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Abstract. Redistribution of VCG payments has been mostly studied in
the context of resource allocation. This paper focuses on another fun-
damental model—the public project problem. In this scenario, the VCG
mechanism collects in payments up to n−1

n
of the total value of the

agents. This collected revenue represents a loss of social welfare. Given
this, we study how to redistribute most of the VCG revenue back to the
agents. Our first result is a bound on the best possible efficiency ratio,
which we conjecture to be tight based on numerical simulations. Further-
more, the upper bound is confirmed on the case with 3 agents, for which
we derive an optimal redistribution function. For more than 3 agents,
we turn to heuristic solutions and propose a new approach to designing
redistribution mechanisms.

1 Introduction

Public good or public project problems refer to situations where a group of agents
need to decide whether or not to undertake a project or to procure a good. The
project is “public” in the sense that everyone will enjoy the benefits of it. A
typical example is a community deciding to build a bridge. If the bridge is built,
everyone will be able to cross it. The challenge in deciding whether or not the
bridge should be built, lies in learning how much the people need the bridge.
Each person has a value for the bridge, but this value is known to him alone.
The efficient outcome is to build the bridge if and only if the total value exceeds
the cost of the bridge. Public project problems have been studied extensively in
both economics and computer science literature (see, e.g., [9–11, 7, 1]).

In this context, we are interested in mechanisms that satisfy dominant-
strategy incentive compatibility (DSIC), and maximize social welfare. The social
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welfare is measured as the sum of the utilities of the agents. Specifically, any pay-
ments collected from the agents reduce social welfare. Some payments however
are required by DSIC. The objective of social welfare is natural in public good
provision problems: after all, the benefits are to be enjoyed by all non-exclusively,
and public projects are normally undertaken in the interest of the participants.
This is in contrast to private goods that are often sold to generate profit for
the auctioneer (there is no auctioneer or residual claimant in the public good
problems we consider).

Our focus here is on mechanisms that are efficient and weakly budget-balanced
(i.e., do not require an external subsidy). The latter restriction is necessary, as
otherwise one can achieve infinite social welfare by providing an infinite subsidy
to the agents. To this end, mechanisms from the Groves class align the incentives
of the agents with the objective of choosing the efficient outcome. Specifically,
under a Groves mechanism, each agent prefers reporting her value truthfully
regardless of the reports of the other agents. In fact, Groves mechanisms are the
only mechanisms that are dominant-strategy incentive compatible (or, truth-
ful) and efficient for public project problems [8]. The mechanisms within the
Groves class differ in the amount of payment collected from the agents. An easy
way to describe this class of mechanisms is through the most prominent Groves
mechanism—the VCG mechanism: payment made by agent i under any Groves
mechanism can be represented as the payment collected by the VCG mechanism
minus a redistribution hi(v−i), which is a function of other agents’ values. For
efficient mechanisms without an auctioneer, the objective of maximizing social
welfare is equivalent to the objective of minimizing the revenue collected. Under
this objective, the VCG mechanism has a very poor performance (i.e., collects a
lot of revenue) as we detail next. Therefore, the question we study in this paper
is how to design the redistribution functions that maximize social welfare.

We do not assume any prior on agent valuations and we evaluate mechanisms
based on the worst-case performance over all possible value profiles. Following
previous work on redistribution in resource allocation settings (e.g., [12, 6]), we
make the performance metric unit free by measuring the performance as a per-
centage of the value of the efficient outcome achieved. We will refer to this metric
as the ratio. Since there are no external subsidies, the value of the efficient out-
come is the highest welfare that can be achieved, had all values been publicly
known. Thus, the highest possible ratio is one.

The ratio of the VCG mechanism is 1
n , where n is the number of agents [7].

In this paper, we derive an upper bound on the optimal ratio. Unlike the ratio of
VCG, which decreases with n, the upper bound increases with n. We conjecture
the bound to be tight based on numerical simulations. Further, for the case
of n = 3, we find an optimal mechanism which guarantees the upper bound
ratio of 2

3 . Finally, we propose a general heuristic-based approach for deriving
redistribution mechanisms. Using a simple sampling-based heuristic, we obtain
a mechanism whose ratio is higher than that of VCG for n = 4, 5, 6.

