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Abstract. A common objective in mechanism design is to choose the outcome
(for example, allocation of resources) that maximizes the sum of the agents’ val-
uations, without introducing incentives for agents to misreport their preferences.
The class of Groves mechanisms achieves this; however, these mechanisms re-
quire the agents to make payments, thereby reducing the agents’ total welfare.

In this paper we introduce a measure for comparing two mechanisms with
respect to the final welfare they generate. This measure induces a partial order
on mechanisms and we study the question of finding minimal elements with re-
spect to this partial order. In particular, we say a non-deficit Groves mechanism is
welfare undominated if there exists no other non-deficit Groves mechanism that
always has a smaller or equal sum of payments. We focus on two domains: (i)
auctions with multiple identical units and unit-demand bidders, and (ii) mecha-
nisms for public project problems. In the first domain we analytically character-
ize all welfare undominated Groves mechanisms that are anonymous and have
linear payment functions, by showing that the family of optimal-in-expectation
linear redistribution mechanisms, which were introduced in [6] and include the
Bailey-Cavallo mechanism [1,2], coincides with the family of welfare undomi-
nated Groves mechanisms that are anonymous and linear in the setting we study.
In the second domain we show that the classic VCG (Clarke) mechanism is wel-
fare undominated for the class of public project problems with equal participation
costs, but is not undominated for a more general class.

1 Introduction

Mechanism design is often employed for coordinating group decision making among
agents. Often, such mechanisms impose taxes that agents have to pay to a central au-
thority. Although maximizing tax revenue is a desirable objective in many settings (for
example, if the mechanism is an auction designed by the seller), it is not desirable in
situations where no entity is profiting from the taxes. Some examples include public
project problems as well as certain resource allocation problems without a seller (e.g.,
the right to use a shared good on a given time slot, or the exchange of take-off slots
among airline companies). In such cases, we would like to have mechanisms that min-
imize the sum of the taxes (or, even better, achieve budget balance, that is, the sum
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of the taxes is zero), while maintaining other desirable properties, such as efficiency,
strategy-proofness and non-deficit (i.e., the mechanism does not need to be funded by
an external source).

The well-known VCG mechanism1 is efficient, strategy-proof and incurs no deficit.
More generally, the family of Groves mechanisms, which includes VCG, is a family
of efficient and strategy-proof mechanisms. Unfortunately though, Groves mechanisms
are not budget balanced. In fact, in sufficiently general settings, it is impossible to have
a mechanism that satisfies efficiency, strategy-proofness, and budget balance [4].

We therefore consider the following problem: within the family of Groves mecha-
nisms, we want to identify non-deficit mechanisms that are optimal with respect to the
sum of the payments, i.e., we cannot lower the mechanism’s payments without violating
efficiency, strategy-proofness or the non-deficit property. Such a mechanism, in a sense,
maximizes the agents’ welfare (among efficient mechanisms2). To make this precise,
we first introduce a measure for comparing two feasible mechanisms (mechanisms that
are efficient, strategy-proof and satisfy the non-deficit property). We say that a feasible
Groves mechanism M welfare dominates another feasible Groves mechanism M ′ if for
every type vector of the agents, the sum of the payments under M is no more than the
sum of the payments under M ′, and this holds with strict inequality for at least one type
vector. This definition induces a partial order on feasible Groves mechanisms and we
wish to identify minimal elements in this partial order. We call such minimal elements
welfare undominated. Other partial orders, as well as other notions of optimality, have
recently been considered in other work on redistribution mechanisms (see Section 1.1).
The notion of optimality that we study here is different from the previously studied ones
at both a conceptual and a technical level, as we illustrate below.

We study the question of finding welfare undominated mechanisms in two domains.
The first is auctions of multiple identical units with unit-demand bidders. In this setting,
it is easy to see that VCG is welfare dominated by other Groves mechanisms, such as the
Bailey-Cavallo mechanism [1,2]. We obtain a complete characterization of linear and
anonymous redistribution mechanisms that are minimal elements in this partial order:
we show that a linear, anonymous Groves mechanism is welfare undominated if and
only if it belongs to the class of Optimal-in-Expectation Linear (OEL) redistribution
mechanisms, which include the Bailey-Cavallo mechanism and were introduced in [6].
The second domain is public project problems, where a set of agents must decide on
financing a project (e.g., building a bridge). Here, we show that in the case where the
agents have identical participation costs, no mechanism welfare dominates the VCG
mechanism. On the other hand, when the participation costs can be different across
agents, there exist mechanisms that welfare dominate VCG. In both domains, our proofs
rely on some general properties we establish for anonymous mechanisms, which may
be of independent interest (see Section 3).

