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Abstract. The VCG mechanism has many nice properties, and can be
applied to a wide range of social decision problems. One problem of
the VCG mechanism is that even though it is efficient, its social wel-
fare (agents’ total utility considering payments) can be low due to high
VCG payments. VCG redistribution mechanisms aim to resolve this by
redistributing the VCG payments back to the agents. Competitive VCG
redistribution mechanisms have been found for various resource alloca-
tion settings. However, there has been almost no success outside of the
scope of allocation problems. This paper focuses on another fundamental
model - the public project problem. In Naroditskiy et al. 2012, it was con-
jectured that competitive VCG redistribution mechanisms exist for the
public project problem, and one competitive mechanism was proposed
for the case of three agents (unfortunately, both the mechanism and the
techniques behind it do not generalize to cases with more agents). In
this paper, we propose a competitive mechanism for general numbers of
agents, relying on new techniques.

Keywords: VCG redistribution mechanisms · Dominant strategy
implementation · Groves mechanisms · Public good provision

1 Introduction

The VCG mechanism [2,3,15] (referring specifically to the Clarke mechanism)
has many nice properties. It is efficient, strategy-proof, and weakly budget-
balanced (non-deficit). It is a general mechanism that can be applied to many
different social decision problems.

One problem of the VCG mechanism is that even though it is efficient1, its
social welfare2 can be low due to high VCG payments. As a result, the VCG
mechanism is not suitable for scenarios where we want to maximize the social wel-
fare. One example scenario is that a group of agents may need to allocate among
themselves some shared resources (e.g., airlines unsharing take-off/landing slots).

1 The VCG mechanism always picks the outcome that maximizes the agents’ total
valuation.

2 By social welfare, we mean the agents’ total utility: total valuation minus total
payment.
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Another example scenario is that a group of agents may need to decide among
themselves whether or not to build a public project (e.g., community library)
that can be accessed by everyone.

In light of the above drawback of the VCG mechanism, the VCG redistribu-
tion mechanisms were proposed [1]. These mechanisms would allocate according
to the VCG mechanism, but then on top of the VCG payments, the agents also
receive back some redistribution payments, therefore increasing the social wel-
fare. An agent’s redistribution must not depend on her own type, which is to
ensure that the redistribution process does not change the agents’ incentives.
After incorporating redistribution, the overall mechanism remains efficient and
strategy-proof (as the original VCG mechanism is efficient and strategy-proof,
plus that the agents’ incentives do not change). The problem of VCG redistri-
bution mechanism design is essentially designing how to redistribute the VCG
payments back to the agents as much as possible without redistributing too much.
We cannot redistribute too much because if we redistribute more than the total
VCG payment, then the mechanism is no longer weakly budget-balanced. In
summary, VCG redistribution mechanisms are non-deficit Groves mechanisms.

Formally, given a social decision problem, let the outcome space be O and
the number of agents be n. We use Θi to denote agent i’s type space. For o ∈ O
and θi ∈ Θi, we use u(θi, o) to denote agent i’s valuation for outcome o when
her type is θi.

The VCG mechanism picks the following optimal outcome:

o∗ = arg max
o∈O

∑

i

u(θi, o)

Agent i’s VCG payment equals how much her presence hurts the other agents:

max
o∈O

∑

j �=i

u(θj , o) −
∑

j �=i

u(θj , o
∗)

A VCG redistribution mechanism is characterized by a list of redistribution
functions ri, where ri(θ−i) represents agent i’s redistribution (positive means
receiving money). We notice that agent i’s redistribution ri(θ−i) does not depend
on agent i’s own type, which ensures strategy-proofness and efficiency. To ensure
weakly budget balance, we require that the total redistribution

∑
i ri(θ−i) is at

most the total VCG payment.
Moulin [13] proposed the following performance evaluation criterion for VCG

redistribution mechanisms. A mechanism’s worst-case efficiency ratio is defined
as the worst-case ratio (over all type profiles) between the achieved social welfare
and the optimal social welfare. The optimal social welfare is the same as the max-
imum total valuation, which can be achieved by the (omniscient/omnipotent)
first-best mechanism.

The achieved social welfare of a VCG redistribution mechanism equals
∑

i

u(θi, o
∗) −

∑

i

(max
o∈O

∑

j �=i

u(θj , o) −
∑

j �=i

u(θj , o
∗)) +

∑

i

ri(θ−i)



Competitive VCG Redistribution Mechanism for Public Project Problem 281

The three terms in the above expression represent the “achieved total val-
uation under VCG”, “the agents’ total VCG payment”, and “the agents’ total
redistribution”, respectively.

