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Abstract. We consider a social choice problem where individual ratio-
nality is required. The status quo belongs to the outcome space, and the
selected alternative must be weakly better than the status quo for every-
body. If the mechanism designer has no knowledge of the alternatives, we
obtain a negative result: any individually rational (IR) and strategy-proof
(SP) mechanism can choose at most one alternative (besides the status
quo), regardless of the preferences. To overcome this negative result, we
consider a domain where the alternatives have a known structure, i.e., an
agent is indifferent between the status quo and a subset of the outcomes.
This set is exogenously given and public information. This assumption
is natural if the social choice involves the participation of agents. For
example, consider a group of people organizing a trip where participa-
tion is voluntary. We can assume each agent is indifferent between the
trip plans in which she does not participate and the status quo (i.e., no
trip). In this setting, we obtain more positive results: we develop a class
of mechanisms called Approve and Choose mechanisms, which are IR
and SP, and can choose multiple alternatives as well as the status quo.

1 Introduction

Social choice theory, which is a primary research field in micro-economics, stud-
ies the design and analysis of mechanisms/rules for collective decision making.
Recently, due to the growing needs for agent technology in terms of complex
information systems, various studies on social choice theory have been conducted
in artificial intelligence and multi-agent systems [1,4,10].

We consider individually rational (IR) and strategy-proof (SP) mechanisms
for social choice settings where the status quo belongs to the outcome space.
Agents submit their preference orders over all outcomes including the status
quo. By IR, the selected outcome must be weakly better than the status quo for
everybody. IR also implies that the agents have veto power over the alternatives;
if an agent declares that one alternative is worse than the status quo, it cannot
be chosen. Analyzing veto power for a social choice function is an important
problem in social choice literature [3,12].
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Unfortunately, we derive a negative result for general settings. If a mechanism
is IR and SP, it must choose one particular alternative x in advance and choose
between the status quo and x based on the agent preferences. Even if there exist
many alternatives as well as the status quo, all but one will never be chosen,
regardless of the agents’ preferences. This is highly restrictive.

In light of the above negative result, we introduce a domain where the alter-
natives have a known structure. This allows us to design IR and SP mechanisms
that can determine an outcome among multiple alternatives besides the status
quo. We assume that for each agent, a set of alternatives, which are equivalent
to the status quo for her (called the indifference set), is exogenously given. This
information is public. For each agent, we call a choice that is not in her indif-
ference set a standard alternative. An alternative is called a multiagent choice
if multiple agents regard it as a standard alternative. We show that when the
number of agents is n, any IR and SP mechanism can determine an outcome
among at most n−1 multiagent choices. Furthermore, we develop a new class of
IR and SP mechanisms called Approve and Choose (AC) mechanisms that can
choose up to n − 1 multiagent choices.

When there exist only two agents (agent 1 and 2), the AC mechanism first
chooses a set of alternatives X(f) in some way independently from their dec-
larations. We assume X(f) includes the status quo and exactly one multiagent
choice x∗; other alternatives X(f)\x∗ are standard alternatives only to agent 1.
The mechanism first ask agent 2 whether x∗ is acceptable, i.e., x∗ is better than
the status quo. If x∗ is acceptable, then agent 1 selects her most preferred alter-
native from X(f). Otherwise, she selects her most preferred alternative from
X(f)\{x∗}. It is clear that this mechanism is SP and IR. This idea can be
generalized to n-agent cases.

We also show the modified AC mechanisms so that the mechanisms can
be applied to settings with quasi-linear utilities. For such settings, we show that
there exist AC mechanisms that simultaneously guarantee individual rationality,
strategy-proofness, and strong budget-balancedness.

These assumptions we apply in this paper are appropriate in many applica-
tion domains. For example, assume a travel agency is arranging a group trip.
Each alternative can be associated with a different venue and a different set
of participants. We can assume that each person is indifferent among tours in
which she does not participate. The travel agency can choose one alternative
using the AC mechanism. Similarly, consider a programming contest organized
by crowdsourcing. Each alternative (a project’s candidate) can be associated to
a different goal and a different set of programmers. It is reasonable to assume
that a programmer is indifferent about the projects she is not involved in. Fur-
thermore, when deciding the location of a facility in one of two relatively remote
cities R1 and R2, R1’s residents care about the exact location of the facility
when it is located in R1, but they can be indifferent about the exact location
when it is located in R2 since it is already far away.
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2 Related Works

We introduce several recent works in social choice theory related to this paper.
Faltings [6] proposed SP and budget-balanced mechanisms that work by sac-

rificing efficiency for quasi-linear utility settings. Lu and Boutilier considered the
multi-winner social choice problem when voter preference profiles are incomplete
using the notation of the minimax regret and proposed a greedy algorithm to
determine a robust slate of options. However, these models do not assume the
existence of the status quo. If we apply these mechanisms in our setting, we
cannot guarantee IR.