The omitted proofs appear in the full version of the paper.

1 In this paper, “the VCG mechanism” refers to the Clarke mechanism (aka pivotal mechanism),
not to any other Groves mechanism.

2 By sacrificing efficiency, it is sometimes possible to drastically lower the payments, so that
the net effect is an increase in the agents’ welfare [5,3]. However, most of the prior work has
focused on the case where efficiency is a hard constraint, and we will do so in this paper.
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1.1 Related Work

Recently, there has been a series of works on redistribution mechanisms, which are
Groves mechanisms that redistribute some of the VCG payment back to the bidders.
Bailey and Cavallo [1,2] introduced a mechanism that welfare dominates VCG in some
cases, such as single-item auctions, but coincides with VCG in some more general set-
tings. We will refer to this mechanism as the BC mechanism from now on (in fact, Bai-
ley’s mechanism is not always the same as Cavallo’s mechanism, but it is in the settings
in which we study it). A special case of the BC mechanism was independently discov-
ered by Porter et al. [14]. Cavallo also proved that the BC mechanism is optimal among
the family of surplus-anonymous mechanisms; however, this is a quite restrictive class
of mechanisms. Guo and Conitzer [8] solved for a worst-case optimal redistribution
mechanism for multi-unit auctions with nonincreasing marginal values. Moulin [13] in-
dependently derived the same mechanism under a slightly different worst-case optimal-
ity notion (in the more restrictive setting of multi-unit auctions with unit demand only).
These worst-case notions are different notions of optimality than the one we consider
in this paper. Guo and Conitzer [6] also solve for mechanisms that maximize expected
redistribution (in a certain class of mechanisms), when a prior is available. Another
notion of optimality, which is closer to the one studied in this paper, was introduced
in [7], namely the notion of undominated mechanisms. A mechanism is undominated
if there is no other mechanism under which every individual agent pays weakly less
for every type vector, and strictly less in at least one case. This is a weaker concept
than ours, in the sense that for a mechanism that is undominated, there may still exist
mechanisms that welfare dominate it (by increasing the payment from some agents to
decrease the payments from other agents more). In the other direction, if a mechanism
is welfare undominated, then it is also undominated. We believe that the notion we
study in this paper is more appropriate when one is interested in the final welfare of the
agents. Technically, welfare undominance appears much more challenging and seems
to require different techniques.

2 Preliminaries

2.1 Tax-Based Mechanisms

We first briefly review tax-based mechanisms (see, e.g., [10]). Assume that there is a
set of possible outcomes or decisions D, a set {1, . . ., n} of players where n ≥ 2, and
for each player i a set of types Θi and an (initial) utility function vi : D ×Θi → R. Let
Θ := Θ1 × · · · × Θn.

In a (direct revelation) mechanism, each player reports a type θi and based on this,
the mechanism selects an outcome and a payment to be made by every agent. Hence
a mechanism is given by a pair of functions (f, t), where f is the decision function
and t = (t1, ..., tn) is the tax function that determines the players’ payments, i.e., f :
Θ → D, and t : Θ → R

n.
We assume that the (final) utility function for player i is a function ui : D × R

n ×
Θi → R defined by ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti (that is, utilities are quasilin-
ear). For each vector θ of announced types, if ti(θ) ≥ 0, player i receives ti(θ), and if
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ti(θ) < 0, he pays |ti(θ)|. Thus when the true type of player i is θi and his announced
type is θ′i, his final utility is

ui((f, t)(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi) + ti(θ′i, θ−i),

where θ−i are the types announced by the other players.

2.2 Properties of Tax-Based Mechanisms

We say that a tax-based mechanism (f, t) is

• efficient if for all θ ∈ Θ and d′ ∈ D,
∑n

i=1 vi(f(θ), θi) ≥
∑n

i=1 vi(d′, θi),
• budget-balanced if

∑n
i=1 ti(θ) = 0 for all θ ∈ Θ,

• feasible if
∑n

i=1 ti(θ) ≤ 0 for all θ, i.e., the mechanism does not need to be funded
by an external source,

• pay-only if ti(θ) ≤ 0 for all θ and all i ∈ {1, . . ., n},
• strategy-proof if for all θ, i ∈ {1, . . ., n} and θ′i,

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Tax-based mechanisms can be compared in terms of the final social welfare they gen-
erate (

∑n
i=1 ui((f, t)(θ), θi)). More precisely, one can define the following two natural

partial orders as a way to compare mechanisms. The first was introduced in [7]. The
second is the concept that we introduce and study in this paper, which we believe is a
more appropriate concept when one is interested in the final social welfare of the agents.

