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Abstract. Many scenarios where participants hold private information require
payments to encourage truthful revelation. Some of these scenarios have no nat-
ural residual claimant who would absorb the budget surplus or cover the deficit.
Faltings [7] proposed the idea of excluding one agent uniformly at random and
making him the residual claimant. Based on this idea, we propose two classes
of public good mechanisms and derive optimal ones within each class: Faltings’
mechanism is optimal in one of the classes. We then move on to general mecha-
nism design settings, where we prove guarantees on the social welfare achieved
by Faltings’ mechanism. Finally, we analyze a modification of the mechanism
where budget balance is achieved without designating any agent as the residual
claimant.

1 Introduction

Many scenarios where participants hold private information require payments to en-
courage truthful revelation. Some of these scenarios have no natural residual claimant
who would absorb the budget surplus or cover the deficit (e.g., a group of roommates
deciding who gets to use the living room for a weekend party or a company distribut-
ing free football tickets among employees). Mechanisms with budget deficit are not
very compelling as they require a subsidy. In more compelling surplus-generating (or,
weakly budget-balanced) mechanisms, the surplus represents a loss in social welfare
(i.e., the sum of the agents’ utilities), which can be viewed as the cost of truthfulness.
A number of recent papers have investigated what the minimum budget surplus is that
still supports truthful reporting and efficient outcomes [14, 11, 12, 4, 1, 2]. While weak
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budget balance is a necessary assumption,5 efficiency is not. In fact, sacrificing effi-
ciency leads to a higher social welfare in certain cases (by having significantly lower
net payments than efficient mechanisms) [7, 10, 5].

The mechanisms we propose here are budget-balanced (i.e., no loss of social wel-
fare is due to the budget surplus) but not efficient. Our work starts with the idea behind
Faltings’ mechanism [7], which is that we exclude one agent uniformly at random and
make him the residual claimant of the payments collected by an efficient mechanism
(e.g., the VCG mechanism) in the market with only the remaining agents. Crucially,
in order to maintain truthfulness, the outcome must be chosen without considering the
private value of the excluded agent. Thus, the chosen outcome may not be the same
as the efficient outcome when all agents’ values are considered. This results in a so-
cial welfare below the value of the efficient outcome. Notice that the loss of social
welfare is due only to the non-efficiency of the outcome as mechanisms with a residual
claimant are budget-balanced. Since excluding one agent at random results in a random-
ized outcome function, we speak of expected social welfare. We say that a mechanism
is r-competitive if its expected social welfare is at least r of the value of the efficient
outcome for all types the agents may have: i.e., we are using a worst-case metric.

We apply the approach of excluding one agent to the public project scenario where
a group of agents needs to decide whether or not to build, say, a bridge that comes at
a publicly known cost. The public project scenario is fundamental to mechanism de-
sign: unlike allocation scenarios, no agent can be excluded from enjoying the benefits
of the project if it is undertaken. While maximizing social welfare has been studied
extensively in allocation scenarios (see e.g., [14, 11, 9, 10, 5]), public good scenarios
received relatively less attention. [1] and [2] both studied the problem of designing
welfare-maximizing public good mechanisms. [1] studied one dominance relationship
between mechanisms, but did not propose any specific mechanisms. [2] studied sequen-
tial public good mechanisms with a different notion of truthfulness. Then, there are sev-
eral general mechanisms that can be applied to public project [3, 4, 7]. The mechanism
described in [3] is not budget-balanced when applied to public project, while the mech-
anism [4] has a zero competitive ratio. The paper by Faltings [7] is central to many of
our results as we discuss next.