Sato [13] used an idea called exogenous indifference classes that closely resem-
bles our indifference set. Such indifference classes of agent preferences are exoge-
nously given. He focused on set A of alternatives that every agent strictly ranks,
and showed that strategy-proofness implies a dictatorship when |A| ≥ 3. Since
our newly developed mechanism deliberately chooses alternatives utilizing public
information so that |A| ≤ 2 holds, it is SP and non-dictatorial.

Barberá and Ehlers [2] also considered indifferences in agent preferences in
voting situations and clarified the necessary and sufficient condition for the
majority rule to be quasi-transitive. In this sense, their analysis is quite dif-
ferent from ours; we focused on strategy-proofness.

Darmann et al. [5] addressed a group activity selection problem among
agents, where an agent’s utility of an activity can depend on the number of
participants. Our model is more general; the utility can depend on other factors,
e.g., who are going to participate.

Guo et al. [9] proposed the optimal shifted Groves mechanism, which is IR,
SP, and non-deficit, and minimizes the worst-case efficiency loss when choosing
an outcome from a finite set including the status quo in a quasi-linear domain.
To be precise, they require that there exists at least one alternative for which
the total valuation of the agents is nonnegative, which is more lenient than
requiring the status quo. They assume that every agent’s valuation for every
outcome is bounded and the bounds are public information. We use a different
model in which the set of alternatives over which each agent is indifferent is
public information.

3 Preliminaries

A social choice problem is defined by tuple (N,X, q,�). N = {1, 2, . . . , n} is
a set of agents, and X is a finite set of alternatives. We assume n ≥ 2. Oth-
erwise, choosing one alternative is easy; the agent can only choose her favorite
alternative. Alternative q ∈ X is called the status quo. �= (�i)i∈N ∈ Pn is a
profile of agent preferences over X. Here, P is the set of all possible preference
relations for an agent. For any pair of alternatives, x, x′ ∈ X, x �i x′ means
agent i strictly prefers x over x′. We assume each �i is transitive, complete, and
anti-symmetric. Let N−i denote N\{i}.

A social choice function (or a mechanism) selects one of the alternatives given
in the preference profile of the agents.
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Definition 1 (Social Choice Function). A social choice function is a func-
tion f : Pn → X.

Let X(f) denote {x ∈ X : ∃ �∈ Pn s.t. f(�) = x}, where X(f) ⊆ X is the set
of all the alternatives, each of which has a chance to be selected.

Next, we introduce several desirable properties of a social choice function.

Definition 2 (Individual Rationality). We say social choice function f is
individually rational (IR) if for all i ∈ N and for all �∈ Pn, f(�) �i q or
f(�) = q holds.

Individual rationality means that the selected alternative must be at least as
good as the status quo. Note that we do not assume that the status quo is
the worst alternative for each agent; an agent may prefer the status quo over
alternative x.

Definition 3 (Strategy-Proofness). We say social choice function f is
strategy-proof (SP), if for all i ∈ N , for all pairs of �,�′∈ Pn such that �j=�′

j

for any j ∈ N−i, f(�) �i f(�′) or f(�) = f(�′) holds.

We assume �i is the private information of agent i. Thus, the outcome is calcu-
lated based on declared preferences. If f is not SP, an agent has an incentive to
misreport her preference.

4 Impossibility for General Cases

We show a negative result for general cases. The only mechanism that satisfies
desirable properties can choose at most one alternative besides the status quo.

Theorem 1. If f is IR and SP, then |X(f)| ≤ 2 holds, i.e., f can choose at
most two alternatives.

Proof. From the Gibbard-Satterthwaite theorem [7,14], any SP mechanism must
be dictatorial if the number of alternatives is more than or equal to 3. However,
a dictatorial mechanism does not satisfy IR. Thus, |X(f)| is at most 2.

It is clear that q ∈ X(f) must hold as long as f satisfies IR. If a mechanism
is IR and SP, then it is either trivial (always chooses q) or it chooses between
q and one particular alternative x, which is selected in some way (perhaps in
arbitrarily) independently from the agent declarations. The mechanism chooses
x if all agents prefer it over q. Otherwise, it chooses q.

5 Social Choice with Exogenous Indifference Sets (SC-EI)

To overcome the negative result obtained in the previous section, we consider a
domain where the alternatives have a publicly known structure: a Social Choice
with Exogenous Indifference sets problem (SC-EI).
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An SC-EI is defined by a tuple (N,X, q,�, Q). The meanings of N,X, q,�
are identical to the social choice problem defined in the previous section. Here
Q = (Qi)i∈N is a profile of the indifference sets. Each Qi ⊆ X represents the set
of alternatives that are equivalent to q for agent i where for any x ∈ Qi, x ∼i q
holds. We assume ∼i is reflective, transitive and symmetric. We assume q ∈ Qi

holds for each i ∈ N . We also assume the preference of each agent is strict except
for the elements of Qi, i.e., for any x ∈ X\Qi and x′ ∈ X, where x 
= x′, either
x �i x

′ or x′ �i x holds.1 We denote x �i x
′ when x �i x

′ or x ∼i x
′ holds. We

say x is indifferent to agent i (with q) if x ∈ Qi. x is also a standard alternative
for agent i if x ∈ X\Qi.