Definition 1. Given two tax-based mechanisms (f, t) and (f ′, t′) we say that (f ′, t′)
dominates (f, t) (due to [7]) if

• for all θ ∈ Θ and all i ∈ {1, . . ., n}, ui((f, t)(θ), θi) ≤ ui((f ′, t′)(θ), θi),
• for some θ ∈ Θ and some i ∈ {1, . . ., n}, ui((f, t)(θ), θi) < ui((f ′, t′)(θ), θi).

Definition 2. Given two tax-based mechanisms (f, t) and (f ′, t′) we say that (f ′, t′)
welfare dominates (f, t) if

• for all θ ∈ Θ,
∑n

i=1 ui((f, t)(θ), θi) ≤
∑n

i=1 ui((f ′, t′)(θ), θi),
• for some θ ∈ Θ,

∑n
i=1 ui((f, t)(θ), θi) <

∑n
i=1 ui((f ′, t′)(θ), θi).

In this paper, we are interested only in Groves mechanisms, so that the decision function
f is always efficient, and (welfare) dominance is strictly due to differences in the tax
function t. Specifically, in this context we have that (f, t′) dominates (f, t) (or simply
t′ dominates t) if and only if

• for all θ ∈ Θ and all i ∈ {1, . . ., n}, ti(θ) ≤ t′i(θ), and
• for some θ ∈ Θ and some i ∈ {1, . . ., n}, ti(θ) < t′i(θ),

and t′ welfare dominates t if

• for all θ ∈ Θ,
∑n

i=1 ti(θ) ≤
∑n

i=1 t′i(θ), and
• for some θ ∈ Θ,

∑n
i=1 ti(θ) <

∑n
i=1 t′i(θ).
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For two tax-based mechanisms t, t′, it is clear that if t′ dominates t, then it also
welfare dominates t. The reverse implication, however, does not need to hold.3

We now define a transformation on tax-based mechanisms originating from the same
decision function. This transformation was originally defined in [1] and [2] for the spe-
cific case of the VCG mechanism and in [7] for feasible Groves mechanisms. We call it
the BCGC transformation after the authors of these papers.

Consider a tax-based mechanism (f, t). Given θ = (θ1, ..., θn), let T (θ) be the total
amount of taxes, i.e., T (θ) :=

∑n
i=1 ti(θ). For each i ∈ {1, . . ., n} let4

SBCGC
i (θ−i) := max

θ′
i∈Θi

T (θ′i, θ−i).

We then define the tax-based mechanism tBCGC as follows:

tBCGC
i (θ) := ti(θ) − SBCGC

i (θ−i)
n

.

The following observations generalize some of the results of [1,2,7].

Note 1.

(i) Each tax-based mechanism of the form tBCGC is feasible.
(ii) If t is feasible, then either t and tBCGC coincide or tBCGC dominates t.

2.3 Groves Mechanisms

Each Groves mechanism is a tax-based mechanism (f, t) such that the following hold5:

• f(θ) ∈ arg maxd

∑n
i=1 vi(d, θi), i.e., the chosen outcome maximizes the initial

social welfare.
• ti : Θ → R is defined by ti(θ) := gi(θ) + hi(θ−i),
• gi(θ) :=

∑
j �=i vj(f(θ), θj),

• hi : Θ−i → R is an arbitrary function.

Intuitively, gi(θ) represents the (initial) social welfare from the decision f(θ), when
player i’s (initial) utility is not counted. We now recall the following result (e.g., [10]):

Groves Theorem Every Groves mechanism (f, t), is efficient and strategy-proof.

For several decision problems the only efficient and strategy-proof tax-based mech-
anisms are Groves mechanisms. By a general result of [9] this is the case for both
domains that we consider in this paper and explains our focus on Groves mechanisms.

A feasible Groves mechanism is undominated if there is no other feasible Groves
mechanism that dominates it [7]. A feasible Groves mechanism is welfare undomi-
nated if there is no other feasible Groves mechanism that welfare dominates it. Wel-
fare undominance is a strictly stronger concept than undominance, as is illustrated in
Appendix A.