First, we derive a competitive ratio for the mechanism proposed by Faltings and
prove its optimality within a class of mechanisms. Specifically, we define a class of
mechanisms based on the fraction of the cost of the project passed on to the excluded
agent. It turns out all mechanisms that assume the excluded agent would cover up to

1
n−1 of the cost are n−1

n -competitive (n is the number of agents). Faltings’ mechanism
corresponds to the excluded agent covering 1

n of the cost and is optimal within the
class. Mechanisms that assume the excluded agent covers more than 1

n−1 of the cost
are not n−1

n -competitive. A natural question is whether a better mechanism is possible.
To this end, we consider a larger mechanism class by taking the mixtures over the above
mechanisms. That is, we consider mechanisms that assume the excluded agent would
cover a randomized proportion of the cost. We characterize one optimal mechanism
within this larger class, which turns out to be n

n+1 -competitive.

5 An arbitrary social welfare can be achieved when unlimited subsidies are allowed.



The mechanisms above make the excluded agent the recipient of the VCG pay-
ments computed without him. The idea of computing VCG payments after excluding
one agent has also been used in general quasi-linear domains to design redistribution
of VCG payments computed with all agents present. Specifically, in a regular VCG
mechanism, the rebate to agent i can be set to 1

n of the VCG payments collected in the
market without him [3]. The resulting mechanism is efficient but not budget-balanced,
and may run a deficit in the public good scenario.

We find that using this redistribution idea together with the inefficient allocation,
made after excluding one agent, leads to a budget-balanced mechanism that does not
designate any agent as the residual claimant. This results in a more fair treatment of all
agents, and we call the mechanism FaltingsFair. In more detail, we set each agent’s pay-
ment to be the expected VCG payment he would make after one of the other agents is
excluded uniformly at random. This payment is reduced by the rebate described above.
The sum of the rebates cancels out the sum of the payments, thus achieving budget bal-
ance. Interestingly, this mechanism was already proposed by Faltings in extended ver-
sions of his work [6, 8], though without the redistribution interpretation. Our analysis
sheds new light on this mechanism establishing connections to a standard redistribution
function and providing novel proofs.

The rest of this paper is structured as follows. A general model of mechanism design
problems is stated in Section 2. Mechanisms with a residual claimant for the public good
scenario are studied in Section 3. There we propose two classes of mechanisms and
derive optimal ones within each class. In Section 4, we move on to general mechanism
design settings. One of the optimal public good mechanisms we derive in Section 3 turns
out to be a special case of Faltings’ mechanism. We modify this mechanism to remove
the residual claimant, which results in the budget-balanced FaltingsFair mechanism.
Discussion of the results appears in Section 5.

2 Model

The set of agents is denoted byN (|N | ≥ 3) and the private type of agent i ∈ N is given
by θi. The mechanism chooses an outcome k(θ′) from the set of possible outcomes
K, based on the profile of reported types θ′. The value of an agent for each outcome
depends on his type vi(k(θ′), θi), and the utility is quasi-linear. Given an outcome k ∈
K and a payment ti ∈ R, the utility is ui(k, ti, θi) = vi(k, θi) − ti. Let k∗(θ) denote
the efficient outcome k∗(θ) ∈ arg maxk′∈K

∑
i vi(k

′, θi).
The VCG (also known as Clarke or pivotal) mechanism is defined by the efficient

outcome and the following payments from the agents: tvcg
i (θ) =

∑
j 6=i vj(k

∗(θ−i), θj)−∑
j 6=i vj(k

∗(θ), θj), where k∗(θ−i) ∈ arg maxk′∈K
∑
j 6=i vj(k

′, θj).

3 Public Project

In a public project (equivalently, public good) problem, a group of agents needs to
decide whether or not to undertake a project such as building a bridge. The two possible
outcomes are: do not build the bridge and distribute C among the agents or build the
bridge spending C on its construction. Each agent has a private value θi for having the



bridge built. We define the value of the efficient outcome as max(θN , C): the sum of
agents’ values is θN =

∑
i∈N θi when the bridge is built and C when it is not built.