The worst-case efficiency ratio is then (θ represents the type profile):

min
θ

n
∑

i u(θi, o
∗) − ∑

i maxo∈O

∑
j �=i u(θj , o) +

∑
i ri(θ−i)∑

i u(θi, o∗)
(1)

The worst-case efficiency ratio is between 0 and 1. Higher ratios correspond
to better worst-case performance in terms of social welfare. The original VCG
mechanism (not redistributing anything) typically has a worst-case efficiency
ratio of 0, or approaching 0 asymptotically, which we will elaborate more later
on. In this paper, we study competitive VCG redistribution mechanisms.

Definition 1. A VCG redistribution mechanism is competitive if its worst-
case efficiency ratio is bounded below by a positive constant.

That is, a VCG redistribution mechanism is competitive if it guarantees a
constant fraction of the optimal social welfare in the worst case.

There has been a lot of success on designing competitive VCG redistribu-
tion mechanisms in resource allocation settings. Actually, a lot of the proposed
mechanisms are not only competitive, but also proven to be optimal (you cannot
find other mechanisms with higher worst-case efficiency ratios). For example, for
multi-unit auctions with unit demand, Moulin [13] identified a competitive mech-
anism with the optimal ratio. For the slightly more general setting of multi-unit
auctions with nonincreasing marginal values, an almost identical result (under a
slightly different objective) was independently proposed by Guo and Conitzer [7].
Gujar and Narahari [4] conjectured that the mechanism proposed in Moulin [13]
and Guo and Conitzer [7] can be further generalized to heterogeneous item auc-
tions with unit demand. The conjecture was confirmed by Guo [6]. There has also
been work on competitive VCG redistribution mechanisms that are not optimal.
Guo [5] proposed competitive VCG redistribution mechanisms for combinatorial
auctions with gross substitutes valuations.

Despite the success in resource allocation settings, no competitive VCG redis-
tribution mechanisms were identified outside of the scope of resource allocation.
The only exception is Naroditskiy et al. [14], where the authors studied the pub-
lic project problem. The authors derived an upper bound on the worst-case effi-
ciency ratio for the public project setting. The authors also proposed one mech-
anism whose worst-case efficiency ratio matches the upper bound when there
are exactly three agents. Unfortunately, the proposed mechanism and its under-
lying techniques do not generalize to more than three agents. The authors also
proposed a few heuristic-based redistribution mechanisms that seem to perform
well based on numerical simulation (unfortunately, the numerical simulation can
only handle up to six agents3).

3 Even for n between 4 and 6, there is no guarantee of worst-case performance, because
the worst-case is simulated via sampling, which may not be extensive enough.
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Guo et al. [9] also studied redistribution for the public project problem. Most
results are not directly related to this paper, because the authors there focused on
inefficient partitioning-based mechanisms instead of VCG redistribution mech-
anisms. However, there is one result that is relevant, which is that the original
VCG mechanism has a worst-case efficiency ratio of 1/n for the public project
problem. That is, the original VCG mechanism is not competitive.

In summary, outside of the scope of resource allocation, there are no known
competitive VCG redistribution mechanisms. This paper continues the study of
public project problem, and proposes the first competitive VCG redistribution
mechanism outside of the scope of resource allocation.

2 Model Description

We study the public project problem, which is a classic problem well studied in
both computer science and economics [8–12,14].

There are n agents who need to decide among themselves whether or not to
build a public project that can be accessed by everyone (e.g., a bridge). The cost
of the project is C. We assume the cost is already there in the beginning, e.g.,
the government has bestowed C to the community, and the community needs to
decide what to do with it. There are two outcomes: (1) build the public project;
(2) not build and divide the money evenly (everyone receives C/n). Without loss
of generality, we assume C = 1.

We use θi to represent agent i’s valuation for the public project, so an agent’s
valuation is θi if the decision is to build, and her valuation is 1/n if the decision
is to not build (divide money instead). Without loss of generality [14], we assume
θi is in [0, 1].

The VCG mechanism chooses to build if and only if the total valuation of the
project exceeds the cost. That is, we build if and only if

∑
i θi ≥ 1. The agents’

total valuation under VCG is then max{∑
i θi, 1}. If the VCG decision is to build,

then agent i’s VCG payment equals max{∑
j �=i θj ,

n−1
n } − ∑

j �=i θj . If the VCG
decision is not to build, then agent i’s VCG payment equals max{∑j �=i θj ,

n−1
n }−

n−1
n . The agents’ total VCG payment equals

∑

i

max{
∑

j �=i

θj ,
n − 1

n
} − (n − 1)max{

∑

i

θi, 1}

Based on Expression 1, if we use the ri to represent the redistribution func-
tions, then the worst-case efficiency ratio equals:

min
θ

n max{∑
i θi, 1} − ∑

i max{∑
j �=i θj ,

n−1
n } +

∑
i ri(θ−i)

max{∑
i θi, 1} (2)

Our task is to design the ri so that the above ratio is bounded below by a
positive constant.