Our work is related to, and builds upon, some recent research on redistri-
bution mechanisms. The public good model and, in particular, the valuation



function of the agents are the same as in [7]. There, non-efficient but strongly
budget-balanced mechanisms are considered. The authors discuss a randomized
allocation function that guarantees a high expected ratio, while restricting the
payments to add up to zero. In contrast, here we study deterministic mecha-
nisms optimizing only over the payment functions, while the allocation rule is
fixed to choose the efficient allocation. Our upper bound results suggest that full
social welfare may be achievable asymptotically without resorting to randomized
mechanisms.

Other work in various allocation settings has studied the problem of find-
ing payments for Groves mechanisms that are optimal in terms of social wel-
fare. In particular, Moulin [12] and Guo and Conitzer [6] simultaneously derived
the optimal redistribution for allocating identical items to agents with unit de-
mand. The results were further extended to multi-unit demand in [6]. An optimal
Groves mechanism for allocating heterogeneous items was derived in [5]. Gen-
eral techniques have also been proposed for optimizing payments according to
the mechanism designer’s objectives, for single-parameter and multi-parameter
domains [13, 4]. In fact, we make use of a heuristic technique from [4] to derive
an optimal solution for n = 3.

There are also other redistribution mechanisms aiming to minimize payments
that can be applied to the public good setting. Bailey [2] proposed a redistribu-
tion mechanism for public good problems, but under the worst-case analysis it
is not weakly budget-balanced. While the mechanism proposed by Cavallo [3] is
efficient and weakly budget-balanced, it cannot redistribute any VCG revenue
in public good problems [7]. In this paper, we propose weakly budget-balanced
mechanisms that do redistribute some of the VCG revenue, which increases social
welfare without requiring external subsidy.

The rest of the paper is organized as follows. We present the model in Sec-
tion 2. A conjecture about the optimal ratio is derived analytically in Section 3.
The optimal solution to the case with n = 3 is presented in Section 4. We then
propose a heuristic-based approach for deriving redistribution mechanisms and
analyze the resulting mechanism’s performance in Section 5. Section 6 relaxes
the assumption that allowed us to restrict the value space while deriving prior
results. We conclude and discuss directions for future work in Section 7.

2 The Model

There are n agents deciding whether or not to undertake a project, such as
building a bridge. The cost of the bridge is C, which is commonly known. Each
agent has a private type θi ≥ 0 denoting how much he will benefit if the bridge
is built. We will assume θi ∈ [0, C], and will demonstrate in Section 6 that it is
without loss of generality to consider types that are bounded from above by C.
Also, without loss of generality, we can assign labels to the agents so that agent
1 is the agent with the highest value, agent 2—with the second highest, etc.
Thus, C ≥ θ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0, and we denote the space of agent values by
Θ = {θ ∈ [0, C]n | C ≥ θ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0}. A mechanism for this problem



consists of the outcome and the payment functions. The outcome is denoted by
k(θ) ∈ {0, 1} with k(θ) = 1 if the bridge is built, and ti(θ) ∈ R are payments
made by each agent i. We fix k to be the efficient rule: k(θ) = 1 iff

∑
i θi > C.

The value of each agent depends on his type and whether or not the bridge
is built. Following [7], we define the value of the efficient outcome as follows:

s(θ) = max(
∑
i

θi, C)

This definition corresponds to the interpretation that if the bridge is not built,
the agents get to distribute C among themselves (or, equivalently, they do not
spend C on the bridge). This is reflected in the valuation function, which lets
each agent keep C

n if the bridge is not built:

vi(k(θ), θi) =

{
θi if k(θ) = 1
C
n otherwise

Utility of agent i is quasi-linear in the payment ti ∈ R collected from him:

ui(θ) = vi(k(θ), θi)− ti(θ)

Without loss of generality, for efficient and dominant-strategy incentive compat-
ible mechanisms, we focus on the Groves class. Furthermore, we focus on Groves
mechanisms that are anonymous, which, for our objective of maximizing worst-
case performance (see Equations 2 and 4), is without loss of generality [1]. These
mechanisms implement the efficient outcome, k(θ) = 1 iff