The valuation function of agent i consistent with this definition of social welfare is

vi(k(θ), θi) =

{
θi if k(θ) = 1
C
n otherwise

(1)

Faltings’ mechanism [7] is defined as follows (we will call it Faltings from now on):

– We exclude one agent uniformly at random.
– The remaining agents use the VCG mechanism to come up with an optimal alloca-

tion for themselves.
– The excluded agent acts as the residual claimant. That is, the VCG payments are

redistributed to the excluded agent, to achieve budget balance.

Faltings is known to be (dominant-strategy) incentive compatible and budget-
balanced.6 Faltings can be generalized to the following class of mechanisms (also in-
centive compatible and budget-balanced):

– We pick one agent, denoted by a, uniformly at random, and we pretend agent a’s
reported type is C − x (ignoring what a actually reported).

– All agents, including a, participate in a VCG mechanism.
– a acts as the residual claimant. That is, everyone excluding a pays his VCG pay-

ment to a. (a does not have to make any payment. Note that incentive compatibility
for a is guaranteed because a’s report is ignored altogether.)

Mechanisms inside the above class are characterized by the parameter x, where x
represents how much the non-excluded agents need to value the project in order for
it to be built. When there is no ambiguity, we will simply use mechanism x to refer
to the mechanism inside the class that is characterized by x. Faltings corresponds to
x = n−1

n C: For this value of x, the decision is to build if and only if the remaining
agents’ total valuation is at least n−1

n C, which is efficient for the remaining agents.
The parameter x could take any value in (−∞,∞), but we only need to consider

x ∈ [0, C] (assuming non-negative types). We recall that x represents how much the
non-excluded agents need to value the project in order for it to be built. When x < 0,
mechanism x is equivalent to mechanism x = 0 in terms of social welfare, because both
mechanisms always build and they are both budget-balanced. It is never a good idea to
set x to be strictly higher than C: if the non-excluded agents’ total valuation is at least
C, regardless of the excluded agent’s type, the optimal decision is to build.

For any x ∈ [0, C], mechanism x is (ex post) individually rational. Consider an
arbitrary agent i. If agent i reports C/n, then he is never pivotal, so he does not pay any
VCG payment excluded or not. If the decision is to build, then his utility is θi plus the
redistribution he received from the others, which is at least 0. If the decision is not to
build, then his utility is C/n plus the redistribution he received from the others, which

6 Faltings is also (ex post) individually rational in all settings where the VCG mechanism is (ex
post) individually rational.



is also at least 0. That is, every agent can guarantee a non-negative utility by reporting
C/n. Combining this with the fact that the mechanism is incentive compatible, we can
conclude that it is individually rational.

Since the mechanism is always budget-balanced, for the purpose of maximizing
social welfare, we can ignore payments when optimizing over x. Thus, for this purpose,
we can simplify mechanism x to:

– We exclude one agent uniformly at random.
– If the non-excluded agents’ total valuation is at least x, then we build. Otherwise,

we do not build.

Theorem 1. For any x ∈ [0, C], mechanism x is at most n−1
n -competitive.

Proof. Mechanism 0 always builds. Consider the type profile (0, 0, . . . , 0). Under mech-
anism 0, the agents’ total utility is 0. The agents’ maximum possible total utility
max{C, θN} = max{C, 0} = C. Hence, mechanism 0 is at most 0-competitive.

Consider x > 0. Consider the type profile (U, 0, . . . , 0), where U is a number larger
than C. Under mechanism x, when the agent reporting U is excluded, the decision
is not to build (the agents’ total utility is C). Otherwise, the decision is to build (the
agents’ total utility is U ). The agents’ expected total utility is 1

nC+ n−1
n U . The agents’

maximum possible total utility is U . limU→∞
1
nC+ n−1

n U

U = n−1
n . Hence, mechanism x

is at most n−1
n -competitive. ut

Theorem 2. Mechanism C is exactly n−1
n -competitive.

