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Abstract. We study the problem of allocating a single item repeatedly among
multiple competing agents, in an environment where monetary transfers are not
possible. We design (Bayes-Nash) incentive compatible mechanisms that do not
rely on payments, with the goal of maximizing expected social welfare. Wefirst
focus on the case of two agents. We introduce an artificial payment system, which
enables us to constructrepeatedallocation mechanismswithout paymentsbased
on one-shotallocation mechanismswith payments. Under certain restrictions on
the discount factor, we propose several repeated allocation mechanisms based
on artificial payments. For the simple model in which the agents’ valuations are
either high or low, the mechanism we propose is0.94-competitive against the
optimal allocation mechanism with payments. For the general case of any prior
distribution, the mechanism we propose is0.85-competitive. We generalize the
mechanism to cases of three or more agents. For any number of agents, the mech-
anism we obtain is at least0.75-competitive. The obtained competitive ratios im-
ply that for repeated allocation, artificial payments may be used to replacereal
monetary payments, without incurring too much loss in social welfare.

1 Introduction

An important class of problems at the intersection of computer science and economics
deals with allocating resources among multiple competing agents. For example, an op-
erating system allocates CPU time slots to different applications. The resources in this
example are the CPU time slots and the agents are the applications. Another example
scenario, closer to daily life, is “who gets the TV remote control.” Here the resource is
the remote control and the agents are the members of the household. In both scenarios
the resources are allocated repeatedly among the agents, and monetary transfers are in-
feasible (or at least inconvenient). In this paper, we investigate problems like the above.
That is, we study how to allocate resources in a repeated setting, without relying on
payments. Our objective is to maximize social welfare, i.e., allocative efficiency.

The problem of allocating resources among multiple competing agents when mone-
tary transfers are possible has been studied extensively inboth the one-shot mechanism
design setting [9, 6, 20, 16, 19, 15] and the repeated setting[11, 7, 10, 5]. A question that
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has recently been drawing the attention of computer scientists is how to design mecha-
nisms without payments to achieve competitive performanceagainst mechanisms with
payments [21, 13].3 This paper falls into this category. We consider mechanismswith-
out payments in repeated settings. A paper that lays out manyof the foundations for
repeated games is due to Abreuet al. [2], in which the authors investigate the problem
of finding pure-strategy sequential equilibria of repeatedgames with imperfect moni-
toring. Their key contribution is the state-based approachfor solving repeated games,
where in equilibrium, the game is always in astatewhich specifies the players’ long-run
utilities, and on which the current period’s payoffs are based. There are many papers
that rely on the same or a similar state-based approach [22, 18, 17, 8].

The following papers are more related to our work: Fudenberget al. [14] give a
folk theorem for repeated games with imperfect public information. Both [14] and our
paper are built on the (dynamic programming style)self-generatingtechnique in [2] (it
is calledself-decomposablein [14]). However, [14] considers self-generation based on
a certain supporting hyperplane, which is guaranteed to exist only when the discount
factor goes to1. 4 Therefore, their technique does not apply to our problem because we
are dealing with non-limit discount factors.5 Another difference between [14] and our
paper is that we are designing specific mechanisms in this paper, instead of trying to
prove the existence of a certain class of mechanisms. With non-limit discount factors, it
is generally difficult to precisely characterize the set of feasible utility vectors (optimal
frontier) for the agents. Several papers have already proposed different ways of approx-
imation (for cases of non-limit discount factors). Atheyet al. [4] study approximation
by requiring that the payoffs of the agents must be symmetric. In what, from a technical
perspective, appears to be the paper closest to the work in this paper, Athey and Bag-
well [3] investigate collusion in a repeated game by approximating the optimal frontier
by a line segment (the same technique also appears in the workof Abdulkadirŏglu and
Bagwell [1]). One of their main results is that if the discount factor reaches a certain
threshold (still strictly less than1), then the approximation comes at no cost. That is, the
optimal (first-best) performance can be obtained. However,their technique only works
for finite type spaces, as it builds on uneven tie-breaking.