∑
i θi > C. Note that∑

i vi(k(θ), θi) = s(θ) for the efficient k(θ). DSIC is achieved by selecting ti that
aligns an agent’s utility with the goal of selecting the efficient outcome:

ti(θ) = vi(k(θ), θi)− s(θ) + h(θ−i)

which yields

ui(θ) = s(θ)− h(θ−i) (1)

where h : W → R is an arbitrary function of the values of the agents other than
the agent whose redistribution (or rather, rebate) is computed.4 Here, domain
W = {w ∈ [0, C]n−1 | C ≥ w1 ≥ w2 ≥ . . . ≥ wn−1 ≥ 0} of rebate function h
(which we will also term the rebate space) refers to the space of values of n− 1
agents (other than i). Importantly, the second term of utility, h(θ−i), character-
izes all mechanisms within the Groves class. Our goal is to choose function h
that maximizes social welfare subject to the constraint of weak budget balance.

Weak budget balance constraint means that the sum of payments made by
the agents must be non-negative:∑
i

ti(θ) =
∑
i

(vi(k(θ), θi)− s(θ) + h(θ−i)) =
∑
i

h(θ−i)− (n− 1)s(θ) ≥ 0 ∀θ

4 Under Equation 1, h is the function that determines how much of the value of the
efficient outcome the agent should pay back. This is hardly a redistribution/rebate,
but we keep this terminology to be consistent with prior literature.



Next, we describe how the performance of a mechanism is measured. A mecha-
nism guarantees the ratio r if the following holds:∑

i

ui(θ) = ns(θ)−
∑
i

h(θ−i) ≥ rs(θ) ∀θ

Stated formally, we seek to solve the following optimization problem:

max
h:W→R,r∈R

r (2)∑
i

h(θ−i) ≥ (n− 1)s(θ) ∀ θ ∈ Θ (3)

ns(θ)−
∑
i

h(θ−i) ≥ rs(θ) ∀ θ ∈ Θ (4)

In words, we are looking for a mechanism with the highest ratio (Equations 2
and 4) that is weakly budget-balanced (Equation 3). Note that both constraints
can be written in one line as

(n− r)s(θ) ≥
∑
i

h(θ−i) ≥ (n− 1)s(θ) ∀θ (5)

3 Optimal Ratio (conjecture)

In this section, we describe an interesting structure of the optimization problem
(2)-(4). The problem has an infinite number of constraints, but our numerical
results showed that it is sufficient to consider only n + 1 constraints to obtain
an upper bound on the ratio, such that this ratio does not change when we
add additional constraints (of course, we were only able to check finite sets of
constraints). This provides numerical evidence that the upper bound is tight.
Furthermore, we derive this upper bound in closed form, which we show in the
rest of this section.

First, we discuss how the ratio can be upper bounded computationally using
the technique RestrictedProblem from [4]. The idea is to solve the problem
while only enforcing a finite subset of constraints. The solution may violate some
of the excluded constraints, thus providing an upper bound on the objective value
(we are considering a maximization problem). In more detail, the optimization
problem (2)-(4) has an infinite number of constraints (one for each θ ∈ Θ) and
optimizes over functions (equivalently, there is an infinite number of variables—a
rebate h(w) for each w ∈W ). To make the problem more manageable, we limit
the space of value profiles to a finite subset Θ̂ ⊂ Θ. Notice that once the set of
profiles is finite, the set of rebates that appear in the constraints is also finite. It
can be obtained by “projecting” each value profile into n profiles by removing
one of the elements while keeping the rest. For example, when we restrict the
value space to the set of profiles Θ̂ = {(a, b, c), (d, e, f)}, the relevant rebates
are defined for each profile in Ŵ = {(b, c), (a, c), (a, b),(e, f),(d, f),(d, e)}. The
constraints (3) and (4) appear once for each value profile, and the number of



variables is |Ŵ |. With these restrictions, the optimization problem in (2)-(4)
becomes a linear program, which we implemented and solved using CPLEX.