Proof. Under mechanism C, if agent i is excluded, then the agents’ total utility is at
least max{C,

∑
j 6=i θj}. Averaging over all i, the agents’ expected total utility is then

at least
1

n

n∑
i=1

max{C,
∑
j 6=i

θj}.

The above expression is no less than

1

n
max{nC,

n∑
i=1

∑
j 6=i

θj} = max{C, n− 1

n
θN}.

This is always greater than or equal to n−1
n times max{C, θN}. That is, mechanism C

is exactly n−1
n -competitive (Theorem 1 has shown that it is at most n−1

n -competitive).
ut

Theorem 3. For any x ∈ [n−2
n−1C,C), mechanism x is also exactly n−1

n -competitive.

Proof. As a result of Theorem 1, we only need to prove that for any x ∈ [n−2
n−1C,C),

mechanism x is at least n−1
n -competitive.

For all type profiles with θN ≥ C, the correct (optimal) decision is to build. That
is, for these type profiles, mechanism x is no worse than mechanism C, as mechanism
x has a lower threshold for building.



Thus, we only need to prove that mechanism x is n−1
n -competitive for all type

profiles with θN < C. For these type profiles, the correct decision is not to build. That
is, if x1 ≤ x2, then for these type profiles, mechanism x2 is no worse than mechanism
x1, as mechanism x2 has a higher threshold for building.

Therefore, we only need to prove that mechanism n−2
n−1C is n−1

n -competitive for all
type profiles with θN < C. In other words, we only need to prove that under mechanism
n−2
n−1C, the agents’ expected total utility is at least n−1

n C for all type profiles with θN <
C.

There are three cases:

1. If under mechanism n−2
n−1C, the decision is to build with probability 1, then we have

for all i,
∑
j 6=i θj = θN − θi ≥ n−2

n−1C. That is,
∑n
i=1(θN − θi) ≥

∑n
i=1(n−2

n−1C).

Rearranging, (n − 1)θN ≥ n(n−2)
n−1 C. Therefore, we have that the agents’ total

utility θN is at least n2−2n
n2−2n+1C ≥

n−1
n C (recall that n ≥ 3).

2. If under mechanism n−2
n−1C, the decision is to build with probability 1

n ≤ p ≤
n−1
n , then the agents’ expected total utility is pθN + (1 − p)C. This expression is

decreasing in p, and increasing in θN . It is minimized when p = n−1
n and θN =

n−2
n−1C (θN ≥ n−2

n−1C because there exists i such that θN −θi ≥ n−2
n−1C). That is, the

agents’ expected total utility is minimized under type profile (n−2
n−1C, 0, 0, . . . , 0).

For this type profile, the agents’ expected total utility is 1
nC+ n−1

n
n−2
n−1C = n−1

n C.
3. If under mechanism n−2

n−1C, the decision is to build with probability 0, then this
mechanism is always making the correct decision. The agents’ total utility is C.

ut

Theorem 4. For any x ∈ [0, n−2
n−1C), mechanism x is strictly less than n−1

n -competitive.

Proof. We have already shown that mechanism 0 is at most 0-competitive in the proof
of Theorem 1.

For x > 0, consider the type profile (x, 0, 0, . . . , 0). Under mechanism x, when the
agent reporting x is excluded, the decision is not to build, and the agents’ total utility
is C. When some other agent is excluded, the decision is to build, and the agents’ total
utility is x. The agents’ expected total utility is n−1

n x + 1
nC. The agents’ maximum

possible total utility is C. The ratio equals (n−1)x
nC + 1

n <
(n−1) n−2

n−1C

nC + 1
n = n−1

n . ut

As a summary, we have shown that mechanism x is optimal if and only if x ∈
[n−2
n−1C,C]. Next we consider mixtures of mechanisms with different parameters.

Definition 1. Mechanism OptMix:

– With probability 1
n+1 , we run mechanism 0 (always build);

– With probability n
n+1 , we run mechanism C.