We assume Q is public information and develop a mechanism that exploits
this information. Assuming Q is public is reasonable if each alternative is relevant
to only a subset of agents, e.g., an agent is indifferent between alternative trip
plans in which she does not participate.

Let us show a concrete example and an informal description about how a
mechanism can utilize Q.

Example 1. Consider the following case.

– N = {1, 2, 3}, i.e., three agents.
– X = {x1, x2, x3, x4, x5, q}, i.e., six alternatives including the status quo. Here,

we assume these alternatives are possible trip plans, where x1 is a plan that
all agents go to Thailand, x2 is a plan that all agents go to Singapore, x3 is a
plan that only agents 1 and 2 go to Thailand, x4 is a plan that only agents 1
and 3 go to Singapore, and x5 is a plan that only agent 1 goes to Thailand.

– Q1 = {q}, Q2 = {x4, x5, q}, Q3 = {x3, x5, q}, i.e., each agent considers any
trip that she does not participate in as an element of her indifference set.

If Q is not public knowledge, as shown in the previous section, when |X(f)| = 2,
mechanism f first chooses one alternative x within {x1, . . . , x5} in some way,
e.g., arbitrary. Then, the mechanism asks each agent whether she approves it,
i.e., whether she prefers x over q. If all the agents approve x, then it is chosen.
Otherwise, q is chosen.

When Q is public, instead of choosing one alternative, the mechanism can
choose two, say, x3 and x4. Here, since x3 ∈ Q3, it can select x3 without the
approval of agent 3; it is public knowledge that she is indifferent between x3

and q. The mechanism asks agent 2 whether she approves x3. Also, it asks
agent 3 whether she approves x4. Let ̂X denote the set of approved alternatives.
Then, the mechanism lets agent 1 choose her most preferred alternative within
̂X ∪ {x5, q}. Clearly, X(f) = {x3, x4, x5, q}. Thus, |X(f)| becomes strictly more
than 2.

We next introduce several criteria to evaluate social choice functions. For
alternative x ∈ X, let S(x) denote {i ∈ N : x 
∈ Qi}, i.e., the set of all agents

1 This assumption is required to obtain Maskin monotonicity [11], which is a powerful
tool to show various properties of a mechanism.
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who consider x a standard alternative. In Example 1, S(x1) = S(x2) = {1, 2, 3},
S(x3) = {1, 2}, S(x4) = {1, 3}, and S(x5) = {1}.

Definition 4 (Multiagent Choice). We say alternative x is a multiagent
choice if |S(x)| ≥ 2. Also, we say x is a multiagent choice of mechanism f
if x is a multiagent choice and x ∈ X(f) holds. Let M ⊆ X denote the set of
all multiagent choices in X and let M(f) denote X(f) ∩ M , i.e., the set of all
multiagent choices with a chance to be selected by mechanism f . We call M(f)
the possible multiagent choices of mechanism f .

In Example 1, x1, x2, x3, and x4 are multiagent choices. Also, for the mechanism
described in Example 1, M(f) = {x3, x4}. Let Xi(f) denote X(f)\Qi and let
Mi(f) denote M(f) ∩ Xi(f).

In the trip organizing example, a multiagent choice is a trip involving more
than one agent. It is natural to assume that a social choice function is better if
it can choose more multiagent choices. In the general setting, we showed that at
most one alternative besides the status quo can be chosen as long as mechanism
f is IR and SP. Thus, the number of possible multiagent choices of f is at most 1.
In an SC-EI, the number of possible multiagent choices can be increased, e.g., in
Example 1, |M(f)| = 2. In the next section, we show that the number of possible
multiagent choices is bounded, i.e., at most n − 1.

From the above definition, for x to be a multiagent choice, |S(x)| ≥ 2 is
sufficient; it does not care whether |S(x)| = 2 or |S(x)| = n. In the trip organizing
example, it is reasonable to assume that a trip plan with more participants is
desirable. Thus, let us introduce another criterion that takes into account the
quantity of agents who consider an alternative to be standard.

Definition 5 (Agent Count). For subset of multiagent choices M ′ ⊆ M , we
call C(M ′) =

∑

x∈M ′ |S(x)| its agent count. We also call C(M(f)) the agent
count of mechanism f .

In Example 1, C(M(f)) = |{1, 2}|+|{1, 3}| = 4. This value means the cumulative
total number of participating agents of trips that involve multiple agents.

In general settings, the agent count is at most n, since there exists at most
one multiagent choice. In an SC-EI, the number of multiagent count can be
increased, e.g., in Example 1, C(M(f)) = 4. In the next section, we show that
C(M(f)) is bounded, i.e., at most 2(n − 1).

