duration of the subsequent
optimization. Second, a heuristic creates a packing plan in

1As available at http://www.tsp.gatech.edu/concorde/
downloads/downloads.htm
2All instances and implementations of the objective function
are available online: (link removed for the review process)

Algorithm 1 Simple Heuristic (SH)

1: Fill the array D with values dxi , xi ∈ {x2, . . . , xn}
2: Calculate the total traveling time t′.
3: for all items Ixik, xi ∈ Π, k ∈Mxi do
4: Calculate txik by using Equation 1
5: Set t′xik := t′ − dxi + txik
6: Set scorexik := pxik −R× txik
7: Set uxik := R× t′ + (pxik −R× t

′
xik

)
8: Create the joint set of items I and sort it in descending

order score values
9: Set the current used capacity variable Wc := 0

10: for all items Ixik ∈ I do
11: if (Wc + wxik < W) and (uxik > 0) then
12: Add the item Ixik to the packing plan P
13: Increase the used capacity variable Wc := Wc +

wxik
14: if (Wc = W) then
15: Exit the loop.
16: Set the resulting objective value

Z∗ := max (Z(Π, P),−R× t′)

order to achieve a good TTP objective value. The rest of the
section presents our constructive and iterative heuristics.

4.1 Constructive Heuristic
This section describes a Simple Heuristic (SH) which con-

structs a solution by processing and picking the items that
maximize the objective value according to a given tour. In
SH, after generating a tour Π = (x1, . . . , xn) for the TSP
problem, a score value is calculated for each item to esti-
mate how good it is according to Π. Let item Ixik be posi-
tioned in city xi ∈ Π. Subsequently, let dxi and txik denote
the total traveling distance and the total traveling time with
Ixik being collected from the city xi to xn and from xn to
the first city x1, respectively. Then the function to calculate
scorexik is as follows:

scorexik = pxik −R× txik

where

txik =
dxi

υmax − νwxik
(1)

Specifically, scorexik is the total profit that the thief gets
if and only if item Ixik is picked during the whole tour Π.

In SH we also use a strategy to eliminate so-called disad-
vantageous items which being taken cannot add any positive
value to the resulting objective value. This strategy utilizes
a fitness value uxik calculated for each item Ixik as follows:

uxik = R× t′ + (pxik −R× t
′
xik)

where t′xik and t′ are the total traveling times over the tour
Π when only item Ixik is picked and when no items at all are
picked (i.e. with maximal possible speed υmax). Therefore,
a negative value of uxik means that Ixik must not be picked
up despite any obtained score value. For a more detailed
explanation, let us assume in the following that uxik ≤ 0
is the case. Let ∆

(
t′xik, t

′) = t′xik − t′ show the differ-
ence between the traveling times when Ixik and no other
item is selected. Then the inequality pxik ≤ R×∆

(
t′xik, t

′)
holds. Subsequently, let I∗ denote an arbitrary non-empty
set of items that fit into the knapsack, while t′I∗ and t′I∗∪Ixik

be the total traveling times over the tour Π when only

Algorithm 2 Random Local Search (RLS)

1: Initialize P ∗ such that no items are packed.
2: repeat until no improvement for X iterations
3: Create P by inverting the packing status of a uni-

formly at random picked item of P ∗.
4: if Z(Π, P) ≥ Z(Π, P ∗) and w(P) ≤W then
5: P ∗ := P

Algorithm 3 (1+1) Evolutionary Algorithm (EA)

1: Initialize P ∗ such that no items are packed.
2: repeat until no improvement for X iterations
3: Create P by inverting the packing status of each item

of P ∗ independently with probability 1/m.
4: if fZ(Π, P) ≥ Z(Π, P ∗) and w(P) ≤W then
5: P ∗ := P

items of I∗ are picked and when items of I∗ along with
item Ixik are chosen, respectively. As the velocity de-
pends linearly on the weight of the knapsack, the inequal-

ity ∆
(
t′xik, t

′) < ∆
(
t′I∗∪Ixik

, t′I∗
)

is satisfied. Therefore,

pxik < R × ∆
(
t′I∗∪Ixik

, t′I∗
)

proves that the preposition

holds for any non-empty set I∗ picked along with the disad-
vantageous item.