Theorem 5. OptMix is exactly n
n+1 -competitive.

We note that OptMix is more competitive than any individual (non-mixture) mech-
anism x.



Proof. If θN < C, then mechanismC never builds. That is, if θN < C, then the agents’
expected total utility under OptMix is 1

n+1θN + n
n+1C ≥

n
n+1C = n

n+1 max{C, θN}.
We have that mechanism C is n−1

n -competitive, so if θN ≥ C, then the agents’ ex-
pected total utility under mechanismC is at least n−1

n θN . Under OptMix, the agents’ ex-
pected total utility is then at least 1

n+1θN+ n
n+1

n−1
n θN = n

n+1θN = n
n+1 max{C, θN}.

The above shows that OptMix is at least n
n+1 -competitive. Let us consider the type

profile (0, 0, . . . , 0). For this type profile, under OptMix, the agents’ expected total util-
ity is exactly n

n+1C = n
n+1 max{C, θN}. Hence, OptMix is exactly n

n+1 -competitive.
ut

Let Mix be an arbitrary mixture of mechanisms with different parameters. Let I be
an interval that is a subset of [0, C]. We use P (Mix ∈ I) to denote the probability that a
mechanism with parameter x ∈ I is used. P (Mix ∈ [0, C]) = 1. For OptMix, we have
P (OptMix ∈ [0, 0]) = 1

n+1 and P (OptMix ∈ [C,C]) = n
n+1 . We will prove that Mix is

at most n
n+1 -competitive. That is, OptMix is the most competitive among all mixtures

of mechanisms with different parameters.7

Theorem 6. OptMix is the most competitive among all mixtures of mechanisms with
different parameters.

Proof. If P (Mix ∈ [0, 0]) < 1
n+1 , then let us consider the type profile (U, 0, . . . , 0),

where U is larger than C. When the agent reporting U is excluded (which happens
with probability 1

n ), the non-excluded agents’ types are all zeros, which means that
the probability to build (when the agent reporting U is excluded) is equal to P (Mix
∈ [0, 0]). That is, overall, for this type profile, the probability p̄ of not building is at
least 1

n (1 − P (Mix ∈ [0, 0])), which is strictly larger than 1
n (1 − 1

n+1 ) = 1
n+1 . The

agents’ expected total utility is (1 − p̄)U + p̄C. The agents’ maximum possible total
utility is U . We have limU→∞

(1−p̄)U+p̄C
U = 1− p̄. That is, if P (Mix ∈ [0, 0]) < 1

n+1 ,
then Mix is at most n

n+1 -competitive. Therefore, if Mix is to be no less competitive than
OptMix, then we must have P (Mix ∈ [0, 0]) ≥ 1

n+1 .
If P (Mix ∈ [0, 0]) ≥ 1

n+1 , then let us consider the type profile (0, 0, . . . , 0). The
probability p̄ of not building is most 1− P (Mix ∈ [0, 0]). It follows that p̄ ≤ n

n+1 . The
agents’ expected total utility is (1 − p̄)0 + p̄C. The agents’ maximum possible total
utility is C. The ratio equals p̄, which is at most n

n+1 , and it follows that Mix is at most
n
n+1 -competitive. ut

So far, we have identified many competitive randomized mechanisms. Another nat-
ural question to ask is whether there exist competitive deterministic mechanisms. The
answer is yes: the VCG mechanism is 1

n -competitive.

7 OptMix is not the unique optimum. Consider a modified version of OptMix under which we
run mechanism 0 with probability 1

n+1
and run mechanism C − ε with probability n

n+1
(ε is a

small positive number). When θN ≥ C, modified OptMix is no worse than OptMix, since the
optimal decision is to build, and modified OptMix has a lower threshold for building. When
θN < C − ε, modified OptMix is the same as OptMix. When θN ∈ [C − ε, C), the optimal
decision is not to build. The maximum efficiency isC. Under any budget-balanced mechanism
(including modified OptMix), the agents’ expected total utility is between C − ε and C, thus
at least C − ε. When ε is small enough, we have C−ε

C
≥ n

n+1
.