The main contribution of this paper can be summarized as follows. First, we in-
troduce a new technique for approximating the optimal frontier for repeated allocation
problem. Our technique works for non-limit discount factors and is not restricted to
symmetric payoffs or finite type spaces. The technique we propose is presented in the
form of an artificial payment system, which corresponds to approximating the optimal
frontier by triangles. The artificial payment system enables us to construct repeated al-

3 In the previous work, as well as in this paper, the first-best result can be achieved by mecha-
nisms with payments.

4 In [14], it is shown that any feasible and individually rational equilibrium payoff vectorv
can be achieved in a perfect public equilibrium (self-generated based on certain supporting
hyperplanes), as long as the discount factor reaches a thresholdβ. However, the threshold
β depends onv. If we consider all possible values ofv, then we essentially require that the
discount factor/threshold approach1, since any discount factor that is strictly less than1 does
not work (for somev).

5 In this paper, we also require that the discount factor reaches a threshold, but here the threshold
is a constant that works for all possible priors.



location mechanisms without payments based on one-shot allocation mechanisms with
payments. We analytically characterize several repeated allocation mechanisms that do
not rely on payments, and prove that they are competitive against the optimal mecha-
nism with payments.

This paper also contributes to the line of research on designing competitive mech-
anisms without payments. The proposed artificial payment system provides a link be-
tween mechanisms with payments and mechanisms without payments. By proposing
specific competitive mechanisms that do not rely on payments, our paper also pro-
vides an answer to the question:Are monetary payments necessary for designing good
mechanisms?Our results imply that in repeated settings, artificial payments are “good
enough” for designing allocation mechanisms with high social welfare. Conversely, it
is easy to see that for one-shot settings, artificial payments are completely useless in the
problem we study (single-item allocation).

The idea of designing mechanisms without payments to achieve competitive per-
formance against mechanisms with payments was explicitly framed by Procaccia and
Tennenholtz [21], in their paper titledApproximate Mechanism Design Without Money.
That paper carries out a case study on locating a public facility for agents with single-
peaked valuations. (The general idea of approximate mechanism design without pay-
ments dates back further, at least to work by Dekelet al. [13] in a machine learning
framework.) To our knowledge, along this line of research, we are the first to to study
allocation of private goods. Unlike the models studied in the above two papers [13,
21], where agents may have consensus agreement, when we are considering the allo-
cation of private goods, the agents are fundamentally in conflict. Nevertheless, it turns
out that even here, some positive results can be obtained if the allocation is carried out
repeatedly. Thus, we believe that our results provide additional insights to this line of
research.

2 Model Description

We study the problem of allocating a single item repeatedly between two (and later in
the paper, more than two) competing agents. Before each allocation period, the agents
learn their (private) valuations for having the item in thatperiod (but not for any future
periods). These preferences are independent and identically distributed, across agents as
well as periods, according to a distributionF . We assume that these valuations are non-
negative and have finite expectations.F does not change over time. There are infinitely
many periods, and agents’ valuations are discounted according to a discount factorβ.
Our objective is to design a mechanism that maximizes expected social welfare under
the following constraints (we allow randomized mechanisms):

– (Bayes-Nash) Incentive Compatibility:Truthful reporting is a Bayes-Nash equilib-
rium.

– No Payments:No monetary transfers are ever made.

In the one-shot mechanism design setting, incentive compatibility is usually achieved
through payments. This ensures that agents have no incentive to overbid, because they
may have to make large payments. In the repeated allocation setting, there are other



ways to achieve incentive compatibility: for example, if anagent strongly prefers to
obtain the item in the current period, the mechanism can ensure that she is less likely
to obtain it in future periods. In a sense, this is an artificial form of payment. Such pay-
ments introduce some new issues that do not always occur withmonetary payments,
including that each agent effectively has a limited budget (corresponding to a limited
amount of future utility that can be given up); and if one agent makes a payment to an-
other agent by sacrificing some amount of future utility, thecorresponding increase in
the latter agent’s utility may be different from the decrease in the former agent’s utility.