Competitive VCG Redistribution Mechanism for Public Project Problem 283

Based on Expression 2, it is easy to see that the VCG mechanism’s worst-
case efficiency ratio is at most 1/n. For example, let us consider the profile where
θ1 = 1 and θi = 0 for i > 1. Expression 2 simplifies to

n − (n − 1) − n−1
n

1
=

1
n

3 Intuition and Result

Ideally, we want the total redistribution to be as close as possible to the total
VCG payment. There are n agents, so it is a reasonable heuristic to try to make
sure that every agent’s redistribution is as close as possible to 1/n times the total
VCG payment. The Cavallo mechanism [1] is somewhat based on this idea. The
Cavallo mechanism has found a lot of success in the resource allocation settings.
It is competitive in all the resource allocation settings mentioned earlier.4

We use V CG(θi, θ−i) to represent the total VCG payment. Under Cavallo’s
mechanism, ri(θ−i) is defined as

minθ′
i
V CG(θ′

i, θ−i)
n

It should be noted that based on the above definition, an agent’s redistribu-
tion is independent of her own type, and the total redistribution is never more
than the total VCG payment.

Unfortunately, the Cavallo mechanism is not competitive for the public
project problem, because it never redistributes anything. No matter what is
θ−i, we can always find θ′

i so that V CG(θ′
i, θ−i) equals 0.5

We notice that for all the resource allocation settings mentioned earlier, we
have6

min
θ′
i

V CG(θ′
i, θ−i) = V CG(θ−i)

V CG(θ−i) represents the total VCG payment when agent i is removed from
the system. Given that redistributing to every agent V CG(θ−i)/n resulted in
competitive mechanisms for resource allocation settings, what if we do the same
for the public project problem?

In the public project setting, if we remove agent i, then there are n−1 agents
left, who choose between building the project and receiving 1/(n − 1) each. If
we redistribute every agent V CG(θ−i)/n, then we have

ri(θ−i) =
V CG(θ−i)

n
=

∑
j �=i max{∑

k �=i,j θk, n−2
n−1} − (n − 2)max{∑

k �=i θk, 1}
n

4 We do need the minor assumption that the number of agents is large compared to
the number of items.

5 If
∑

j �=i θj ≥ n−1
n

, then pick θ′
i = 1. Otherwise, pick θ′

i = 0.
6 This is called revenue monotonicity.
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We numerically simulated the above redistribution functions and were not
satisfied with its performance (if it does not even work well numerically, then
there is no point investing time trying to prove that it has good worst-case perfor-
mance). Fortunately, after trials and errors (based on both manual analysis and
numerical simulation), we noticed that if we make two minor technical adjust-
ments, we are able to obtain much better redistribution functions. We replace
the denominator n by n − 1, and we replace n−2

n−1 by n−1
n . At the end, we have

ri(θ−i) =

∑
j �=i max{∑

k �=i,j θk, n−1
n } − (n − 2)max{∑

k �=i θk, 1}
n − 1

(3)

We (partly) used numerical simulation to reach the above starting point. We
then mathematically prove that we can build a competitive VCG redistribu-
tion mechanism based on the above functions.

Let θ be a type profile, we define Diff(θ) as
∑

i

ri(θ−i) − V CG(θ)

Diff(θ) represents the difference between the amount redistributed and the
total VCG payment. It turns out that we can bound Diff(θ) as follows:

Proposition 1.
∀θ, L(n) ≤ Diff(θ) ≤ U(n)

U(n) =
1

n − 1
+

n − 1
4n

+
4(n + 1)3

27n(n − 1)2

L(n) = min{ 1
n − 1

− 1
n

− (n − 1)2

4n2
,

1
n − 1

+
1
2n

− 1
2
} − n − 2

n(n − 1)

Theorem 1. We define r′
i(θ−i) to be ri(θ−i) − U(n)/n.

(ri is defined according to Eq. 3. U(n) is defined according to Proposition 1.)
If we redistribute according the r′

i, then the corresponding VCG redistribution
mechanism is competitive.

When n goes to infinity, the worst-case efficiency ratio approaches 0.102.

4 Proof of Proposition 1

For presentation purposes, we introduce the following notation:

– For all i, Xi =
∑

j �=i θj (the sum of the types other than i’s own type).