Once the computations of the uxik and scorexik values for
every item are finished, the joint set of all items I is sorted
in descending order of the items’ scores. Subsequently, each
item of the joint set is considered one after another starting
from the first element of I. If item Ixik fits into the free ca-
pacity of the knapsack while its fitness value uxik > 0 then
it is taken to the packing plan P . Finally, SH obtains the re-
sulting objective value as Z∗ = max (Z(Π, P),−R× t′) that
corresponds to the best choice between constructed solution
and solution with no selected items (see Algorithm 1).

Let m = |I| denote the total number of items of a TTP
instance. Then the computational complexity of SH for
constructing a packing plan P for a pre-set tour Π is in
O(n + m logm). Specifically, it takes O(n) to compute ele-
ments of array D = {dx2 , . . . , dxn}. Calculation of score and
fitness values is in O(m), while sorting of items and selecting
items are in O(m logm) and O(m), respectively.

4.2 Iterative Heuristics
Our iterative heuristics are a random local search (RLS)

and a simple (1+1) evolutionary algorithm (EA). In stark
contrast to the previously proposed constructive SH, the it-
erative heuristics do not use any domain knowledge whatso-
ever.

The heuristics work as follows. They record the best so-
lution found so far, known as best-so-far. They then re-
peatedly create a single new solution. This solution is then
compared against the current best-so-far and it replaces the
previous best-so-far if the TTP objective value is not worse
and if the knapsack capacity is not violated.

Formal descriptions are given in Algorithm 2 and 3, where
P is a packing plan, m is the total number of items, Z(Π, P)
is the TTP objective value (assuming the given and fixed
tour Π), and w(P) is the total weight of all packed items.

5. EXPERIMENTS

The experimental setup is the follows. We run our heuris-
tic algorithms from Section 4 on all 9,720 instances. The
iterative heuristics are stopped when no improvement has
been made for 10,000 iterations, or when a total runtime of
10 minutes for a run is reached. Due to their randomized na-
ture, we perform 30 independent repetitions of the iterative
heuristics on each instance.

First, to begin with our analyses, we show in Figure 2
a decision tree that is based on all gathered experimental
data. It is generated with Matlab’s Statistics Toolbox and
we pruned the tree in order to get a compact tree that still
contains valuable information to a practitioner. We observe
the following:

• At first sight, it appears that the number of cities plays
no role in this particular decision tree. However, this
information is implicitly used via the number of items
and the knapsack capacity category.

• In general, the evolutionary algorithm EA dominates
small TTP instances with few cities and few items, as
many of the leftmost leaves in the decision tree are
labelled EA. It performs better than RLS since it can
escape local optima.

• The random local search RLS performs well across
mid-sized and several larger TTP instances. This is
due to the fact that EA effectively wastes evaluations,
as the packing status change of an item is not enforced.
Consequently, RLS is more effective in reaching a lo-
cal optima, as a change in the newly generated packing
plan is enforced.

• The deterministic constructive heuristic SH can be
found at the right-most leaf nodes of the decision tree.
It is well suited for very large instances with many
items. The reason is that SH quickly constructs a de-
cent packing plan, whereas RLS and EA start from
the empty packing plan and then cannot reach SH’s
performance within 10 minutes.

We show a representative excerpt of the results in Fig-
ure 3.3 Note that we rescale the achieved objectives values
into the range [0, 1]: the objective value of packing no items
at all is equivalent to 0, and the best to 1. We do this as
the objective values are typically (but not always) negative.
In addition, in some cases the worst value is negative and
the best value positive, which makes the value ranges not
suitable for a number of other visualisation techniques. The
plots largely confirm our observations from the decision tree
in Figure 2:

• RLS and EA perform best for a very wide range of
TTP configurations.

• SH often is the best performing approach for very large
TTP instances.