6 Properties of SC-EI

We show the bounds of the size of the possible multiagent choices and the agent
count of an IR and SP mechanism. Let us introduce another assumption called
weak non-bossiness. Let L(x,�i) = {y ∈ X : x �i y}. L(x,�i) is called agent
i’s weak lower contour set for alternative x. In words, the lower contour set of x
of agent i means a set of alternatives that are less preferred than or equal to x
for i.
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Definition 6 (Weak Non-bossiness). We say social choice function f is
weakly non-bossy (WNB) if for any i ∈ N and any �,�′∈ Pn s.t. for all j ∈ N−i,
�j=�′

j and L(x,�i) ⊆ L(x,�′
i) hold, f(�) = x ∈ Qi implies f(�′) = x.

Weak non-bossiness means that if alternative x is chosen for preference profile �
and x is in agent i’s indifference set, for preference profile �′ in which only agent
i’s preference is changed such that x is not considered worse, x is also chosen.
Note that Qi is public information and agent i cannot report a preference that
is inconsistent with it. Thus, since x is not considered worse, all of the elements
in Qi are not considered worse.

Standard non-bossiness, which was introduced by [15], means that by chang-
ing an agent’s preference relation, she cannot change the outcome for the other
agents without affecting her own outcome. Here, we use a weaker definition of
non-bossiness; by changing agent i’s preference in a restricted manner, i cannot
change the outcome from one alternative in Qi to another alternative in it. If
an agent could do this, then she could change the outcome for the other agents
without affecting her own outcome.

The following theorem holds:

Theorem 2. Assume social choice function f is IR, SP and WNB. Then, the
size of its possible multiagent choices, i.e., |M(f)| is at most n− 1 and its agent
count, i.e., C(M(f)) is at most 2(n − 1).

To prove this theorem, we utilize a property called Maskin monotonicity [11].

Definition 7 (Maskin Monotonicity). Social choice function f is Maskin
Monotonic (MM) if for all �,�′∈ Pn, f(�) = x and L(x,�i) ⊆ L(x,�′

i) for
all i ∈ N imply f(�′) = x.

In words, social choice function f is MM if alternative x, which is chosen for
preference profile � is also chosen for preference profile �′, where x is not
considered worse for all agents. When the agents have strict preferences over
X, strategy-proofness implies Maskin monotonicity [11]. On the other hand, in
our model where agent i considers all alternatives in Qi indifferent, strategy-
proofness does not imply Maskin monotonicity. However, if we assume weak
non-bossiness, strategy-proofness does imply Maskin monotonicity, and the fol-
lowing proposition holds.

Proposition 1. If social choice function f is SP and WNB, then it satisfies
Maskin monotonicity.

Proof. To show that strategy-proofness and weak non-bossiness imply Maskin
monotonicity, assume that f(�) = x. It is sufficient to show f(�′) = x when
�′ satisfies �j=�′

j for any agent j ∈ N−i as well as L(x,�i) ⊆ L(x,�′
i) holds.

Consider the following three cases:

case (1) x ∼i f(�′): either f(�′) = x or x ∈ Qi holds. If f(�′) = x, we are
done. If x ∈ Qi, we obtain f(�′) = x by weak non-bossiness.
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case (2) f(�′) �i x: agent i has an incentive to declare �′
i if her true preference

is �i. This fact violates the assumption that f is SP.

case (3) x �i f(�′): we obtain x �′
i f(�′) from assumption L(x,�i) ⊆ L(x,�′

i).
Thus, agent i has an incentive to declare �i when her true preference is �′

i. This
fact violates the assumption that f is SP.

As a result, f(�) = f(�′) holds. Thus, strategy-proofness and weak non-
bossiness imply Maskin monotonicity.

For x, x′ ∈ X, x dominates x′ if x �i x
′ holds for all i ∈ N and there exists

at least one agent j ∈ N such that x �j x
′ holds.

The following proposition holds.

Proposition 2. Assume that social choice function f is IR, SP, and WNB.
When there exists alternative x′ ∈ X(f) that dominates alternative x ∈ X(f)
for �, f(�) 
= x holds. In particular, if there exists alternative x ∈ X(f) that
dominates q, we have f(�) 
= q.

Proof. For the sake of contradiction, we assume that there exists �∈ Pn s.t. x′

dominates x and f(�) = x. From f(�) = x and individual rationality, for all
i ∈ S(x), x �i q holds. Also, from the assumption that x′ dominates x, for all
i ∈ S(x′) ∩ S(x), x′ �i x �i q holds. Also, since we assume x′ ∈ X(f), there
exists �′∈ Pn s.t. f(�′) = x′. From individual rationality, for all i ∈ S(x′),
x′ �′

i q holds. Here, we consider �′′ that satisfies the following conditions:

– If i ∈ S(x) ∩ S(x′), x′ �′′
i x �′′

i q.
– If i ∈ S(x′)\S(x), x′ �′′

i q and x ∼′′
i q.

– For all x′′ 
= x, x′, for all i ∈ S(x′′), q �′′
i x′′.