– X =
∑

i θi =
∑

i Xi

n−1 (the sum of all the types).
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Using the new notation, we have Diff(θ) equals

(n − 1)max{X, 1} +
1

n − 1

∑

i

∑

j �=i

max{Xi + Xj − X,
n − 1

n
}

−
∑

i

max{Xi,
n − 1

n
} − n − 2

n − 1

∑

i

max{Xi, 1} (4)

We use E(X1,X2, . . . , Xn) to denote Expression 4. We use the short form E
when there is no ambiguity. The set of all possible values of the Xi must be a
subset of:

Λ = {(X1,X2, . . . , Xn)|∀i, 0 ≤ Xi ≤ X =
∑

i Xi

n − 1
}

Diff(θ) is bounded above by maxΛ E. Next, we show how to calculate (an upper
bound of) maxΛ E.

Proposition 2. Let (X1,X2, . . . , Xn) be an arbitrary element of Λ. X =
∑

i Xi

n−1 .
Two coordinates Xi and Xj are said to be from the same band if

– 0 ≤ Xi,Xj ≤ min{n−1
n ,X}, or

– n−1
n ≤ Xi,Xj ≤ min{1,X}, or

– 1 ≤ Xi,Xj ≤ X.

Let Xi and Xj be two coordinates from the same band. Without loss of gen-
erality, we assume Xi ≤ Xj. We use (Xi,Xj , . . .) to denote the original element
(X1,X2, . . . , Xn) from Λ. We use (Xi − ε,Xj + ε, . . .) to denote the new element
where Xi is replaced by Xi − ε and Xj is replaced by Xj + ε (ε ≥ 0).

If Xi − ε and Xj + ε are still from the same band, then

– (Xi − ε,Xj + ε, . . .) is still an element of Λ.
– E(Xi,Xj , . . .) ≤ E(Xi − ε,Xj + ε, . . .).

In words, if two coordinates Xi and Xj are from the same band, then by
“pushing their values apart within their band”, the resulting element is still in
Λ, and the resulting new value of E does not decrease.

4.1 Upper Bound of E

Our goal is to calculate maxΛ E. We recall that Λ is defined as

Λ = {(X1,X2, . . . , Xn)|∀i, 0 ≤ Xi ≤ X =
∑

i Xi

n − 1
}

We notice that Λ is the union of the following three sets:

Λ1 = {(X1,X2, . . . , Xn)|∀i, 0 ≤ Xi ≤ X =
∑

i Xi

n − 1
,X ≤ n − 1

n
}
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Λ2 = {(X1,X2, . . . , Xn)|∀i, 0 ≤ Xi ≤ X =
∑

i Xi

n − 1
,
n − 1

n
≤ X ≤ 1}

Λ3 = {(X1,X2, . . . , Xn)|∀i, 0 ≤ Xi ≤ X =
∑

i Xi

n − 1
, 1 ≤ X}

We certainly have

max
Λ

E = max{max
Λ1

E,max
Λ2

E,max
Λ3

E}

Value of maxΛ1 E . We first analyze maxΛ1 E. Let (X∗
1 ,X∗

2 , . . . , X∗
n) be an

element in Λ1 that maximizes E. Let X∗ =
∑

i X∗
i

n−1 . Since (X∗
1 ,X∗

2 , . . . , X∗
n) ∈

Λ1, X∗ ≤ n−1
n . By symmetry, it is without loss of generality to assume that

X∗
1 ≤ X∗

2 ≤ . . . ≤ X∗
n.

E(X∗
1 ,X∗

2 , . . . , X∗
n) simplifies to

(n − 1) +
1

n − 1

∑

i

∑

j �=i

max{X∗
i + X∗

j − X∗,
n − 1

n
}

−
∑

i

n − 1
n

− n − 2
n − 1

∑

i

1

Since X∗
i + X∗

j − X∗ ≤ X∗ ≤ n−1
n , the above further simplifies to

(n − 1) +
1

n − 1

∑

i

∑

j �=i

n − 1
n

− (n − 1) − n − 2
n − 1

n =
1

n − 1

That is, maxΛ1 E = 1
n−1 .

Value of maxΛ2 E . We now analyze maxΛ2 E. Let (X∗
1 ,X∗

2 , . . . , X∗
n) be an

element in Λ2 that maximizes E. Let X∗ =
∑

i X∗
i

n−1 . Since (X∗
1 ,X∗

2 , . . . , X∗
n) ∈ Λ2,

≤ n−1
n ≤ X∗ ≤ 1. By symmetry, it is without loss of generality to assume that

X∗
1 ≤ X∗

2 ≤ . . . ≤ X∗
n.