In addition, we notice the following interesting cases:

• For SH, the configuration of the TTP instance (what
kind of items, how many, size of knapsack) seems

3The full set of results is available online: (link removed for
the review process, however, all plots and tables are available
as GECCO “Supplementary Material”)

RLS

EA

RLS EA SH RLS RLS

EA RLS EA EA RLS RLS RLS SH

RLS RLS

EA RLS EA RLS

n < 19995

T < 1.5 n < 126780

n < 637.5 n < 4941 C < 3.5

n < 7164 n < 224.5 C < 3.5 T < 2.5 T < 2.5

C < 2.5 C < 3.5 C < 3.5 C < 3.5 C < 6.5

n < 1184.5 n < 1184.5

C < 7.5 T < 2.5

 n >= 19995

 T >= 1.5 n >= 126780

 n >= 637.5 n >= 4941 C >= 3.5

 n >= 7164 n >= 224.5 C >= 3.5 T >= 2.5 T >= 2.5

 C >= 2.5 C >= 3.5 C >= 3.5 C >= 3.5 C >= 6.5

 n >= 1184.5 n >= 1184.5

 C >= 7.5 T >= 2.5

Figure 2: Decision tree based on all experimental results. n refers to the number of items, C ∈ {1, . . . , 10}
to the capacity category, and T to the knapsack type. The values of T ∈ {1, 2, 3} correspond to
{bounded−strongly−corr , uncorr−similar−weights, uncorr}. Consequently, T < 2.5 is equivalent to T 6= uncorr .

10
0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

in
 m

ill
is

e
co

n
d

s)

KP type: uncorr, Capacity category: 2, Item factor: 3

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

Figure 4: Subset of the results. Shown are the run-
times of the algorithms. The identifiers on the x-axis
refer to the name of the underlying TSP instance.

to have a significant influence. In many cases, the
achieved objective scores relative to RLS and EA are
relatively stable. For example in the case of “uncorre-
lated item weight, C = 10, F = 3” (top right corner),
all relative performances are at around 0.8. The rea-
son for this behaviour that is relative to the starting
point and relative to the performance of the iterative
approaches is currently unclear.

• Compared to EA, RLS extends its good performance
into larger TTP instances as it is more effective in
reaching a local optimum. This can be seen in the
plots as in most cases the EA marks decent before the
RLS marks.

• The standard deviations for the iterative heuristics on
instances with more than 5,000 cities are often quite
significant. Consequently, we think that there is a
lot of room left for smarter algorithms to explore the
search space more efficiently.

As an example, let us have a closer look at the instances

of the type “uncorrelated item weights, knapsack category
2, item factor 3” (top left plot in Figure 3). The underlying
objective values are listed in Table 1 and the runtimes are
shown in Figure 4. Note that we consider most of these
to be “smaller” TTP instances.4 PackNone refers to the
solution where no item is packed along the tour from the
Chained Lin-Kernighan algorithm; it serves as our first lower
bound. SH is deterministic and we therefore do not report
any standard deviations. Some observations are:

• SH computes packing plans extremely quickly. It in-
creases to just over 1s for the largest instance. On the
other hand, the iterative RLS and EA hit the runtime
limit of 10 minutes from about 6,000 cities onwards.

• It can be seen that EA’s runtime is typically longer
than that of RLS. The reasons are that, at times, ei-
ther EA wastes time on re-evaluating solutions, or EA
escapes local optima and subsequently climbs up to
other optima again.

• On average, EA performs slightly better than RLS on
small instances (up to 3,000-5,000 cities). RLS then
clearly outperforms the other approaches on medium
and larger instances. SH performs best in the case of
the very largest city number.

• Iterative heuristics regularly pack items during an op-
timization run that are later unpacked again. The rea-
son is that packing a heavy and invaluable item can in-
crease the objective score temporarily during the opti-
mization. However, as this slows down the thief, it can
later become beneficial to deselect this item again due
to the trade-off in knapsack renting cost vs. knapsack
profit.

• The objective scores for the randomized algorithms
vary hardly when the number of cities is less than

4Based on our observations and chosen ranges, we argue
that for this F -value up to 3,000-5,000 cities result in small
TTP instances.