L(x,�i) ⊆ L(x,�′′
i ) holds. Thus, from Maskin monotonicity, f(�′′) = x must

hold. On the other hand, L(x,�′
i) ⊆ L(x,�′′

i ) holds for all i ∈ N . Thus, from
Maskin monotonicity, f(�′′) = x′ must hold. This is a contradiction.

Next, we introduce the classification of agents.

Definition 8 (Agent Types).

Decider: Agent i is a decider if |Xi(f)| ≥ 2 and |Mi(f)| ≥ 1 hold, where at
least two possible alternatives of mechanism f are her standard alternatives
and at least one is a multiagent choice.

Approver: Agent i is an approver if Xi(f) = Mi(f) and |Xi(f)| = 1 hold, i.e.,
exactly one possible alternative of mechanism f is her standard alternative
and also a multiagent choice.

Solitary: Agent i is solitary if |Mi(f)| = 0 holds, where no possible multia-
gent choice of mechanism f is her standard alternative. There might exist
alternative x such that S(x) = {i} holds.
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In Example 1, agent 1 is a decider since X1(f) = {x3, x4, x5}, and x3 and x4 are
multiagent choices. Agent 2 and 3 are approvers since X2(f) = M2(f) = {x3}
and X3(f) = M3(f) = {x4}.

The next proposition implies that if alternative x ∈ X(f) is a multiagent
choice, then there exists at most one decider who considers x her standard alter-
native. In Example 1, X(f) includes two multiagent choices, i.e., x3 and x4. For
both, only agent 1 is the decider of these alternatives.

Proposition 3. Assume that agents i, j ∈ N (i 
= j) are deciders. If there exists
SP, IR, and WNB social choice function f , Xi(f) ∩ Xj(f) = ∅ holds.

Proof. For the sake of contradiction, we assume that agents 1 and 2 are deciders
and X1(f) ∩ X2(f) 
= ∅ holds. Consider the following two cases.
case (i) |X1(f)∩X2(f)| ≥ 2: Without loss of generality, assume x, x′ ∈ X1(f)∩
X2(f) (x 
= x′), x �1 x′ �1 q for agent 1, x′ �2 x �2 q for agent 2, and for any
x′′ ∈ X\{x, x′, q}, there exists agent i ∈ S(x′′) whose preference is q �i x

′′. From
individual rationality, f(�) 
= x′′ holds. Furthermore, assume x, x′ �i q holds
for any agent i ∈ N\{1, 2}. Also, from Proposition 2, f(�) 
= q holds. Without
loss of generality, assume f(�) = x. Then, agent 2 has an incentive to declare
x′ �′

2 q �′
2 x when her true preference is �2. This is because when agent 2

declares �′
2, the social choice becomes x′. This contradicts our assumption that

f is SP.
case (ii) |X1(f) ∩ X2(f)| = 1: Without loss of generality, assume x ∈ X1(f) ∩
X2(f), x′ ∈ X1(f) ∩ Q2, and x′′ ∈ Q1 ∩ X2(f). We consider the following five
cases of preferences for agents 1 and 2. For each case, we assume that for any
x′′′ /∈ {x, x′, x′′, q}, there exists agent i ∈ S(x′′′) whose preference is q �i x′′′.
We also assume x, x′, x′′ �i q for agent i ∈ N\{1, 2}. From individual rationality
and Proposition 2, f(�) ∈ {x, x′, x′′, q}.

(1) agent 1: x′ �1 q ∼1 x′′ �1 x,
agent 2: x �2 q ∼2 x′ �2 x′′

(2) agent 1: x′ �1 x �1 q ∼1 x′′,
agent 2: x �2 q ∼2 x′ �2 x′′

(3) agent 1: x �1 x′ �1 q ∼1 x′′,
agent 2: x �2 x′′ �2 q ∼2 x′

(4) agent 1: x′ �1 x �1 q ∼1 x′′,
agent 2: x �2 x′′ �2 q ∼2 x′

(5) agent 1: x′ �1 x �1 q ∼1 x′′,
agent 2: x′′ �2 x �2 q ∼2 x′

We show the social choice for each case.

(1) From individual rationality and Proposition 2, we have f(�) = x′.
(2) From (1) and Maskin monotonicity, f(�) = x′ holds (∗).
(3) From Proposition 2, we have f(�) = x (∗∗).
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(4) We have f(�) = x′ from the following three reasons: (a) If f(�) = x, it
is contrary to strategy-proofness for agent 2 from (∗). (b) If f(�) = x′′,it is
contrary to (∗∗) from MM. (c) From Proposition 2, f(�) 
= q.

(5) From (4) and MM, f(�) = x′ holds. However, we can create four cases by
replacing x′ with x′′, and agent 1 with agent 2 in cases from (1) to (4), which
we call (1’) to (4’). For example, in (1’), we set x �1 q ∼1 x′′ �1 x′ for agent 1
and x′′ �2 q ∼2 x′ �2 x for agent 2. Although f(�) = x′ has to continue
holding in case (5), from (1’) to (4’), we obtain f(�) = x′′ in case (5). This
is a contradiction.