Since n−1
n ≤ X∗ ≤ 1, the X∗

i fall into two possible bands. They are [0, n−1
n ]

and [n−1
n ,X∗]. (One band may be empty.) By Proposition 2, it is without loss

of generality to assume that there exists at most one X∗
i that is in (0, n−1

n ), and
there exists at most one X∗

j that is in (n−1
n ,X∗). Hence, it is without loss of

generality to assume that (X∗
1 ,X∗

2 , . . . , X∗
n) has the following form:

(0, 0, . . . , 0, [u],
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

, [v],X∗,X∗, . . . , X∗)

In the above, [u] represents that there is at most one value u in (0, n−1
n ), and [v]

represents that there is at most one value v in (n−1
n ,X∗).

– Case 1: There does not exist one value v that is within (n−1
n ,X∗). That is,

(X∗
1 ,X∗

2 , . . . , X∗
n) has the following form:

(0, 0, . . . , 0, [u],
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

,X∗,X∗, . . . , X∗)
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Let p be the number of X∗. E(X∗
1 ,X∗

2 , . . . , X∗
n) simplifies to

(n − 1) +
1

n − 1

∑

i

∑

j �=i

n − 1
n

+
1

n − 1
p(p − 1)(X∗ − n − 1

n
)

−(n − p)
n − 1

n
− pX∗ − n − 2

n − 1
n

We notice that the above expression is linear in X∗ and it is nonincreasing in
X∗. To maximize it, we let X∗ = n−1

n . The expression simplifies to

(n − 1) +
1

n − 1

∑

i

∑

j �=i

n − 1
n

− n
n − 1

n
− n − 2

n − 1
n =

1
n − 1

– Case 2: There does exist one value v that is in (n−1
n ,X∗). That is,

(X∗
1 ,X∗

2 , . . . , X∗
n) has the following form:

(0, 0, . . . , 0, [u],
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

, v,X∗,X∗, . . . , X∗)

Let p be the number of X∗. E(X∗
1 ,X∗

2 , . . . , X∗
n) simplifies to

(n−1)+
1

n − 1

∑

i

∑

j �=i

n − 1
n

+
1

n − 1
2p(v−n − 1

n
)+

1
n − 1

p(p−1)(X∗−n − 1
n

)

− (n − p − 1)
n − 1

n
− v − pX∗ − n − 2

n − 1
n (5)

Expression 5 is linear in v. We know n−1
n ≤ v ≤ X∗. Therefore, by replacing

v by either n−1
n or X∗, we obtain an upper bound on Expression 5.

Replace v by n−1
n : Expression 5 becomes

(n − 1) +
1

n − 1

∑

i

∑

j �=i

n − 1
n

+
1

n − 1
p(p − 1)(X∗ − n − 1

n
)

−(n − p)
n − 1

n
− pX∗ − n − 2

n − 1
n

Just like Case 1, the above is nonincreasing in X∗. When X∗ = n−1
n (mini-

mized), it equals 1
n−1 .

Replace v by X∗: Expression 5 becomes

(n − 1) +
1

n − 1

∑

i

∑

j �=i

n − 1
n

+
1

n − 1
p(p + 1)(X∗ − n − 1

n
)

−(n − p − 1)
n − 1

n
− (p + 1)X∗ − n − 2

n − 1
n

Again, the above is nonincreasing in X∗. When X∗ = n−1
n (minimized), it

equals 1
n−1 .
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In conclusion, maxΛ2 E = 1
n−1 .

Value of maxΛ3 E . We now analyze maxΛ3 E. Let (X∗
1 ,X∗

2 , . . . , X∗
n) be an

element in Λ3 that maximizes E. Let X∗ =
∑

i X∗
i

n−1 . Since (X∗
1 ,X∗

2 , . . . , X∗
n) ∈ Λ3,

X∗ ≥ 1. By symmetry, it is without loss of generality to assume that X∗
1 ≤ X∗

2 ≤
. . . ≤ X∗

n.
Since 1 ≤ X∗, the X∗

i fall into three possible bands. They are [0, n−1
n ],

[n−1
n , 1], and [1,X∗]. (Some bands may be empty.) By Proposition 2, it is without

loss of generality to assume that there exists at most one value in each of the fol-
lowing three intervals: (0, n−1

n ), (n−1
n , 1), and (1,X∗). That is, (X∗

1 ,X∗
2 , . . . , X∗

n)
has the following form:

(0, 0, . . . , 0, [u],
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

, [v], 1, 1, . . . , 1, [w],X∗,X∗, . . . , X∗)

In the above, [u] represents that there is at most one value u in (0, n−1
n ), [v]

represents that there is at most one value v in (n−1
n , 1), and [w] represents that

there is at most one value w in (1,X∗).