Theorem 7 (Moulin, private communication). The VCG mechanism is exactly 1
n -

competitive for the public project problem.

To illustrate how poor of a ratio the 1/n achieved by VCG is, we now give a very
simple mechanism that also obtains this ratio.

Definition 2. Mechanism Vote-to-Build: Let every agent vote whether to build or not.
If there is at least one vote toward building, then we build. Otherwise, we do not build.

If an agent’s valuation is at least C/n, then his dominant strategy is to vote toward
building. If an agent’s valuation is less than C/n, then his dominant strategy is to vote
toward not building. Vote-to-Build is (ex post) individually rational and budget-balanced
(there are no payments involved).

Theorem 8. Vote-to-Build is exactly 1
n -competitive.

Proof. If the decision is to build, then there exists i with θi ≥ C/n. That is, we have
θN ≥ C/n. The ratio θN

max{C,θN} is at least 1
n , and it reaches 1

n when θN = C/n

(corresponding to the type profile (C/n, 0, 0, . . . , 0)).
If the decision is not to build, then there is no i with θi ≥ C/n. It follows that

θN ≤ C. The ratio is then C
max{C,θN} = C

C = 1. ut

4 General Domains

In Section 3, we showed that Faltings is at least n−1
n -competitive for the public project

problem. Here we show that it remains true for general mechanism design problems, as
long as the agents’ valuation functions satisfy the following assumption.8

Assumption 1 The valuations of agents are non-negative for all outcomes: vi(k, θi) ≥
0 for all θi, k.

Theorem 9. Faltings is at least n−1
n -competitive, as long as the agents’ valuations

satisfy Assumption 1.

Proof. We begin with observing a few relationships between the value of the efficient
outcome when all agents are present and when one agent is excluded. Under Assump-
tion 1, making agent i accept a decision made without him does not decrease the value
of that decision.9 In particular, this applies to the efficient outcome for agents j 6= i:∑

j vj(k
∗(θ−i), θj) ≥

∑
j 6=i vj(k

∗(θ−i), θj).

On the other hand, the total value of agents j 6= i under the outcome efficient for them
is at least as high as their total value under the outcome efficient when all agents are
present.

8 The assumption places restrictions only on the valuation function and is independent of the
mechanism. This is in contrast to the individual rationality property, which requires the utility
of each agent participating in the mechanism to be above his outside value.

9 The valuation function in Equation 1 satisfies this property.



∑
j 6=i vj(k

∗(θ−i), θj) ≥
∑
j 6=i vj(k

∗(θ), θj).

Combining the two inequalities and summing over all agents, we get∑
i

∑
j vj(k

∗(θ−i), θj) ≥
∑
i

∑
j 6=i vj(k

∗(θ−i), θj)
≥
∑
i

∑
j 6=i vj(k

∗(θ), θj) = (n− 1)
∑
i vi(k

∗(θ), θi).

Dividing by n and focusing on the first and last expressions, we have

1
n

∑
i

∑
j vj(k

∗(θ−i), θj) ≥ n−1
n

∑
i vi(k

∗(θ), θi).

The expression on the left-hand side is the expected value of the outcome when the
decision is made efficiently after one agent is excluded uniformly at random. The in-
equality implies that the expected value of the decision under Faltings is at least n−1

n
of the maximum efficiency. ut

Faltings results in a rather unequal treatment of the excluded agent relative to the
other agents. In settings where the VCG mechanism collects a lot of revenue, the agents
would be envious of the excluded agent.

We next study a more fair payment scheme where each agent pays his expected
VCG payment and receives part of his own residual claimant rebate. We call the result-
ing mechanism FaltingsFair. This scheme had been proposed previously by Faltings [6,
8]. We derived it independently with formal proofs. The result on the competitive ratio
is novel. We discuss this in more detail at the end of this section.