Clearly, the choice of the enforced constraints as governed by Θ̂ determines
the quality of the upper bound. Adding more constraints can only improve the
bound. Interestingly, we find that considering only n + 1 “important” profiles
gave the best upper bound we could find among all sets of Θ̂ that we tried.
In more detail, for a given n, we obtained the profiles Θ̂ by discretizing the
space of values an agent may have. For example, discretizing into z + 1 possible
values we get θi ∈ {j Cz }

z
j=0. Without loss of generality we set C = 1, and focus

on θi ∈ { jz}
z
j=0. Looking deeper into the patterns, we observed an interesting

structure, that let us characterize the upper bound analytically.
The best upper bound we observed numerically across n was obtained when

solving the restricted problem with the following n + 1 value profiles: the zero

profile and the profiles (
1

b
, . . . ,

1

b︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) where b is the integer part of n
2 and

1 ≤ k ≤ n. For example, for n = 5 we have b = 2, and the profiles (0, 0, 0, 0, 0),
( 1
2 , 0, 0, 0, 0), . . . , ( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ). We refer to these n+1 profiles as important pro-

files. Next we provide an optimal solution to the restricted problem analytically.

Theorem 1. No mechanism can achieve a ratio above r.

r =1−

2 +
2(n

2
!)2

n

n−4
4∑
j=0

(3n− 4j)

(2j)!(n− 2j)!

−1

n = 4, 8, 12, . . . (6)

r =1−

2 +
2(n

2
!)2

n

n−2
4∑
j=0

(3n− 4j − 2)

(2j + 1)!(n− 2j − 1)!

−1

n = 6, 10, 14, . . . (7)

r =1−

n(n−1
2

!)2

n− 1

n−1
4∑
j=0

(n+ 4j − 1)

(2j)!(n− 2j)!

−1

n = 5, 9, 13, . . . (8)

r =1−

n(n−1
2

!)2

n− 1

n−3
4∑
j=0

(n+ 4j + 1)

(2j + 1)!(n− 2j − 1)!

−1

n = 3, 7, 11, . . . (9)

Proof. The proof is available in the full version of the paper. ut

Considering much larger sets of value profiles never improved the bound. This
leads us to believe that the bound is tight. Furthermore, performing sensitivity
analysis revealed that only the constraints used to derive the bound were tight in
optimal solutions to restricted problems that included supersets of the important
profiles. If the ratio is indeed tight, then we also have optimal rebates for the
n rebate profiles used in deriving the bound: these values are unique, and thus,
they cannot change in a solution that achieves the bound.

Observing the behavior of this upper bound (see Figure 1), we see that it
approaches 1 as the number of agents increases. Thus, if this bound on the ratio
is tight, then an optimal mechanism for the public project problem will have a



loss of social welfare approaching zero with additional agents. This is in contrast
to the VCG mechanism, which has an overall social welfare of 1

n that approaches
zero as the number of agents increase [7].

10−3
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10−1

100

100 101 102 103 104 105 106

L
o
ss

Agents

Fig. 1. The loss, 1− r, approaches zero as the number of agents increases.

4 Optimal Redistribution for n = 3

For the case of n = 3, we obtain an optimal redistribution function. It was
derived using techniques described in [4]. We provide the details next.

The upper bound linear program described in Section 3 can be modified to
produce a heuristic redistribution function using another technique from [4]. The
idea is to optimize over the space of rebate functions that are piecewise linear
within a specified set of regions. The algorithm LinearRebates described in [4]
takes a subdivision of the rebate space into regions and produces a redistribution
function (and the ratio it achieves) that is optimal over all rebate functions that
are linear within these regions. We use LinearRebates with the subdivision
shown in Figure 2 to obtain a redistribution function. This piecewise linear
function is composed of linear functions for each of the 4 regions

h(w) =
2

3
C +


0 if w ∈ region 0
2
3w1 + 2

3w2 − C
3 if w ∈ region 1

1
3w1 + 2

3w2 − C
6 if w ∈ region 2

7
6w1 + 3

2w2 − C if w ∈ region 3



This function can be represented more compactly. Let s(θ, C) = max(
∑
i θi, C),

denote the value of the efficient outcome for agents defined by value profile θ
and some total cost C. The optimal piecewise linear redistribution function is

h(θ−i) =
5

6
s(θ−i, C) +

2

3
s(θ−i,

C

2
)− 1

3
s(θ1−i,

C

2
)− C

3
(10)

where θ1−i refers to the first element of the vector θ−i.
The ratio obtained by this function is 2

3 . However, 2
3 is also the upper bound

on the ratio as computed in Equation 9. This means that the rebate function we
found is optimal.