3 State-Based Approach

Throughout the paper, we adopt the state-based approach introduced in Abreuet al.[2].
In their paper, the authors investigated the problem of finding pure-strategy sequen-
tial equilibria of repeated games with imperfect monitoring. Their problem can be
rephrased as follows: Given a game, what are the possible pure-strategy sequential
equilibria? Even though in our paper we are considering a different problem (we are
designingthe game), the underlying ideas still apply. In their paper,states correspond
to possible equilibria, while in our paper, states correspond to feasible mechanisms.
In this section, we review a list of basic results and observations on the state-based
approach, specifically in the context of repeated allocation.

Let M be an incentive compatible mechanism without payments for aparticular
(fixed) repeated allocation problem, defined by a particulartype distribution and a dis-
count factor. If, underM , the expected long-term utilities of agents1 and 2 (at the
beginning) arex andy respectively, then we denote mechanismM by state(x, y). All
mechanisms that can be denoted by(x, y) are considered equivalent. If we are about to
apply mechanismM , then we say the agents are in state(x, y). In the first period, based
on the agents’ reported values, the mechanism specifies bothhow to allocate the item
in this period, and what to do in the future periods. The rule for the future is itself a
mechanism. Hence, a mechanism specifies how to allocate the item within the first pe-
riod, as well as the state (mechanism) that the agents will bein in the second period. We
have that(x, y) = Ev1,v2

[(r1(v1, v2), r2(v1, v2)) + β(s1(v1, v2), s2(v1, v2))], where
v1, v2 are the first-period valuations,r1, r2 are the immediate rewards obtained from
the first-periodallocation rule, and(s1, s2) gives the second-period state, representing
thetransition rule.

State(x, y) is called afeasiblestate if there is a feasible mechanism (that is, an
incentive compatible mechanism without payments) corresponding to it. We denote the
set of feasible states byS∗. Let e be an agent’s expected valuation for the item in a
single period.E = e

1−β
is the maximal expected long-term utility an agent can receive

(corresponding to the case where she receives the item in every period). LetO be the
set of states{(x, y)|0 ≤ x ≤ E, 0 ≤ y ≤ E}. We have thatS∗ ⊆ O − {(E,E)} ( O.

S∗ is convex, for the following reason. If(x1, y1) and(x2, y2) are both feasible, then
(x1+x2

2 , y1+y2

2 ) is also feasible (it corresponds to the randomized mechanism where we
flip a coin to decide which of the two mechanisms to apply).S∗ is symmetric with
respect to the diagonaly = x: if (x, y) is feasible, then so is(y, x) (by switching the
roles of the two agents).



The approximate shape ofS∗ is illustrated in Figure 1. There are three noticeable
extreme states:(0, 0) (nobody ever gets anything),(E, 0) (agent1 always gets the item),
and(0, E) (agent2 always gets the item).S∗ is confined by the x-axis (from(0, 0) to
(E, 0)), the y-axis (from(0, 0) to (0, E)), and, most importantly, the bold curve, which
corresponds to the optimal frontier. The square specified bythe dotted lines represents
O.
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Fig. 1.The shape ofS∗.
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Fig. 2.Bow shape approximated by triangle.

Our objective is to find the state(x∗, y∗) ∈ S∗ that maximizesx∗ + y∗ (expected
social welfare). By convexity and symmetry, it does not hurtto consider only cases
wherex∗ = y∗.