Proposition 3. Let (X1,X2, . . . , Xn) be an arbitrary element of Λ3.
We use (X ′

1,X
′
2, . . . , X

′
n) to denote the following new element

(
max{X1,

n − 1
n

},max{X2,
n − 1

n
}, . . . ,max{Xn,

n − 1
n

}
)

– (X ′
1,X

′
2, . . . , X

′
n) is still an element of Λ3.

– E(X1,X2, . . . , Xn) ≤ E(X ′
1,X

′
2, . . . , X

′
n).

By Proposition 3, we can further assume that X∗
i ≥ n−1

n for all i. That is,
(X∗

1 ,X∗
2 , . . . , X∗

n) has the following form:

(
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

, [v], 1, 1, . . . , 1, [w],X∗,X∗, . . . , X∗)

In the above, [v] represents that there is at most one value v in (n−1
n , 1), and [w]

represents that there is at most one value w in (1,X∗).

Proposition 4. Let (X1,X2, . . . , Xn) be an element of Λ3 with the following
form

(
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

, [v], 1, 1, . . . , 1, [w],X,X, . . . ,X)

In the above, [v] represents that there is at most one value v in (n−1
n , 1), and [w]

represents that there is at most one value w in (1,X∗).
We use (X ′

1,X
′
2, . . . , X

′
n) to denote the following new element

(max{X1, 1},max{X2, 1}, . . . ,max{Xn, 1})

If Xn ≥ 1, then

– (X ′
1,X

′
2, . . . , X

′
n) is still an element of Λ3.

– E(X1,X2, . . . , Xn) ≤ E(X ′
1,X

′
2, . . . , X

′
n) + 4(n+1)3

27n(n−1)2 .
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Proof. We first prove that (X ′
1,X

′
2, . . . , X

′
n) is still an element of Λ3. By defini-

tion, X =
∑

i Xi

n−1 ≥ 1. We use X ′ to denote
∑

i X′
i

n−1 . Certainly, X ′ ≥ X ≥ 1. Since
X ≥ 1 and X ≥ Xi for all i, we have X ′ ≥ X ≥ X ′

i = max{Xi, 1} ≥ 0 for all i.
Hence, (X ′

1,X
′
2, . . . , X

′
n) is still in Λ3.

Next, we compare E(X1,X2, . . . , Xn) and E(X ′
1,X

′
2, . . . , X

′
n) under the

assumption that Xn ≥ 1.
If all the Xi are at least 1, then E(X ′

1,X
′
2, . . . , X

′
n) equals E(X1,X2, . . . , Xn).

Next, we consider scenarios in which at least some Xi are less than 1. Let p
be the highest index of Xi so that Xp < 1. Let Δ = X ′ −X. Since Xn ≥ 1, Δ =
∑

i<n(X
′
i−Xi)

n−1 ≤ (n−1) 1
n

n−1 = 1
n . E(X ′

1,X
′
2, . . . , X

′
n) − E(X1,X2, . . . , Xn) simplifies

to7

(n − 1)Δ +
1

n − 1

∑

i

∑

j �=i

(
max{X ′

i + X ′
j − X ′,

n − 1
n

}

−max{Xi + Xj − X,
n − 1

n
}
)

− (n − 1)Δ

=
1

n − 1

∑

i

∑

j �=i

(
max{X ′

i + X ′
j − X ′,

n − 1
n

} − max{Xi + Xj − X,
n − 1

n
}
)

If i < p, then Xi = n−1
n . In this case, we have X ′

i + X ′
j ≥ (Xi + 1

n ) + Xj . We
also have Δ = X ′ − X ≤ 1

n . Therefore, if i < p,

max{X ′
i + X ′

j − X ′,
n − 1

n
} − max{Xi + Xj − X,

n − 1
n

} ≥ 0

Similarly, if j < p, we also have the above.
If i ≥ p and j ≥ p, we have X ′

i +X ′
j ≥ Xi +Xj . We also have Δ = X ′ −X =

∑
i≤p(X

′
i−Xi)

n−1 ≤ p
n(n−1) . Therefore, if i ≥ p and j ≥ p,

max{X ′
i + X ′

j − X ′,
n − 1

n
} − max{Xi + Xj − X,

n − 1
n

} ≥ − p

n(n − 1)

Based on the above,

E(X ′
1,X

′
2, . . . , X

′
n) − E(X1,X2, . . . , Xn)

=
1

n − 1

∑

i

∑

j �=i

(
max{X ′

i + X ′
j − X ′,

n − 1
n

} − max{Xi + Xj − X,
n − 1

n
}
)

≥ 1
n − 1

∑

i≥p

∑

j≥p,j �=i

(
max{X ′

i + X ′
j − X ′,

n − 1
n

} − max{Xi + Xj − X,
n − 1

n
}
)