We next provide an interpretation of the rebate function, which may help
generalize it to more than 3 agents. In the analytical form used in Equation 10
to express the function, each region boundary of the subdivision is encoded in a
single s(·) term. Note that, without the coefficient, the first term is the rebate
agent i would receive in a normal VCG mechanism. The second term is the VCG
rebate for a project with cost C

2 . The first two terms are piecewise linear, with

boundaries at
∑
j 6=i θj = C and

∑
j 6=i θj = C

2 , respectively. In Figure 2, these are
the region-2-3 boundary and region-0-1 boundary, respectively. Finally, since we
assume agents are sorted, the max-valued agent in the third term is always agent
w1, and this third term is piecewise linear, with a boundary at maxj 6=i θj = C

2 ,
i.e. the region-1-2 boundary.

The next step is to generalize the rebate function above to problems with
more than 3 agents. One way to do this is through finding a subdivision of the
rebate space such that an optimal mechanism for this subdivision improves over
the VCG mechanism. However, generalizing the subdivision in Figure 2 to 3- or
higher dimensional rebate spaces proved elusive, and the question remains open.

5 Heuristic-based Redistribution

In the previous section, we have solved for an optimal mechanism for 3 agents.
However, when there are more agents, we do not yet know how to solve for the
optimal mechanisms. Given this, we propose a new heuristic-based approach for
designing weakly budget-balanced mechanisms with high social welfare. By using
a simple sampling-based heuristic, we derive the sampling-based redistribution
(SBR) mechanism. We show that SBR’s ratio is higher than that of VCG for
n = 4, 5, 6, and conjecture that this is still the case for n > 6. Both the heuristic-
based approach and the SBR mechanism are general enough that they may
potentially be used in settings other than public project problems.

Our approach builds on the Cavallo mechanism [3], which works as follows:
We first run VCG. Besides paying the VCG payment, agent i also receives

1

n
min
θ′i

V CG(θ′i, θ−i)

Here, V CG(θ′i, θ−i) represents the total VCG payment for the profile under
which agent i reports θ′i, and the other agents report θ−i. In words, agent i
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Fig. 2. Subdivision of the space θ−i for 3 agents. The rebate function h(θ−i) =
h(w1, w2) is linear within each of the 4 regions.

receives 1
n times the minimal possible total VCG payment given that the other

agents report θ−i. Since the additional amount agent i receives is independent
of her own type, the Cavallo mechanism is dominant-strategy incentive compat-
ible. Then, since every agent at most receives 1

n times the actual total VCG
payment, the Cavallo mechanism is weakly budget-balanced. In many settings
(e.g., resource allocation with free disposal and public good provision), VCG
is pay-only. In these settings, the additional amount an agent receives is non-
negative. Unfortunately, for our model, the additional amount an agent receives
is always 0.5 That is, the Cavallo mechanism always coincides with VCG.

Our heuristic-based approach works as follows:

– We start with a dominant-strategy incentive-compatible mechanism (e.g.,
VCG). Let P (θ) be the total payment under this mechanism for profile θ.

– Besides paying the payment under the initial mechanism, agent i also receives

1

n
EM(θ−i)

Here, EM(θ−i) represents agent i’s estimation of the total payment under
the initial mechanism, given that the others report θ−i. Agent i’s estimation
should not depend on her own report, which is to maintain dominant-strategy
incentive compatibility. The estimation function EM can be based on any
heuristic. (One naive choice would be EM(θ−i) = P (0, θ−i), which uses the
total payment assuming θi = 0 to be the estimation.) The goal of this step is
to modify the initial mechanism, so that it becomes as close to strong budget

5 minθ′i V CG(θ′i, θ−i) is always 0 [1]: if
∑
j 6=i θj ≥

n−1
n
C, then set θ′i to be C; otherwise,

set θ′i to be 0.



balance as possible. Generally, we cannot achieve perfect budget balance.
That is, even if EM is based on a good heuristic, the mechanism at this
point still incurs some small amount of waste or deficit, depending on the
profile.

– To ensure weak budget balance, we finally collect from every agent 1
n times

the maximum possible deficit, given the heuristic that we use (EM) and given
the other agents’ reports. Formally, we collect from agent i the following
amount:

1

n
max
θ′i

{
∑
j

1

n
EM(θ̂−j)− P (θ̂)}

Here, θ̂ represents the profile (θ′i, θ−i). It should be noted that this step is
based on exactly the idea behind the Cavallo mechanism. Dominant-strategy
incentive compatibility is maintained because the amount we charge from
an agent does not depend on her own report. Furthermore, since the total
amount we charge is never less than the actual deficit, the resulting mecha-
nism is weakly budget-balanced.