We now define a notion of when one set of states isgenerated byanother. Recall
that a mechanism specifies how to allocate the item within thefirst period, as well as
which state the agents transition to for the second period. LetS be any set of states with
S ⊂ O. Let us assume that, in the second period, exactly the statesin S are feasible.
That is, we assume that, if and only if(x, y) ∈ S, starting at the second period, there
exists a feasible mechanism under which the expected utilities of agent1 and2 arex

andy, respectively. Based on this assumption, we can construct incentive compatible
mechanisms starting at the first period, by specifying anallocation rule for the first
period, as well as atransition rulethat specifies the states inS to which the agents will
transition for the beginning of the second period. Now, we only need to make sure that
the first period is incentive compatible. That is, the allocation rule in the first period,
combined with the rule for selecting the state at the start ofthe second period, must
incentivize the agents to report their true valuations in the first period. We say the set of
resulting feasible states for the first period isgenerated byS, and is denoted byGen(S).

The following claim provides a general guideline for designing feasible mecha-
nisms.

Claim 1 For anyS ⊆ O, if S ⊆ Gen(S), thenS ⊆ S∗. That is, ifS is self-generating,
then all the states inS are feasible.



We now consider starting with the squareO that containsS∗ and iteratively gener-
ating sets. LetO0 = O andOi+1 = Gen(Oi) for all i. The following claim, together
with Claim 1, provide a general approach for computingS∗.

Claim 2 TheOi form a sequence of (weakly) decreasing sets that converges to S∗ if it
converges at all. That is,S∗ = Gen(S∗). S∗ ⊆ Oi for all i. Oi+1 ⊆ Oi for all i. If
Oi = Oi+1, thenOi = S∗.

The above guideline leads to a numerical solution techniquefor finite valuation
spaces. With a properly chosen numerical discretization scheme, we are able to com-
pute an underestimation ofOi for all i, by solving a series of linear programs. The
underestimations of theOi always converge to an underestimation ofS∗ (a subset of
S∗). That is, we end up with a set of feasible mechanisms. We are also able to show that
as the discretization step size goes to0, the obtained feasible set approachesS∗. That
is, the numerical solution technique produces an optimal mechanism in the limit as the
discretization becomes finer. Details of the numerical solution technique are omitted
due to space constraint.

One drawback of the numerical approach is that the obtained mechanism does not
have an elegant form. This makes it harder to analyze. From the agents’ perspective, it is
difficult to comprehend what the mechanism is trying to do, which may lead to irrational
behavior. Another drawback of the numerical approach is that it only applies to cases
of finite valuation spaces. For the rest of the paper, we take amore analytical approach.
We aim to design mechanisms that can be more simply and elegantly described, work
for any valuation space, and are (hopefully) close to optimality.

At the end of Section 4.2, we will compare the performances ofthe mechanisms
obtained numerically and the mechanisms obtained by the analytical approach.

4 Competitive Analytical Mechanism

In this section, we propose the idea of an artificial payment system. Based on this, we
propose several mechanisms that can be elegantly described, and we can prove that
these mechanisms are close to optimality.

4.1 Artificial Payment System

Let us recall the approximate shape ofS∗ (Figure 2). The area covered byS∗ consists of
two parts. The lower left part is a triangle whose vertices are (0, 0), (E, 0), and(0, E).
These three states are always feasible, and so are their convex combinations. The upper
right part is a bow shape confined by the straight line and the bow curve from(0, E) to
(E, 0). To solve forS∗, we are essentially solving for the largest bow shape satisfying
that the union of the bow shape and the lower-left triangle isself-generating. Here, we
consider an easier problem. Instead of solving for the largest bow shape, we solve for
the largest triangle (whose vertices are(0, E),(E, 0), and(x∗, x∗)) so that the union of
the two triangles is self-generating (illustrated in Figure 2). That is, we want to find the
largest value ofx∗ that satisfies that the set of convex combinations of(0, 0), (E, 0),
(0, E), and(x∗, x∗) is self-generating.