Now, we are ready to prove Theorem 2.

Proof (Proof of Theorem 2). From Proposition 3, the number of deciders who
consider each multiagent choice x ∈ M(f) their standard alternative is at most
one. Since there exists at least one approver for each x ∈ M(f), we obtain
|M(f)| ≤ n. If |M(f)| = n, the number of approvers is n. However, this implies
that the number of deciders is 0 and violates the assumption that there are n
multiagent choices, since each alternative is a standard alternative only for a
single approver. Thus, we derive |M(f)| ≤ n − 1.

Next, we examine the agent count. If there exists no decider, then the agent
count is at most n, where all approvers consider a single multiagent choice as their
standard choice. If there exists at least one decider, then the agent count is at
most the sum of the number of approvers and multiagent choices. This number
is maximized when a single decider considers all n − 1 multiagent choices as
her standard alternative, and each multiagent choice is considered a standard
alternative by a single approver. In such a case, the agent count is 2(n − 1).

7 AC Mechanisms

We propose a class of IR, SP, and WNB social choice functions (mechanisms)
that is optimal in terms of possible multiagent choices and agent count. We
call such mechanisms Approve and Choose (AC) mechanisms. For presentation
purposes, we first show the AC mechanism for 2 agents.

Mechanism 1 (AC Mechanism for 2 Agents). We assume that there exist
agents 1 and 2. Mechanism f chooses one decider and one approver in some
way (which can be arbitrary) independently from the agents’ declarations. Here,
let assume agent 1 is a decider and agent 2 is an approver. X(f) consists of
{x∗}∪Y . It determines alternative x∗ as a multiagent choice which is a standard
alternative for both agent 1 and 2, in some way independently from the agents’
declarations. Thus, x∗ ∈ X1(f)∩X2(f) holds. Also, it chooses set of alternatives
Y = {q} ∪ {x ∈ X1(f) : |S(x)| = 1}, where Y contains q and all the alternatives
are standard alternatives only to agent 1 in some way independently from the
agents’ declarations.
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1. Agent 2 approves x∗ if she prefers x∗ over q. Otherwise, she vetoes x∗.
2. Agent 1 selects the best alternative according to agent 2’s decision:

– If agent 2 approves x∗, then agent 1 selects the most preferred alternative
in {x∗} ∪ Y .

– Otherwise, agent 1 selects the most preferred alternative in Y .

We generalize this procedure from 2 agents to n agents. First, the mechanism
chooses one decider in some way independently from the agents’ declarations.
Here, we assume agent 1 is a decider. The mechanism then determines a set X∗

of multiagent choices in some way independently from the agents’ declarations,
such that for each x∗ ∈ X∗, agent 1 is the decider and a subset of N−1 is
approvers. Here, each approver has exactly one alternative in X∗ and this choice
is her standard alternative. In Example 1, the mechanism chooses X∗ as {x3, x4}.
For x3, agent 1 is the decider and agent 2 is the approver. For x4, agent 1 is the
decider and agent 3 is the approver.

Also, the mechanism independently selects set of alternatives Y = {q}∪{x ∈
X1(f) : |S(x)| = 1} from the agents’ declarations. In Example 1, the mechanism
chooses Y as {x5, q} and asks each approver in turn whether she approves of her
multiagent choice. Let ̂X∗ ⊆ X∗ denote the set of alternatives that are approved
by all own approvers. Then, the decider selects her most preferred alternative
among ̂X∗ ∪ Y .

In Example 1, assume x3 �1 x4 �1 x5 �1 q, x3 �2 q, and x4 �3 q. Then, x3

and x4 are approved by agents 2 and 3, respectively. Thus, ̂X∗ = {x3, x4}. Then,
agent 1 chooses x3 from ̂X∗ ∪ Y = {x3, x4, x5, q}. If the preference of agent 1 is
x5 �1 x4 �1 x3 �1 q, then she chooses x5.

The following theorem illustrates the property of the AC mechanism.

Theorem 3. Any AC mechanism f is IR, SP, and WNB. Also, X(f) = X∗ ∪
Y . Furthermore, an instance of the AC mechanisms is optimal in terms of the
number of multiagent choices and the agent count.

Proof. Due to space limitations, we show the proof for the two agent case. Gen-
eralizing to the n agent case is rather straightforward (although verbose).

We first show that the AC mechanism is SP. For agent 2 (an approver), if
she vetoes x∗ even though x∗ �2 q, the social choice results in her indifference
set. If she approves x∗, x∗ might be selected. Thus, agent 2 has no incentive
to misreport her preference. Agent 1 (a decider) does not have any incentive to
misreport her preference, since she can select the best alternative from a set that
is determined independently from her declaration. Next we show that the AC
mechanism is IR. Obviously, it selects an alternative that is not worse than q as
long as the agents truthfully declare their preferences. Then we show that the
AC mechanism guarantees weak non-bossiness. Assume agent 1 chooses y ∈ Y
(which is in Q2) when agent 2 approves x∗. Then if she vetoes x∗ by declaring
that she prefers y over x∗, agent 1 still chooses y. For agent 1, q is the only
alternative in Q1 that can be selected. If agent 1 chooses q, then under any
preference of agent 1 in which q is not considered worse, q is also selected. x∗
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can be chosen when both agents deem x∗ best. Also, x ∈ Y can be chosen if
agent 1 deems x the best.