We start with VCG, by using a simple sampling-based heuristic, we obtain a
specific mechanism, which we call the sampling-based redistribution (SBR) mech-
anism. In detail, to estimate the total VCG payment given the others’ report
θ−i, we just assume that agent i’s type is drawn uniformly at random from θ−i,
and then use the expected total VCG payment as the estimation. Formally, EM
is defined as follows:

EM(θ−i) =

∑
j 6=i V CG(θj , θ−i)

n− 1

Next, we show how to derive a lower bound on the ratio of SBR. Without loss
of generality, we let C = 1.

The social welfare under SBR is:

s(θ)− V CG(θ) +
∑
i

1

n
EM(θ−i)−

∑
i

1

n
max
θ′i

{
∑
j

1

n
EM(θ̂−j)− V CG(θ̂)}

We have:

−V CG(θ) +
∑
i

1

n
EM(θ−i) ≥ min

θ
{
∑
i

1

n
EM(θ−i)− V CG(θ)}

Also,∑
i

1

n
max
θ′i

{
∑
j

1

n
EM(θ̂−j)−V CG(θ̂)} ≤

∑
i

1

n
max
θ
{
∑
j

1

n
EM(θ−j)−V CG(θ)}

= max
θ
{
∑
i

1

n
EM(θ−i)− V CG(θ)}



We use EMV CG(θ) to denote
∑
i
1
nEM(θ−i) − V CG(θ). The social welfare

under SBR is then at least:

s(θ) + min
θ
EMV CG(θ)−max

θ
EMV CG(θ)

The ratio of SBR is then:

s(θ) + minθ EMV CG(θ)−maxθ EMV CG(θ)

s(θ)

≥ 1 + min
θ
EMV CG(θ)−max

θ
EMV CG(θ)

(We recall that s(θ) is at least C = 1.)
Given n, minθ EMV CG(θ) and maxθ EMV CG(θ) are constants. For small

n, we can numerically solve for their values. Specifically, instead of minimiz-
ing/maximizing over all possible profiles, we only consider profiles where every
agent’s report is an integer multiple of 1/N . Larger values of N generally corre-
spond to more accurate results. We notice that as long as N is a multiple of 2n
(e.g., N = 2n, N = 4n, . . . , N = 100n), we always end up with the same max-
imizing/minimizing profiles. To double check, for every maximizing/minimizing
profile obtained, we generate 10, 000 random vectors, and perturb the profile
along these 10, 000 directions. At the end, no perturbation ever leads to higher
maximum or lower minimum. The results are presented in the following table.
We only considered n ≤ 6 due to the exponential complexity of this approach.

n = 3 n = 4 n = 5 n = 6

maxθ EMV CG(θ) 2/9 1/4 6/25 2/9
arg maxθ EMV CG(θ) (1, 1, 0) (1, 1, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0, 0)

minθ EMV CG(θ) −4/9 −19/48 −2/5 −23/60
arg minθ EMV CG(θ) (1, 0, 0) (5/8, 3/8, 0, 0) (3/5, 2/5, 0, 0, 0) (7/12, 5/12, 0, 0, 0, 0)

1 + minθ EMV CG(θ) 1/3 17/48 9/25 71/180
−maxθ EMV CG(θ) ≈ 0.333333 ≈ 0.354167 ≈ 0.360000 ≈ 0.394444

There are two interesting observations. First, at least for 3 ≤ n ≤ 6, the lower
bound of the ratio of SBR increases as n increases. We conjecture that this trend
remains when n is greater than 6. Second, when n = 3, the lower bound of the
ratio of SBR is the same as VCG’s ratio (1/n), and when 4 ≤ n ≤ 6, the lower
bound of the ratio of SBR is higher than VCG’s ratio.