The triangle approximation corresponds to anartificial payment system. Let(x∗, x∗)
be any feasible state satisfyingx∗ ≥ E

2 . Such a feasible state always exists (e.g.,
(E

2 , E
2 )). We can implement an artificial payment system based on(x∗, x∗), (E, 0),

and(0, E), as follows. At the beginning of a period, the agents are toldthat the default
option is that they move to state(x∗, x∗) at the beginning of the next period. However,
if agent1 wishes to payv1 (v1 ≤ βx∗) units of artificial currency to agent2 (and agent
2 is not paying), then the agents will move to(x∗ − v1

β
, x∗ + E−x∗

x∗

v1

β
). That is, the

future state is movedv1

β
units to the left along the straight line connecting(0, E) and

(x∗, x∗). (This corresponds to going to each of these two states with acertain proba-
bility.) By payingv1 units of artificial currency, agent1’s expected utility is decreased
by v1 (the expected utility is decreased byv1

β
at the start of the next period). When

agent1 paysv1 units of artificial currency, agent2 receives onlyE−x∗

x∗
v1 (also as a

result of future utility). In effect, a fraction of the payment is lost in transmission. Sim-
ilarly, if agent 2 wishes to payv2 (v2 ≤ βx∗) units of artificial currency to agent1
(and agent1 is not paying), then the agents will move to(x∗ + E−x∗

x∗

v2

β
, x∗ − v2

β
).

That is, the future state is movedv2

β
units towards the bottom along the straight line

connecting(x∗, x∗) and(E, 0). If both agents wish to pay, then the agents will move
to (x∗ − v1

β
+ E−x∗

x∗

v2

β
, x∗ − v2

β
+ E−x∗

x∗

v1

β
), which is a convex combination of(0, 0),

(0, E), (E, 0), and(x∗, x∗).
Effectively, both agents have abudgetof βx∗, and when an agent pays the other

agent, there is agift taxwith rate1 − E−x∗

x∗
.

Based on the above artificial payment system, our approach isto design repeated
allocation mechanisms without payments, based on one-shotallocation mechanisms
with payments. In order for this to work, the one-shot allocation mechanisms need to
take the gift tax into account, and an agent’s payment shouldnever exceed the budget
limit.

The budget constraint is difficult from a mechanism design perspective. We circum-
vent this based on the following observation. An agent’s budget is at leastβ E

2 = eβ
2−2β

,
which goes to infinity asβ goes to1. As a result, for sufficiently large discount factors,
the budget constraint will not be binding. For the remainderof this paper, we ignore the
budget limit when we design the mechanisms. Then, for each obtained mechanism, we
specify how large the discount factor has to be for the mechanism to be well defined
(that is, the budget constraint is not violated). This allows us to work around the budget
constraint. The drawback is obvious: our proposed mechanisms only work for discount
factors reaching a (constant) threshold (though it is not asrestrictive as studying the
limit case asβ → 1).

4.2 High/Low Types

We start with the simple model in which the agents’ valuations are eitherH (high) with
probabilityp or L (low) with probability1 − p. Without loss of generality, we assume
thatL = 1. We will construct a repeated allocation mechanism withoutpayments based
on the followingpay-onlyone-shot allocation mechanism:



Allocation: If the reported types are the same, we determine the winner byflipping
a (fair) coin. If one agent’s reported value is high and the other agent’s reported value
is low, then we allocate the item to the agent reporting high.

Payment:An agent pays0 if its reported type is low. An agent pays12 if its reported
type is high (whether she wins or not); this payment does not go to the other agent.

Claim 3 The above pay-only mechanism is (Bayes-Nash) incentive compatible.

Now we return to repeated allocation settings. Suppose(x∗, x∗) is a feasible state.
That is, we have an artificial payment system with gift tax rate 1 − E−x∗

x∗
. We apply

the above one-shot mechanism, with the modifications that when an agent pays12 , it is
paying artificial currency instead of real currency, and theother agent receives12

E−x∗

x∗
.

We note that the amount an agent receives is only based on the other agent’s reported
value. Therefore, the above modifications do not affect the incentives.