3 In Appendix A, we provide an example of two tax-based mechanisms that illustrates this.
4 To ensure that the maximum actually exists we assume that each tax function ti is continuous

and each set of types θi is a compact subset of some R
k.

5 Here and below
�

j �=i is a shorthand for the summation over all j ∈ {1, . . ., n}, j �= i.
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A special Groves mechanism—the VCG or Clarke mechanism—is obtained using6

hi(θ−i) := − max
d∈D

∑

j �=i

vj(d, θj).

In this case,
ti(θ) :=

∑

j �=i

vj(f(θ), θj) − max
d∈D

∑

j �=i

vj(d, θj),

which shows that the VCG mechanism is pay-only.
Following [2], let us now consider the mechanism that results from applying the

BCGC transformation to the VCG mechanism. We refer to this as the Bailey-Cavallo
mechanism or simply the BC mechanism. Let θ′ := (θ1, ..., θi−1, θ

′
i, θi+1, ..., θn), so

θ′j = θj for j �= i and the ith player’s type in the type vector θ′ is θ′i. Then

SBCGC
i (θ−i) = max

θ′
i∈Θi

n∑

k=1

⎡

⎣
∑

j �=k

vj(f(θ′), θ′j) − max
d∈D

∑

j �=k

vj(d, θ′j)

⎤

⎦ ,

that is,

SBCGC
i (θ−i) = max

θ′
i∈Θi

⎡

⎣(n − 1)
n∑

k=1

vk(f(θ′), θ′k) −
n∑

k=1

max
d∈D

∑

j �=k

vj(d, θ′j)

⎤

⎦ . (1)

In many settings, we have that for all θ and for all i, SBCGC
i (θ−i) = 0, and conse-

quently the VCG and BC mechanisms coincide. Whenever they do not, by Note 1(ii)
BC dominates VCG. This is the case for the single-item auction, as it can be seen that
there SBCGC

i (θ−i) = −[θ−i]2, where [θ−i]2 is the second-highest bid among bids other
than player i’s own bid.

3 Anonymous Groves Mechanisms

Throughout this paper, we will be interested in a special class of Groves mechanisms,
namely, anonymous Groves mechanisms. We provide here some results about this class
that we will utilize in later sections. We call a function f : An → B permutation in-
dependent if for all permutations π of {1, . . ., n}, f = f ◦ π. Following [12] we call a
Groves mechanism (determined by the vector of functions (h1, . . ., hn)) anonymous if

– all type sets Θi are equal,
– all functions hi coincide and each of them is permutation independent.

Hence, an anonymous Groves mechanism is uniquely determined by a single function
h : Θn−1 → R.

6 Here and below, to ensure that the considered maximum exist, we assume that f and each vi

are continuous functions and D and each θi are compact subsets of some R
k.
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In general, the VCG mechanism is not anonymous. But it is anonymous when all the
type sets are equal and all the initial utility functions vi coincide. This is the case in
both of the domains that we consider in this paper.

For any θ ∈ Θ and any permutation π of {1, . . ., n} we define θπ ∈ Θ by letting

θπ
i := θπ−1(i).

Denote by Π(k) the set of all permutations of the set {1, . . ., k}. Given a Groves
mechanism h := (h1, . . ., hn) for which the type set Θi is the same for every player
(and equal to, say, Θ0) we construct now a function h′ : Θn−1

0 → R by putting

h′(x) :=

∑
π∈Π(n−1)

∑n
j=1 hj(xπ)

n!
,

where xπ is defined analogously to θπ .
Note that h′ is permutation independent, so h′ is an anonymous Groves mechanism.
The following lemma shows that some of the properties of h transfer to h′.

Lemma 1. Consider a Groves mechanism h and the corresponding anonymous Groves
mechanism h′. Let G(θ) :=

∑n
j=1 vj(f(θ), θj). Suppose that for all permutations π of

{1, . . ., n}, G(θ) = G(θπ). Then:

(i) If h is feasible, so is h′.
(ii) If an anonymous Groves mechanism h0 is welfare dominated by h, then it is welfare

dominated by h′.

The assumption in Lemma 1 of permutation independence of G(·) is satisfied in both
of the domains that we consider in this paper. Basically, Lemma 1 says that if a Groves
mechanism is not welfare undominated, then it must be welfare dominated by an anony-
mous Groves mechanism.