Finally, it should be noted that even though we do not know how to estimate
the ratio of SBR when n > 6, we do know that SBR is always dominant-strategy
incentive-compatible and weakly budget-balanced. Also, SBR’s payments are
computationally easy to calculate. Therefore, we can always apply it. It is just
that for n > 6, we do not know how well it will perform. We tried to experimen-
tally evaluate the ratio of SBR for larger values of n. For example, for n = 10, we
randomly generated 1, 000, 000 profiles (every agent’s type is drawn from i.i.d.
uniform distribution from 0 to 1). For these profiles, the worst-case ratio of SBR
is around 0.850. However, 1, 000, 000 is hardly a large enough sample size, be-
cause for these same set of profiles, the worst-case ratio of VCG is around 0.827,
which we know is much higher than its actual ratio 1/n = 0.1.



6 Extending the Solution for Values below C to All
Values

So far we have assumed that the agents’ values are bounded from above by
C. In this section, we show that this assumption is without loss of generality.
Basically, if we can solve for a weakly budget-balanced mechanism with ratio r
in the restricted setting where the agents’ values are bounded from above by C,
then we can extend this mechanism to cover all values, and achieve the same
ratio. If a mechanism is optimal in the restricted setting where the agents’ values
are bounded from above by C, then the extended mechanism is also optimal in
the more general setting where the agents’ values are not bounded from above.

Let h be a feasible solution of the original model (the one with the assumption
that the agents’ values are bounded from above by C), and let r be the ratio
achieved by h (0 ≤ r ≤ 1). Then, h together with r must satisfy the following
constraints:

(n− r)s(θ) ≥
∑
i

h(θ−i) ≥ (n− 1)s(θ) ∀ θ ∈ Θ

We introduce the following notation to convert values that are not bounded from
above into values bounded from above by C:

θ̄ = (min{θ1, C}, . . . ,max{θn, C})

The values marked with the “bar” are capped at C. We construct h′ as follows:

h′(θ−i) =
∑
j 6=i

(θj − θ̄j) + h(θ̄−i)

It turns out that h′ corresponds to a mechanism that is weakly budget-balanced
and has ratio r even if we allow the agents’ values to be greater than C. To show
this, we need to prove that h′ together with r satisfy the following:

(n− r)s(θ) ≥
∑
i

h′(θ−i) ≥ (n− 1)s(θ) ∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ . . . ≥ θn ≥ 0}

Since h′ coincides with h when θi are bounded from above by C, we only need
to consider scenarios where θ1 ≥ C. That is, we only need to prove:

(n−r)s(θ) ≥
∑
i

h′(θ−i) ≥ (n−1)s(θ) ∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ C, θ1 ≥ . . . ≥ θn ≥ 0}

Again, since h′ coincides with h when θi are bounded from above by C, we have:

∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ C, θ1 ≥ . . . ≥ θn ≥ 0}

(n− r)s(θ̄) ≥
∑
i

h′(θ̄−i) =
∑
i

h(θ̄−i) ≥ (n− 1)s(θ̄)



Now, if θ1 ≥ C, then s(θ) =
∑
i θi and s(θ̄) =

∑
i θ̄i. That is, s(θ) = s(θ̄) +∑

i(θi − θ̄i). Adding (n − 1)
∑
i(θi − θ̄i) to every term in the above inequality,

after simplification, we get:

(1− r)s(θ̄) + (n− 1)s(θ) ≥
∑
i

h′(θ−i) ≥ (n− 1)s(θ)

Finally, since s(θ) ≥ s(θ̄), we obtain the required:

(n−r)s(θ) ≥
∑
i

h′(θ−i) ≥ (n−1)s(θ) ∀ θ ∈ {θ ∈ [0,∞)n | θ1 ≥ C, θ1 ≥ . . . ≥ θn ≥ 0}

7 Conclusions and Future Work

Public good provision is a fundamental problem in economic theory. However,
unlike various allocation models, optimal Groves mechanisms (that is, optimal
efficient and truthful mechanisms) for public good settings have not previously
been considered. Against this background, we provided the first results for this
problem. Specifically, we derived an upper bound on the best possible efficiency
ratio, successfully characterized the optimal mechanism for 3 agents, and pre-
sented a new heuristic-based approach to designing weakly budget-balanced
mechanisms with high social welfare.

The question of deriving an optimal mechanism for more than 3 agents re-
mains open for future research. Another interesting direction is to consider public
good problems where the choice involves multiple possible projects.
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