Under the modified mechanism, an agent’s expected utility equalsT
2 −P+P E−x∗

x∗
+

βx∗. In the above expression,T = 2p(1− p)H + p2H +(1− p)2 is the expected value
of the higher reported value.T

2 is then the ex ante expected utility received by an agent
as a result of the allocation.P = p

2 is the expected amount of artificial payment an
agent pays.P E−x∗

x∗
is the expected amount of artificial payment an agent receives.βx∗

is the expected future utility by default (if no payments aremade).
If both agents report low, then, at the beginning of the next period, the agents go to

(x∗, x∗) by default. If agent1 reports high and agent2 reports low, then the agents go to
(x∗ − 1

2β
, x∗ + E−x∗

2βx∗
), which is a convex combination of(x∗, x∗) and(0, E). If agent

1 reports low and agent2 reports high, then the agents go to(x∗ + E−x∗

2βx∗
, x∗ − 1

2β
),

which is a convex combination of(x∗, x∗) and(E, 0). If both agents report high, then
the agents go to(x∗ − 1

2β
+ E−x∗

2βx∗
, x∗ − 1

2β
+ E−x∗

2βx∗
), which is a convex combination

of (x∗, x∗) and (0, 0). Let S be the set of all convex combinations of(0, 0), (E, 0),
(0, E), and(x∗, x∗). The future states given by the above mechanism are always in
S. If an agent’s expected utility under this mechanism is greater than or equal tox∗,
then S is self-generating. That is,(x∗, x∗) is feasible as long asx∗ satisfiesx∗ ≤
T
2 − P + P E−x∗

x∗
+ βx∗.

We rewrite it asax∗2 + bx∗ + c ≤ 0, wherea = 1 − β, b = 2P − T
2 , and

c = −EP . The largestx∗ satisfying the above inequality is simply the larger solution

of ax∗2 + bx∗ + c = 0, which is
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β) .

This leads to a feasible mechanismM∗ (corresponding to state(x∗, x∗)). The ex-
pected social welfare underM∗ is 2x∗, wherex∗ equals the above solution.

We have not considered the budget limit. For the aboveM∗ to be well-defined
(satisfying the budget constraint), we needβx∗ ≥ 1

2 . Sincex∗ ≥ E
2 = e

2−2β
≥ 1

2−2β
,

we only need to make sure thatβ2−2β
≥ 1

2 . Therefore, ifβ ≥ 1
2 , thenM∗ is well-

defined. For specific priors,M∗ could be well-defined even for smallerβ.
Next, we show that (wheneverM∗ is well-defined)M∗ is very close to optimality.

Consider thefirst-best allocation mechanism: the mechanism that always successfully
identifies the agent with the higher valuation and allocatesthe item to this agent (for
free). This mechanism is not incentive compatible, and hence not feasible. The expected



social welfare achieved by the first-best allocation mechanism is T
1−β

, which is an upper
bound on the expected social welfare that can be achieved by any mechanism with (or
without) payments (it is a strict upper bound, as the dAGVA mechanism [12] is efficient,
incentive compatible, and budget balanced).

Definition 1. When the agents’ valuations are either high or low, the priordistribution
over the agents’ valuations is completely characterized bythe values ofH andp. LetW
be the expected social welfare under a feasible mechanismM . LetWF be the expected
social welfare under the first-best allocation mechanism. If W ≥ αWF for all H and
p, then we sayM is α-competitive. We callα a competitive ratioof M .

Claim 4 WheneverM∗ is well-defined for allH and p, (e.g., β ≥ 1
2 ), M∗ is 0.94-

competitive.

As a comparison, the lottery mechanism that always chooses the winner by flipping
a fair coin has competitive ratio (exactly)0.5 (if H is much larger thanL and unlikely
to occur).

In the following table, for different values ofH, p, andβ, we compareM∗ to
the near-optimalfeasiblemechanism obtained with the numerical solution technique.
The table elements are the expected social welfare underM∗, the near-optimal feasible
mechanism, the first-best allocation mechanism, and the lottery mechanism.