4 Multi-unit Auctions with Unit Demand

In this section, we consider auctions where there are multiple identical units of a single
good and all players have unit demand, i.e., each player wants only one unit. (When
there is only one unit, we have a standard single-item auction.) For this setting, we
obtain an analytical characterization of all welfare undominated Groves mechanisms
that are anonymous and have linear payment functions, by proving that the optimal-
in-expectation linear redistribution mechanisms (OEL mechanisms) [6], which include
the BC mechanism, are the only welfare undominated Groves mechanisms that are
anonymous and linear. We also show that undominance and welfare undominance are
equivalent if we restrict our consideration to Groves mechanisms that are anonymous
and linear in the setting of multi-unit auctions with unit demand.

4.1 Optimal-in-Expectation Linear Redistribution Mechanisms

The optimal-in-expectation linear redistribution mechanisms are special cases of Groves
mechanisms that are anonymous and linear. The OEL mechanisms are defined only for
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multi-unit auctions with unit demand, in which there are m indistinguishable units for
sale, and no bidder is interested in obtaining more than one unit. For player i, her type θi

is her valuation for winning one unit. We assume all bids (announced types) are bounded
below by L and above by U , i.e., Θi = [L, U ]. (L can be 0.)

The tax function t of an anonymous linear Groves mechanism is defined as ti(θ) =
tV CG
i (θ) + r(θ−i) for all i and θ. Here tV CG is (the tax function of) the VCG mecha-

nism, and r is a linear function defined as r(θ−i) = c0 +
n−1∑

j=1
cj [θ−i]j (where [θ−i]j is

the jth highest bid among θ−i). For OEL, the cj’s are chosen according to one of the
following options (indexed by k, k is from 0 to n, and k − m is odd):

k = 0:
ci = (−1)m−i

(
n−i−1
n−m−1

)
/
(
m−1
i−1

)
for i = 1, . . . , m,

c0 = Um/n − U
∑m

i=1(−1)m−i
(

n−i−1
n−m−1

)
/
(
m−1
i−1

)
, and ci = 0 for other i.

k = 1,2, . . . ,m:
ci = (−1)m−i

(
n−i−1
n−m−1

)
/
(
m−1
i−1

)
for i = k + 1, . . . , m,

ck = m/n −
∑m

i=k+1(−1)m−i
(

n−i−1
n−m−1

)
/
(
m−1
i−1

)
, and ci = 0 for other i.

k = m + 1,m + 2, . . . ,n − 1:
ci = (−1)m−i−1

(
i−1
m−1

)
/
(
n−m−1
n−i−1

)
for i = m + 1, . . . , k − 1,

ck = m/n −
∑k−1

i=m+1(−1)m−i−1
(

i−1
m−1

)
/
(
n−m−1
n−i−1

)
, and ci = 0 for other i.

k = n:
ci = (−1)m−i−1

(
i−1
m−1

)
/
(
n−m−1
n−i−1

)
for i = m + 1, . . . , n − 1,

c0 = Lm/n − L
∑n−1

i=m+1(−1)m−i−1
(

i−1
m−1

)
/
(
n−m−1
n−i−1

)
, and ci = 0 for other i.

For example, when k = m + 1, we have cm+1 = m/n and ci = 0 for all other i.
For this specific OEL mechanism, tOEL

i (θ) = tV CG
i (θ) + m

n [θ−i]m+1. That is, besides
paying the VCG payment, every player receives an amount that is equal to m/n times
the (m + 1)th highest bid from the other players. Actually, this is the BC mechanism
for this setting.

One property of the OEL mechanisms is that the sum of the taxes
∑n

i=1 tOEL
i (θ) is

always less than or equal to 0 and it equals 0 whenever

• [θ]1 = U , if k = 0.
• [θ]k+1 = [θ]k, if k ∈ {1, . . ., n − 1}.
• [θ]n = L, if k = n.

Using this property, we will prove that the OEL mechanisms are the only welfare
undominated Groves mechanisms that are anonymous and linear.

4.2 Characterization of Welfare Undominated Groves Mechanisms That Are
Anonymous and Linear

We first show that the OEL mechanisms are welfare undominated. (It has previously
been shown that they are undominated [7], but as we pointed out, being welfare un-
dominated is a stronger property.)
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Theorem 1. No feasible Groves mechanism welfare dominates an OEL mechanism.