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e
KP type: uncorr, Capacity category: 2, Item factor: 3

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: uncorr, Capacity category: 6, Item factor: 3

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: uncorr, Capacity category: 10, Item factor: 3

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: uncorr, Capacity category: 2, Item factor: 10

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: uncorr, Capacity category: 6, Item factor: 10

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: uncorr, Capacity category: 10, Item factor: 10

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: uncorr−similar−weights, Capacity category: 2, Item factor: 3

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: uncorr−similar−weights, Capacity category: 6, Item factor: 3

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: uncorr−similar−weights, Capacity category: 10, Item factor: 3

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: uncorr−similar−weights, Capacity category: 2, Item factor: 10

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: uncorr−similar−weights, Capacity category: 6, Item factor: 10

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: uncorr−similar−weights, Capacity category: 10, Item factor: 10

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: bounded−strongly−corr, Capacity category: 2, Item factor: 3

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: bounded−strongly−corr, Capacity category: 6, Item factor: 3

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: bounded−strongly−corr, Capacity category: 10, Item factor: 3

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: bounded−strongly−corr, Capacity category: 2, Item factor: 10

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 o

b
je

ct
iv

e
 v

a
lu

e

KP type: bounded−strongly−corr, Capacity category: 6, Item factor: 10

ei
l5

1
ei

l7
6

kr
oA

10
0
u1

59

ts
22

5
a2

80
u5

74
u7

24

ds
j1

00
0

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fn
l4

46
1

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pl
a3

38
10

pl
a8

59
00

SH

RLS

EA

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

KP type: bounded−strongly−corr, Capacity category: 10, Item factor: 10

eil
51

eil
76

kro
A10

0
u1

59
ts2

25
a2

80
u5

74
u7

24

ds
j10

00

rl1
30

4

fl1
57

7

d2
10

3

pc
b3

03
8

fnl
44

61

rl5
93

4

rl1
18

49

d1
51

12

d1
85

12

pla
33

81
0

pla
85

90
0

SH
RLS
EA

Figure 3: Subset of the results. Shown are the rescaled performances of our heuristics on a wide range of
different instances. The identifiers on the x-axis refer to the name of the underlying TSP instance. Additional
instance details are described in the plot titles. For example, the knapsack type is (f.t.t.b. in groups of six):
uncorrelated, uncorrelated with similar weights, bounded strongly correlated.

Algorithm eil51 eil76 kroA100 u159 ts225 a280 u574 u724 dsj1000 rl1304

RLS (mean) 8.21e3 1.16e4 1.93e4 4.03e4 5.70e4 6.32e4 1.36e5 1.67e5 1.11e5 3.12e5

RLS (std) 1.58e1 2.68e1 1.20e1 1.42e1 1.41e1 1.11e1 3.10 3.12 4.10e−1 6.23e1

EA (mean) 8.22e3 1.16e4 1.93e4 4.03e4 5.70e4 6.32e4 1.36e5 1.67e5 1.11e5 3.12e5

EA (std) 1.38e1 2.49e1 9.68 1.74e1 1.01e1 1.12e1 4.42 2.72 2.20e1 3.30e1

SH −3.03e3 −3.65e3 −4.83e3 −5.37e3 −7.49e3 −2.05e4 −1.99e4 −5.16e4 −1.90e5 −9.69e4

PackNone −1.46e4 −2.35e4 −2.58e4 −4.04e4 −5.57e4 −7.37e4 −1.46e5 −1.92e5 −3.75e5 −3.62e5

Algorithm fl1577 d2103 pcb3038 fnl4461 rl5934 rl11849 d15112 d18512 pla33810 pla85900

RLS (mean) 3.57e5 4.80e5 6.50e5 9.08e5 1.44e6 2.69e6 3.44e6 3.53e6 2.02e6 −1.40e7

RLS (std) 1.66e2 1.55e2 2.21e2 1.99e2 5.11e2 1.51e3 4.96e4 1.82e5 4.61e5 6.18e5

EA (mean) 3.57e5 4.80e5 6.50e5 9.08e5 1.43e6 2.29e6 2.18e6 1.37e6 −2.16e6 −1.80e7