≥ 1
n − 1

(n − p + 1)(n − p)(− p

n(n − 1)
)

7 The fourth term of E stays the same.
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≥ − 1
n(n − 1)2

(n − p + 1)2p

∂(n − p + 1)2p
∂p

= (1 + n − p)(1 + n − 3p)

Since 0 ≤ p ≤ n, the maximum of (n − p + 1)2p can only happen when p = 0,
p = n, or p = n+1

3 . Hence,

(n − p + 1)2p ≤ max{0, n,
4(n + 1)3

27
} =

4(n + 1)3

27

Therefore,

E(X ′
1,X

′
2, . . . , X

′
n) − E(X1,X2, . . . , Xn) ≥ − 4(n + 1)3

27n(n − 1)2

Proposition 4 can help us further simplify the optimization problem. How-
ever, for it to apply, we need Xn ≥ 1. If Xn < 1, then (X∗

1 ,X∗
2 , . . . , X∗

n) has the
following form:

(
n − 1

n
,
n − 1

n
, . . . ,

n − 1
n

, [v])

E simplifies to

(n − 1)X∗ +
1

n − 1

∑

i

∑

j �=i

n − 1
n

− (n − 1)X∗ − n − 2
n − 1

∑

i

1 =
1

n − 1

We then consider cases where Xn ≥ 1. Here, Proposition 4 does apply.
Proposition 4 basically says that we can focus on the following form, and the
resulting maximum plus 4(n+1)3

27n(n−1)2 must be higher than or equal to the actual
maximum.

(1, 1, . . . , 1, [w],X∗,X∗, . . . , X∗)

In the above, [w] represents that there is at most one value w in (1,X∗).
We allow w to be equal to 1 or X∗. The above form simplifies to

(1, 1, . . . , 1, w,X∗,X∗, . . . , X∗)

Let p be the number of 1s. To simplify E, we need to consider three separate
cases:

– Case 1 + 1 − X∗ ≥ n−1
n : E simplifies to8

1
n − 1

∑

i

∑

j �=i

(X∗
i + X∗

j − X∗) − n − 2
n − 1

(n − 1)X∗

=
1

n − 1
(2(n − 1)2X∗ − n(n − 1)X∗) − n − 2

n − 1
(n − 1)X∗

= (2(n − 1)X∗ − nX∗) − (n − 2)X∗ = 0
8 Term one and three cancel out.
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– Case 1 + 1 − X∗ < n−1
n and 1 + w − X∗ ≥ n−1

n : E simplifies to

1

n− 1

∑

i

∑

j �=i

(X∗
i +X∗

j −X∗) +
1

n− 1
p(p− 1)(

n− 1

n
− 1− 1 +X∗)− n− 2

n− 1
(n− 1)X∗

=
1

n− 1
p(p− 1)(

n− 1

n
− 1− 1 +X∗)

If p = 0 or 1, then the above expression is 0.
We then consider p ≥ 2. To maximize the above, we want X∗ to be as large
as possible.

X∗ =
∑

i X∗
i

n − 1
=

p + w + (n − p − 1)X∗

n − 1
≤ p + (n − p)X∗

n − 1

(n − 1)X∗ ≤ p + (n − p)X∗

(p − 1)X∗ ≤ p

X∗ ≤ p

p − 1

Hence, E is at most

1
n − 1

p(p − 1)(
n − 1

n
− 2 +

p

p − 1
)

=
1

n(n − 1)
(−p2 + p(n + 1))

This expression is maximized when p = n+1
2 . Hence,

E ≤ (n + 1)2

4n(n − 1)
=

1
n − 1

+
n − 1
4n

– Case 1 + w − X∗ < n−1
n : E simplifies to

1
n − 1

p(p − 1)(
n − 1

n
− 1 − 1 + X∗) +

1
n − 1

2p(
n − 1

n
− 1 − w + X∗)

If p = 0, then the above expression equals 0. We then consider p ≥ 1. Since
X∗ =

∑
i X∗

i

n−1 , we have (n−1)X∗ = p+w +(n−p−1)X∗. That is, X∗ = p+w
p .

E is then

1
n − 1

p(p − 1)(
n − 1

n
− 1 +

w

p
) +

1
n − 1

2p(
n − 1

n
− w +

w

p
)

The above expression is linear in w and w’s coefficient equals

1
n − 1

(p − 1) − 1
n − 1

2p +
1

n − 1
2 =

1
n − 1

(1 − p) ≤ 0
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To maximize the above expression, we let w = 1. E now equals

1
n − 1

p(p − 1)(
−1
n

+
1
p
) +

1
n − 1

2p(
−1
n

+
1
p
)

=
1

n(n − 1)
(−p2 + p(n − 1) + n)

The above expression is maximized when p = n−1
2 . Hence, E is at most

1
n(n − 1)

(
(n − 1)2

4
+ n) =

n − 1
4n

+
1

n − 1

In conclusion, maxΛ3 E ≤ 1
n−1 + n−1

4n + 4(n+1)3

27n(n−1)2 .