According to Lemma 1, we only need to prove this for the case of anonymous Groves
mechanisms:

Lemma 2. No feasible anonymous Groves mechanism welfare dominates an OEL
mechanism.

We now show that within the family of anonymous and linear Groves mechanisms,
the OEL mechanisms are the only ones that are welfare undominated. Actually, they
are also the only ones that are undominated, which is a stronger claim since being
undominated is a weaker property.

Theorem 2. If a feasible anonymous linear Groves mechanism is undominated, then it
must be an OEL mechanism.

Hence, we have the following complete characterization in this context:

Corollary 1. A feasible anonymous linear Groves mechanism is (welfare) undominated
if and only if it is an OEL mechanism.

The above corollary also shows that if we consider only Groves mechanisms that are
anonymous and linear in the setting of multi-unit auctions with unit demand, then un-
dominance and welfare undominance are equivalent.7

5 Public Project Problem with Equal Participation Costs

We now study a well known class of decision problems, namely public project
problems—see, e.g., [10,12,11].

Public project problem. Consider (D, Θ1, . . ., Θn, v1, . . ., vn), where

• D = {0, 1} (reflecting whether a project is canceled or takes place),
• for all i ∈ {1, . . ., n}, Θi = [0, c], where c > 0,
• for all i ∈ {1, . . ., n}, vi(d, θi) := d(θi − c

n ),

In this setting a set of n agents needs to decide on financing a project of cost c. In
the case that the project takes place, each agent contributes the same share, c/n, so as
to cover the total cost. Hence the participation costs of all players are the same. When
the players employ a tax-based mechanism to decide on the project, then in addition to
c/n, each player also has to pay or receive the tax, ti(θ), imposed by the mechanism.

By the result of Holmstrom [9], the only efficient and strategy-proof tax-based mech-
anisms in this domain are Groves mechanisms. To determine the efficient outcome for a
given type vector θ, note that

∑n
i=1 vi(d, θi) = d(

∑n
i=1 θi − c). Hence efficiency here

for a mechanism (f, t) means that f(θ) = 1 if
∑n

i=1 θi ≥ c and f(θ) = 0 otherwise,
i.e., the project takes place if and only if the declared total value that the agents have for
the project exceeds its cost. We first observe the following result.

7 Thus, we have also characterized all undominated Groves mechanisms that are anonymous
and linear. There is no corresponding result in [7].
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Note 2. In the public project problem the BC mechanism coincides with VCG.

Proof. It suffices to check that in equation (1) it holds that SBCGC
i (θ−i) = 0 for all i

and all θ−i. By the feasibility of VCG we have SBCGC
i ≤ 0, hence all we need is to

show that there is a value for θ′i that makes the expression in (1) equal to 0. Checking
this is quite simple. If

∑
j �=i θj < n−1

n c, then we take θ′i := 0 and otherwise θ′i := c. �

We now show that in fact VCG cannot be improved upon. Before stating our result,
we would like to note that one ideally would like to have a mechanism that is budget-
balanced, i.e.,

∑
i ti(θ) = 0 for all θ, so that in total the agents only pay the cost of the

project and no more. However this is not possible and as explained in [10, page 861-
862], for the public project problem no mechanism exists that is efficient, strategy-proof
and budget balanced. Our theorem below considerably strengthens this result, showing
that VCG is optimal with respect to minimizing the total payment of the players.

Theorem 3. In the public project problem there exists no feasible Groves mechanism
that welfare dominates the VCG mechanism.

As in Section 4, we first establish the desired conclusion for anonymous Groves mech-
anisms and then extend it to arbitrary ones by Lemma 1.

Lemma 3. In the public project problem there exists no anonymous feasible Groves
mechanism that welfare dominates the VCG mechanism.

6 Public Project Problem: The General Case

The assumption that we have made so far in the public project problem that each
player’s cost share is the same may not always be realistic. Indeed, it may be argued
that ‘richer’ players (read: larger enterprises) should contribute more. Does it matter if
we modify the formulation of the problem appropriately? The answer is ‘yes’. First, let
us formalize this problem. We assume now that each (initial) utility function is of the
form vi(d, θi) := d(θi − ci), where for all i ∈ {1, . . ., n}, ci > 0 and

∑n
i=1 ci = c.

In this setting, ci is the cost share of the project cost to be financed by player i. We
call the resulting problem the general public project problem. It is taken from [11, page
518]. We first prove the following optimality result concerning the VCG mechanism.