M∗ Optimal First-bestLottery
H = 2, p = 0.2, β = 0.5 2.6457 2.6725 2.7200 2.4000

H = 4, p = 0.4, β = 0.5 5.5162 5.7765 5.8400 4.4000

H = 16, p = 0.8, β = 0.5 30.3421 30.8000 30.8000 26.0000

H = 2, p = 0.2, β = 0.8 6.6143 6.7966 6.8000 6.0000

H = 2, p = 0.8, β = 0.8 9.4329 9.8000 9.8000 9.0000

H = 16, p = 0.8, β = 0.8 75.8552 77.0000 77.0000 65.0000

4.3 General Valuation Space

In this section, we generalize the earlier approach to general valuation spaces. We letf

denote the probability density function of the prior distribution. (A discrete prior distri-
bution can always be smoothed to a continuous distribution that is arbitrarily close.)

We will construct a repeated allocation mechanism without payments based on the
following pay-onlyone-shot allocation mechanism:

Allocation:The agent with the higher reported value wins the item.
Payment:An agent pays

∫ v

0
tf(t)dt if it reportsv.

This mechanism is actually a6 dAGVA mechanism [12], which is known to be
(Bayes-Nash) incentive compatible.

6 “The” dAGVA mechanism often refers to a specific mechanism in a class of Bayes-Nash in-
centive compatible mechanisms, namely one that satisfies budget balance. In this paper, we
will use “dAGVA mechanisms” to refer to the entire class, including ones that are not budget-
balanced. Specifically, we will only use dAGVA mechanisms in which payments are always
nonnegative.



The process is similar to that in the previous section. Due tospace constraints,
we omit the details. At the end, we obtain a feasible mechanism M∗. The expected

social welfare underM∗ is 2x∗, wherex∗ equals
T
2
−2P+

√
(2P−T

2
)2+4(1−β)EP

2(1−β) . Here,

T =
∫ ∞

0

∫ ∞

0
max{t, v}f(t)f(v)dtdv is the expected value of the higher valuation.

P =
∫ ∞

0

∫ v

0
tf(t)dtf(v)dv is the expected amount an agent pays.

For the aboveM∗ to be well-defined, we need the budgetβx∗ to be greater than
or equal to

∫ ∞

0
tf(t)dt = e (the largest possible amount an agent pays). Sincex∗ ≥

E
2 = e

2−2β
, we only need to make sureβe

2−2β
≥ e. Therefore, ifβ ≥ 2

3 , thenM∗ is
well-defined. For specific priors,M∗ may be well-defined for smallerβ.

Next, we show that (wheneverM∗ is well-defined)M∗ is competitive against the
first-best allocation mechanism forall prior distributionf . Naturally, the competitive
ratio is slightly worse than the one obtained previously forhigh/low valuations. We first
generalize the definition of competitiveness appropriately.

Definition 2. Let W be the expected social welfare under a feasible mechanismM .
Let WF be the expected social welfare under the first-best allocation mechanism. If
W ≥ αWF for all prior distributions, then we say thatM is α-competitive. We callα
a competitive ratioof M .

Claim 5 WheneverM∗ is well-defined for all prior distributions (e.g.,β ≥ 2
3 ), M∗ is

0.85-competitive.

5 Three or More Agents

We have focused on allocation problems with two agents. In this section, we generalize
our analytical approach to cases of three or more agents.

Let n be the number of agents. We will continue with the state-based approach.
That is, a mechanism (state) is denoted by a vector ofn nonnegative real values. For
example, if under mechanismM , agenti’s long-term expected utility equalsxi, then
mechanismM is denoted by(x1, x2, . . . , xn). If we are about to apply mechanismM ,
then we say the agents are in state(x1, x2, . . . , xn).

For anyn, it is easy to see that the set of feasible states is convex andsymmetric
with respect to permutations of the agents. A state is calledfair if all its elements are
equal. For example,(1, 1, 1) is a fair state (n = 3). When there is no ambiguity about
the number of agents, the fair state(x, x, . . . , x) is denoted simply byx.