– Exclude an agent a uniformly at random and compute the efficient allocation.
– Collect from each agent i (including a) the payment

ti(θ) =
1

n

∑
j 6=i

tvcg
i (θ−j)−

1

n

∑
j 6=i

tvcg
j (θ−i) (2)

Expanding each term of the payment, we can rewrite it as follows.

tvcg
i (θ−j) =

∑
a6=i,j

va(k∗(θ−i,j), θa)−
∑
a 6=i,j

va(k∗(θ−j), θa)

tvcg
j (θ−i) =

∑
a6=i,j

va(k∗(θ−i,j), θa)−
∑
a 6=i,j

va(k∗(θ−i), θa)

tvcg
i (θ−j)− tvcg

j (θ−i) =
∑
a 6=i,j

(va(k∗(θ−i), θa)− va(k∗(θ−j), θa))

ti(θ) =
1

n

∑
j 6=i

∑
a6=i,j

(va(k∗(θ−i), θa)− va(k∗(θ−j), θa))

Theorem 10. FaltingsFair is incentive compatible in expectation, budget-balanced, and
for valuations satisfying Assumption 1, n−1

n -competitive.

Proof. First we prove incentive compatibility. Denoting FaltingsFair’s allocation func-
tion that chooses a residual claimant uniformly at random with krc, agent i’s utility



ui(k
rc(θ), ti, θi) =

(
1
n

∑
j vi(k

∗(θ−j), θi)
)
− ti(θ)

= 1
n

∑
j vi(k

∗(θ−j), θi)− 1
n

∑
j 6=i
∑
a 6=i,j (va(k∗(θ−i), θa)− va(k∗(θ−j), θa))

= 1
nvi(k

∗(θ−i), θi) + 1
n

∑
j 6=i

(∑
a 6=j va(k∗(θ−j , θa))−

∑
a6=i,j va(k∗(θ−i), θa)

)
.

Removing the terms that agent i does not control with his report, we are left with
1
n

∑
j 6=i
∑
a 6=j va(k∗(θ−j), θa). This expression is maximized when agent i reports the

true value θi as by the definition of k∗(θ−j)∑
a 6=j va(k∗(θ−j), θa) ≥

∑
a6=j va(k′, θa) ∀j, k′ ∈ K.

Therefore, incentive compatibility holds.
Next we show budget balance (

∑
i ti = 0).∑

i
1
n

(∑
j 6=i t

vcg
i (θ−j)−

∑
j 6=i t

vcg
j (θ−i)

)
= 0∑

i

∑
j 6=i t

vcg
i (θ−j) =

∑
i

∑
j 6=i t

vcg
j (θ−i)

The equality follows from the simple identity
∑
i

∑
j 6=i aij =

∑
i

∑
j 6=i aji.

Finally, the allocation function is the same as before, thus, FaltingsFair has the same
competitive ratio as Faltings. ut

Unlike Faltings, FaltingsFair is incentive compatible only in expectation with re-
spect to the random outcome function k(θ). This means that an agent has no incentive
to misreport his value before the outcome is chosen,10 but once the outcome is known,
the agent may regret not reporting a different value. Incentive compatibility in expec-
tation is a natural concept for randomized mechanisms as the reporting of values must
occur before the outcome is selected.

Our next theorem deals with individual rationality. [7] showed that Faltings is (ex
post) individually rational in settings where the VCG mechanism is (ex post) individu-
ally rational. This is actually the case for valuations satisfying Assumption 1. That is,
for valuations that satisfy Assumption 1, Faltings is (ex post) individually rational. Sim-
ilar to the case of incentive compatibility, unlike Faltings, FaltingsFair is individually
rational only in expectation with respect to the random outcome function k(θ).

Theorem 11. For valuations satisfying Assumption 1, FaltingsFair is individually ra-
tional in expectation.