Finally, by selecting each multiagent choice so that it is considered a standard
alternative by exactly one approver, the number of multiagent choices becomes
n − 1. The agent count becomes 2(n − 1). From Theorem 2, this instance of AC
mechanisms is optimal in terms of the number of multiagent choices and the
agent count.

Since the agent count is bounded and there exists at most one decider for each
alternative, there exists a tradeoff between the numbers of multiagent choices
|M(f)| and agents who consider x ∈ M(f) their standard alternative |S(x)|;
if |S(x)| becomes large, |M(f)| should become small. As shown in the proof of
Theorem 3, |M(f)| is maximized when |S(x)| = 2 holds for all x ∈ M(f).

Unfortunately, the AC mechanism does not characterize all SP, IR, and WNB
mechanisms, since we can consider the following (seemingly less attractive) mech-
anisms.

A Mechanism with Multiple Deciders: From Proposition 3, multiple
deciders should not consider the same multiagent choice as their standard alter-
native. Assume agents are partitioned into several groups that are serialized.
Each group contains exactly one decider and the approvers who consider the
multiagent choices of the decider as standard alternatives. For the first group,
we apply the above procedure of Mechanism 1. When the first group chooses q,
the mechanism proceeds to the second group, and so on.

A Mechanism with No Decider: Assume all agents are solitary and seri-
alized. The first agent is asked to choose her most preferred alternative. If her
choice is q, the mechanism proceeds to the next agent, and so on.

8 AC Mechanism for Quasi-Linear Utilities

We can extend the idea of AC mechanisms and apply them to the cases where
each agent’s utility is quasi-linear.

An SC-EI problem in quasi-linear utilities is defined by a tuple (N,X, q, v,Q).
The meanings of N,X, q, and Q are basically identical to SC-EI. Here, v =
(vi)i∈N ∈ V n is a profile of the valuation functions, where V is the set of all
possible valuation functions for an agent. Each valuation function vi : X → R

returns the valuation of each alternative. We assume vi(x) = 0 if x ∈ Qi holds.
Mechanism f = (g, p) consists of allocation function g : V n → X and payment
function p : V n → R

n. When the declared profile of the valuation functions is
v̂, the utility of agent i is defined as: vi(g(v̂)) + pi(v̂), i.e., a quasi-linear utility
function.

We require that the mechanism does not lose or earn money.

Definition 9 (Budget-Balanced). A mechanism is strongly budget-balanced
(SBB) if for any profile of valuations v ∈ V n,

∑

i∈N pi(v) = 0 holds.
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We say a mechanism is weakly budget-balanced (WBB) if for any profile of
valuations v ∈ V n,

∑

i∈N pi(v) ≤ 0 holds. The family of Groves mechanisms is a
well-known representative class of efficient and SP social choice functions [8].
In our problem setting, agents can have a negative valuation for an alloca-
tion/choice. In such a setting, an instance of Groves mechanisms can satisfy
IR, but not WBB. Another instance of Groves mechanisms can satisfy WBB,
but not IR. Actually, no instance of a Groves mechanism is simultaneously IR
and WBB [9]. We show that the modified AC mechanism guarantees SP, IR,
and SBB.

Note that we do not require that WNB be a necessary condition in this
section. Since an agent can affect the outcome through payments, it is com-
mon that a mechanism does not satisfy non-bossiness. For example, the Groves
mechanisms do not satisfy non-bossiness.

8.1 Class of AC Mechanisms

In this section, we propose a class of AC mechanisms for quasi-linear utilities.

Mechanism 2 (AC Mechanism for Quasi-Linear Utilities)

1. The mechanism selects one agent as a decider. WLOG, we assume agent 1 is
the decider.

2. It chooses X∗ and Y similar to an AC mechanism. In more detail, it selects
X∗ of multiagent choices such that for x∗ ∈ X∗, agent 1 is a decider and
subset N−1 is approvers. Each approver has exactly one standard alternative
in X∗. It also independently chooses a set of alternatives Y = {q} ∪ {x ∈
X1(f) : |S(x)| = 1}.

3. Each approver j declares her (not necessarily true) valuation (denoted as v̂j).
4. For each approver j of alternative x, her threshold price pj(v̂) is determined.

It can depend on the declaration of other approvers, but it must be independent
from her own declaration.

5. x ∈ X∗ remains valid if v̂j(x) ≥ pj(v̂) holds for each approver j of x. Let
̂X∗ ⊆ X∗ denote a set of valid alternatives. We also require that for each
valid alternative x ∈ ̂X∗ and for each approver j of x, pj(v̂) is determined
independently from the declarations of the approvers of other valid alterna-
tives. In other words, if pj(v̂) depends on v̂k, then the alternative related to
agent k is not approved.