EA (std) 1.26e1 8.92e1 5.11e1 2.03e2 1.36e4 3.46e5 6.01e5 1.88e5 8.52e5 1.91e5

SH −1.30e5 −2.17e5 −2.94e5 −4.23e5 −3.97e5 −1.07e6 −1.23e6 −1.74e6 −3.35e6 −7.49e6

PackNone −4.53e5 −5.78e5 −9.09e5 −1.36e6 −1.67e6 −3.45e6 −4.17e6 −5.72e6 −9.28e6 −2.43e7

Table 1: Plot data for the instances “uncorrelated item weights, knapsack category 2, item factor 3” (see
top left plot of Figure 3). Shown are the average objective values achieved and the corresponding standard
deviations; the highest mean per instance is highlighted. The number of cities increases from left to right.

5,000. Even though different local optima are found,
we conjecture that these local optima are all very close
to the global optima for the chosen TSP tour.

• Interestingly, the objective values for one instance are
(roughly) within one order of magnitude. This means
that the packing plans have a significant influence on
the TTP objective score, even though the TSP sub-
problem was solved almost to optimality by the used
Chained Lin-Kernighan heuristic. It remains unknown
by how much the achieved objective scores can be im-
proved.

6. CONCLUSIONS
In this paper, we present a set of benchmarks for the trav-

elling thief problem (TTP). The instances are systematically
created to cover a wide range of features, and they are based
on well-known instances for the travelling salesperson prob-
lem and for the knapsack problem. Our goal is to enable
researches to investigate the hardness the two classical sub-
problems’ combination. Even though we are confident that
smaller instances can soon be optimally solved, we conjec-
ture that the larger ones will remain unsolved for the years
to come.

As a starting point, we provide a first set of structurally
very different algorithms to effectively solve the problems.
Our experiments show that a good and quick construction
of a starting point is as important as an iterative search that
can escape local optima.

In the future, we plan to analyze the difficulty of the
TTP through rigorous theoretical and experimental inves-
tigations. We plan to identify features that make instances
easy or difficult to solve. The results can then be used to
create problem-specific algorithms that are based on actual
properties of the problem.

Lastly, our instances can form the basis for many inter-
pretations of the original TTP, such as, TTP with multiple
thiefs, TTP without a restriction to visit every city, TTP
with the option to sell items at specific locations, and so on.

References
[1] Advanced generator for 0-1 Knapsack Problems. See

http://www.diku.dk/~pisinger/codes.html.

[2] TSP Test Data. See http://comopt.ifi.

uni-heidelberg.de/software/TSPLIB95/index.html.

[3] D. Applegate, W. J. Cook, and A. Rohe. Chained lin-
kernighan for large traveling salesman problems. IN-
FORMS Journal on Computing, 15:82–92, 2003.

[4] M. R. Bonyadi, Z. Michalewicz, and L. Barone. The
travelling thief problem: The first step in the transition
from theoretical problems to realistic problems. In IEEE
Congress on Evolutionary Computation, pp. 1037–1044.
IEEE, 2013.

[5] I. Kara, B. Y. Kara, and M. K. Yetis. Energy minimiz-
ing vehicle routing problem. In A. Dress, Y. Xu, and
B. Zhu, editors, Combinatorial Optimization and Appli-
cations, Vol. 4616 of Lecture Notes in Computer Science,
pp. 62–71. Springer Berlin Heidelberg, 2007.

[6] I. Kucukoglu, S. Ene, A. Aksoy, and N. Ozturk. Green
capacitated vehicle routing problem fuel consumption
optimization model. Computational Engineering Re-
search, 3:16–23.

[7] C. Lin, K. Choy, G. Ho, S. Chung, and H. Lam. Survey
of green vehicle routing problem: Past and future trends.
Expert Systems with Applications, 41:1118 – 1138, 2014.

[8] S. Martello, D. Pisinger, and P. Toth. Dynamic program-
ming and strong bounds for the 0-1 knapsack problem.
Manage. Sci., 45:414–424, 1999.

[9] G. Reinelt. TSPLIB - A Traveling Salesman Problem
Library. ORSA Journal on Computing, 3:376–384, 1991.