We now take a closer look at the payment function in Equation 2. The first term is the
expected VCG payment in the market with one agent excluded uniformly at random.
The second term produces a rebate equal to 1

n of the total VCG payments realized
without the agent in the market. This rebate has been considered before with the goal
of redistributing the VCG surplus in [3, 4].

hrc
i (θ−i) =

1

n

∑
j 6=i

tvcg
j (θ−i) (3)

10 Note that unlike the Bayesian incentive compatible “expected externality mechanism” (or
dAGVA), our mechanism is dominant-strategy incentive compatible and we have no prior over
agents’ types.



This rebate, however, may exceed the total VCG revenue resulting in a deficit in some
models. In fact, as Cavallo argues in [4], the no-deficit property requires the redistri-
bution to sometimes be smaller than the amount above. Specifically, one can compute
the smallest total VCG payment collected from the agents over all values agent i might
have. It is this amount that should be used in the redistribution to agent i:

hmin
i (θ−i) =

1

n
min
θ′i

∑
j

tvcg
j (θ′i, θ−i) (4)

It is easy to see that in the public good setting, the above rebate (Equation 4) is always
zero.11 Thus, rebates of this form are not helpful in efficient mechanisms in models like
those involving public goods. In contrast, in FaltingsFair, the rebate (3) results in full
budget balance in any model.

The payment rule in Equation 2 was previously proposed by Boi Faltings in a
patent [8] and an unpublished paper [6]. There Faltings provides an equivalent def-
inition of the payment rule: instead of considering the rebate function explicitly, the
rule directs each agent i to pay 1

n t
vcg
i (θ−j) to each agent j. Notice that budget balance

follows immediately from this definition. To see that the definition in fact defines the
payment rule in Equation 2, notice that the first summation corresponds to the payments
agents j 6= i make to agent i and the second summation corresponds to the payments
agent i makes to agents j 6= i. These definitions provide different interpretations of
the mechanism: Faltings views it as the average of the budget-balanced Faltings mech-
anism, while we make explicit the connections to a redistribution function previously
considered in the literature.

5 Discussion

We studied randomized mechanisms that are fully budget-balanced and aimed to max-
imize the expected efficiency, which under budget balance coincides with the expected
social welfare. The expected welfare loss of our generally applicable mechanism is only
1
n in the worst case leaving little room for improvement. However, whether or not this
loss can be reduced with a different randomized mechanism (budget-balanced, or not)
remains an open question.

Note that full efficiency is impossible in randomized mechanisms.12 Thus, the goal
of minimizing budget imbalance in an efficient mechanism is not meaningful in this
context. However, the question of minimizing budget imbalance in deterministic mech-
anisms for public good remains open.

Finally, we note that for public project problems, our definition of the value of the
efficient outcome addsC to the standard definition of max(θN−C, 0) = max(θN , C)−
C (see, e.g., [13]). Our results can be interpreted under the standard definition: being

11 If θN − θi < n−1
n
C, then when θi = 0, no agent is pivotal and the total VCG payment is 0; If

θN − θi ≥ n−1
n
C, then when θi = C, no agent is pivotal and the total VCG payment is also

0.
12 At least, this is the case for significantly randomized mechanisms that do more than just break

ties randomly.



r-competitive means we guarantee the welfare of r(C + max(θN − C, 0)). We cannot
guarantee the welfare of rmax(θN − C, 0) as Assumption 1 does not hold for the
standard valuation function

vi(k(θ), θi) =

{
θi − C

n if k(θ) = 1

0 otherwise

We are indebted to Hervé Moulin for the idea of using the alternative metric.
The definition of valuations above ensures that the cost C is covered (each agent

contributes C
n ) as long as the sum of the agents’ payments is non-negative. The valua-

tion function that we use shifts the standard one by C
n . However, in both cases, the cost

C is covered: i.e., non-negative total payments result in weak budget balance.
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