Summary on the upper bound of E

max
Λ

E = max{max
Λ1

E,max
Λ2

E,max
Λ3

E}

≤ 1
n − 1

+
n − 1
4n

+
4(n + 1)3

27n(n − 1)2

When n approaches infinity, this upper bound approaches 1
4 + 4

27 ≈ 0.398.

4.2 Lower Bound of E

The process of finding a lower bound of E is similar.

min
Λ

E = min{min
Λ1

E,min
Λ2

E,min
Λ3

E}

Due to space constraint, we omit the details. We first show that if X < 1, then
there must exist one Xi < n−1

n . Increasing Xi will never increase E. Therefore,
as long as X < 1, we can push up values that are less than n−1

n among the
Xi. If all the Xi are at least n−1

n , then X ≥ 1. In summary, when it comes to
calculating the minimum value. It is without loss of generality to only consider
Λ3. That is,

min
Λ

E = min
Λ3

E

Value of minΛ3 E . We now analyze minΛ3 E. Let (X∗
1 ,X∗

2 , . . . , X∗
n) be an ele-

ment in Λ3 that minimizes E. Let X∗ =
∑

i X∗
i

n−1 . Since (X∗
1 ,X∗

2 , . . . , X∗
n) ∈ Λ3,

X∗ ≥ 1. By symmetry, it is without loss of generality to assume that X∗
1 ≤

X∗
2 ≤ . . . ≤ X∗

n.
Since 1 ≤ X∗, the X∗

i fall into three possible bands. They are [0, n−1
n ],

[n−1
n , 1], and [1,X∗]. (Some bands may be empty.) By Proposition 2, it is without

loss of generality to assume that values inside the same band are all identical.
Hence, it is without loss of generality to assume that (X∗

1 ,X∗
2 , . . . , X∗

n) has the
following form:

(u, u, . . . , u, v, v, . . . , v, w, w, . . . , w)
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Here, 0 ≤ u ≤ n−1
n , n−1

n ≤ v ≤ 1, and 1 ≤ w ≤ X∗.
We have

min
Λ

E = min
Λ3

E ≥ min{ 1
n − 1

− 1
n

− (n − 1)2

4n2
,

1
n − 1

+
1
2n

− 1
2
} − n − 2

n(n − 1)

When n approaches infinity, this lower bound approaches − 1
2 = −0.5.

5 Proof of Theorem 1

If we redistribute according to the r′
i, then the corresponding VCG redistribution

mechanism must be non-deficit for the following reason (based on Proposition 1):
∑

i

r′
i(θ−i) =

∑

i

ri(θ−i) − U(n) ≤ V CG(θ)

The achieved social welfare equals

max{
∑

i

θi, 1} − V CG(θ) +
∑

i

r′
i(θ−i)

= max{
∑

i

θi, 1} − V CG(θ) +
∑

i

ri(θ−i) − U(n)

≥ max{
∑

i

θi, 1} + L(n) − U(n)

The worst-case efficiency ratio is then at least

min
θ

max{∑
i θi, 1} + L(n) − U(n)
max{∑

i θi, 1} = 1 + min
θ

L(n) − U(n)
max{∑

i θi, 1} ≥ 1 + L(n) − U(n)

(6)
We have the analytical forms of L(n) and U(n). When n goes to infinity,

1 + L(n) − U(n) = 1 − 0.5 − 0.398 = 0.102. Actually, it is easy to verify that 1 +
L(n)−U(n) is bounded below by a positive constant if n > 10. For n ≤ 10, based
on the proof of Proposition 1, we know that the profiles that maximize/minimize
E can only take a few specific forms. By numerically going over these forms
(since n ≤ 10, it is computationally easy to do so), we can find the numerical
values of maxΛ E and minΛ E for n ≤ 10. Given a specific n ≤ 10, we use the
numerical values to replace U(n) and L(n) in Eq. 6, which actually shows that
the worst-case efficiency ratio is always bounded below by a positive constant.

6 Conclusion

In this paper, we proposed the first competitive VCG redistribution mechanism
outside of the scope of resource allocation. The proposed mechanism is efficient,
strategy-proof, non-deficit, and its social welfare is guaranteed to be at least a
constant fraction of the optimal social welfare.
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