An artificial payment system can be constructed in a way that is similar to the case
of two agents. Letµn−1 be any feasible fair state for the case ofn− 1 agents. Then, the
following n states are also feasible for the case ofn agents:

(0, µn−1, . . . , µn−1
︸ ︷︷ ︸

n−1

), (µn−1, 0, µn−1, . . . , µn−1
︸ ︷︷ ︸

n−2

), . . . , (µn−1, . . . , µn−1
︸ ︷︷ ︸

n−1

, 0).

We denote the aboven states bysi for i = 1, 2, . . . , n. Let Ŝ be the set of all feasible
states with at least one element that equals0. Ŝ is self-generating. Suppose we have a
fair stateµn for the case ofn agents. LetS be the smallest convex set containingµn

and all the states in̂S. Thesi are in bothŜ andS. An artificial payment system can



be implemented as follows (for the case ofn agents): The agents will go to stateµn by
default. If for all i, agenti chooses to payvi units of artificial currency, then we move
to a new state whoseith element equalsµn − vi

β
+ γ

∑

j 6=i

vj

β
. Hereγ = µn−1−µn

µn
.7

The new stateM is in S. (The reason is the following. If only agenti is paying, and it is

payingnvi instead ofvi, then the new stateMi is (µn + γ
nvi

β
, . . . , µn + γ

nvi

β
︸ ︷︷ ︸

i−1

, µn −

nvi

β
, µn + γ

nvi

β
, . . . , µn + γ

nvi

β
︸ ︷︷ ︸

n−i

), which is a convex combination ofµn andsi. The

average of theMi over alli is justM . ThusM is a convex combination ofµn and the
si, which impliesM ∈ S. 8)

With the above artificial payment system, by allocating the item to the agent with
the highest reported value and charging the agents dAGVA payments, we get an in-
centive compatible mechanism. We denote agenti’s reported value byvi for all i. The
dAGVA payment for agenti equalsEv−i

(I(vi ≥ max{v−i})max{v−i}), whereI is
the characteristic function (which evaluates to1 on true and to0 otherwise) andv−i is
the set of reported values from agents other thani.

We still useP to denote the expected amount of payment from an agent. We useT

to denote the expected value of the highest reported value. The expected utility for an
agent is thenT

n
− P + (n − 1)µn−1−µn

µn
P + βµn.

To showS is self-generating, we only need to showµn is in Gen(S). That is,µn

is a feasible fair state as long asµn satisfies the following inequality:µn ≤ T
n
− P +

(n − 1)µn−1−µn

µn
P + βµn.

The largest solution ofµn equals
T
n
−nP+

√
(nP−T

n
)2+4(1−β)(n−1)µn−1P

2(1−β) .

The above expression increases when the value ofµn−1 increases. The highest value
for µ1 is E (when there is only one agent, we can simply give the item to the agent for
free). A natural way of solving for a good fair stateµn is to start withµ1 = E, then
apply the above technique to solve forµ2, thenµ3, etc.

Next, we present a claim that is similar to Claim 5.

Claim 6 Let n be the number of agents. LetM∗
n be the mechanism obtained by the

technique proposed in this section. Wheneverβ ≥ n2

n2+ 3
4

, M∗
n is well defined for all

priors, and isαn-competitive, whereα1 = 1, and forn > 1,

αn = min
{1≤u≤ n

n−1
}
n

u
n
−n+nu−u+

√
(n−nu+u− u

n
)2+4αn−1

n−nu+u

n

2u
.

For all i, αi ≥ 3
4 holds.

As a comparison, the lottery mechanism that always chooses the winner uniformly
at random has competitive ratio (exactly)1

n
, which goes to0 asn goes to infinity.

7 It should be noted that when one agent pays1, theneveryother agent receivesγ. In a sense,
γ already incorporates the fact that the payment must be divided amongmultiple agents.

8 The above argument assumes that the available budget is at leastn times the maximum amount
an agent pays.
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