Theorem 4. In the general public project problem there is no pay-only Groves mecha-
nism that dominates the VCG mechanism.

It remains an open problem whether the above result can be extended to the welfare
dominance relation. On the other hand, the above theorem cannot be extended to feasi-
ble Groves mechanisms, as the following result holds.

Theorem 5. For any n ≥ 3, an instance of the general public project problem with n
players exists for which the BC mechanism dominates the VCG mechanism.

By Theorem 4, the BC mechanism in the proof of the above theorem is not pay-only.



436 K. Apt et al.

7 Summary

In this paper, we introduced and studied the following relation on feasible Groves mech-
anisms: a feasible Groves mechanism welfare dominates another feasible Groves mech-
anism if the total welfare (with taxes taken into account) under the former is at least as
great as the total welfare under the latter, for any type vector—and the inequality is strict
for at least one type vector. This dominance notion is different from the one proposed
in [7]. We then studied welfare (un)dominance in two domains. The first domain we
considered was that of auctions with multiple identical units and unit demand bidders.
In this domain, we analytically characterized all welfare undominated Groves mecha-
nisms that are anonymous and have linear payment functions. The second domain we
considered is that of public project problems. In this domain, we showed that the VCG
mechanism is welfare undominated if cost shares are equal, but also that this is not nec-
essarily true if cost shares are not necessarily equal (though we showed that the VCG
mechanism remains undominated in the weaker sense of [7] among pay-only mecha-
nisms in this more general setting).
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A Dominance Is Distinct from Welfare Dominance

In this appendix, we give two tax-based mechanisms t and t′ (both feasible, anonymous
Groves mechanisms) such that t′ welfare dominates t, but t′ does not dominate t. Con-
sider a single-item auction with 4 players. We assume that for each player, the set of
allowed bids is the same, namely, integers from 0 to 3. Let tV CG be (the tax function
of) the VCG mechanism. For all θ ∈ {0, 1, 2, 3}4,

∑4
i=1 tV CG

i (θ) = −[θ]2. This is
because for a single-item auction, the VCG mechanism is the second-price auction. We
define t and t′ as follows: Function t: For all θ, ti(θ) := tV CG

i (θ) + h(θ−i), where
h(θ−i) = r([θ−i]1, [θ−i]2, [θ−i]3), and the function r is given in the table below. (We
recall that [θ−i]j is the jth-highest bid among bids other than i’s own bid.) Function t′:
For all θ, t′i(θ) := tV CG

i (θ) + h′(θ−i), where h′(θ−i) = r′([θ−i]1, [θ−i]2, [θ−i]3), and
the function r′ is given in the table below.

r(0,0,0) 0 r
′(0,0,0) 0

r(1,0,0) 0 r
′(1,0,0) 0

r(1,1,0) 1/4 r
′(1,1,0) 1/4

r(1,1,1) 1/4 r
′(1,1,1) 1/4

r(2,0,0) 0 r
′(2,0,0) 0

r(2,1,0) 1/12 r
′(2,1,0) 7/24

r(2,1,1) 0 r
′(2,1,1) 1/6

r(2,2,0) 1/2 r
′(2,2,0) 1/2

r(2,2,1) 0 r
′(2,2,1) 1/4

r(2,2,2) 1/2 r
′(2,2,2) 1/2

r(3,0,0) 0 r
′(3,0,0) 0

r(3,1,0) 1/4 r
′(3,1,0) 1/4

r(3,1,1) 0 r
′(3,1,1) 1/4

r(3,2,0) 2/3 r
′(3,2,0) 2/3

r(3,2,1) 1 r
′(3,2,1) 19/24

r(3,2,2) 0 r
′(3,2,2) 1/6

r(3,3,0) 2/3 r
′(3,3,0) 5/6

r(3,3,1) 0 r
′(3,3,1) 7/12

r(3,3,2) 1 r
′(3,3,2) 5/6

r(3,3,3) 0 r
′(3,3,3) 1/2

With the above characterization, t′ welfare dominates t (the total tax under t′ is never
lower, and in some cases it is strictly higher: for example, for the bid vector (3, 2, 2, 2),
the sum of the ri is 1/2, but the sum of the r′i is 1). On the other hand, t′ does not
dominate t: for example, r(3, 3, 2) = 1 > 5/6 = r′(3, 3, 2). In fact, no feasible Groves
mechanism dominates t.
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