6. For each x ∈ ̂X∗, r(x) =
∑

j∈S(x),j �=1 pj(v̂).

7. Agent 1 (decider) chooses her most preferred alternative within ̂X∗∪Y . When
x ∈ ̂X∗ is chosen, agent 1 receives r(x), and each approver j of x pays pj(v̂).
If agent 1 chooses x ∈ Y , no agent pays/receives anything.

The following theorem illustrates the properties of the AC mechanism for
quasi-linear utilities.

Theorem 4. The AC mechanism for quasi-linear utilities is SP, IR, and SBB.
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Proof. We first show that the AC mechanism is SP. Agent 1 can choose her
most preferred alternative in a fixed set. The set and the corresponding pay-
ments are determined independently from her own declaration. Thus, agent 1
has no incentive to misreport her valuation. For each approver j, her threshold
price of the alternative related to agent j is determined independently from her
own declaration. Also, her own declaration affects the payment of other valid
alternatives only when her alternative is not approved. Thus, agent j has not
incentive to misreport her valuation.

The AC mechanism is IR, since each approver accepts an alternative only if
she can pay a threshold price. Also, the decider always has an option to choose q.
Obviously, it satisfies SBB, since the sum of approvers’ payments is transferred
to the decider.

8.2 Instances of AC Mechanisms

We introduce the instances of AC mechanisms for quasi-linear utilities. The first
is called a fixed price mechanism, in which a common fixed threshold price is
used. To achieve good efficiency, the fixed threshold price must be determined
appropriately. To do this, we need precise prior knowledge about the distribution
of agent valuations. On the other hand, the second, which is called a minimum-
value k+1-st price mechanism, is more flexible; the threshold price is determined
based on the valuations of other agents.

Mechanism 3 (Fixed Price Mechanism (FPM)). For all x ∈ X∗ and for
all approvers, we set constant c as a threshold price. Each alternative x ∈ X∗

remains valid if v̂i(x) ≥ c holds for each approver. If x ∈ X∗ is chosen, the
decider receives (|S(x)| − 1) × c. Clearly, each threshold price of an approver is
determined independently from all the approver declarations, including her own
declaration.

Here, we show an example how our FPM works.

Example 2. Consider the same situation as Example 1, but each agent has a
valuation for an alternative. We assume that each agent has a profile of valuation
functions for (x1, x2, x3, x4, x5, q):

– agent 1 : v1 = (−200,−100, 20, 250, 100, 0)
– agent 2 : v2 = (250, 200, 150, 0, 0, 0)
– agent 3 : v3 = (100, 100, 0, 50, 0, 0)

Let’s assume that agent 1 is selected as a decider. In this example, the mech-
anism selects X∗ = {x3, x4} and Y = {x5, q}. It also determines a threshold
price 100 for approvers. When each approver wants to travel with agent 1 by
paying this threshold price, say, her valuation is not less than 100, she approves
this offer. For x3, agent 2 is an approver and for x4, agent 3 is an approver. In
this case, only agent 2 approves the offer, i.e., ̂X∗ = {x3}. Thus, agent 1 selects
her most preferred alternative from Y ∪ ̂X∗ = {x3, x5, q}. For agent 1, when
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she selects x3, her utility becomes 20 − (−100) = 120 by receiving 100. On the
other hand, if she selects x5, her utility is 100. As a result, agent 1 selects x3

and agents 1 and 2 are going to travel in Thailand.

Mechanism 4 (Minimum-Value k+1-st Price Mechanism (MPM)).
For each alternative x ∈ X∗, let t(x) be the minimum of v̂j(x) for all approvers
of x. Sort X∗ in decreasing order of t(x). Top k ≤ |X∗| − 1 alternatives remain
valid and constitute ̂X∗. Let xk+1 denote the k+ 1-st alternative. For each valid
alternative x, pj(v̂) is determined to be t(xk+1). We can assume the threshold
price of an invalid alternative is equal to t(xk). It is clear that the threshold price
of each approver is determined independently from her own declaration. Also, the
threshold price of each approved alternative is determined independently from the
declarations of the other approvers of valid alternatives.

In the last of this section, we show an example of MPM.

Example 3. Consider the situation described in Example 2.
The mechanism selects X∗ = {x3, x4} as the same as above. We assume that

each agent truthfully declares her valuation functions. Thus, we have decreasing
order of t(x): 150 > 50. As a result, agent 2 is going to pay 50 for agent 1. If
agent 1 selects x3, her utility becomes 20 + 50 = 70. However, for agent 1, her
best alternative is x5, since her utility is 100 by selecting x5. As a result, agent 1
is going to travel in Thailand alone.

9 Conclusion

We investigated the IR and SP social choice functions for settings where the
agents need to choose from a set of alternatives including status quo q. We first
showed a negative result, i.e., IR and SP mechanism can choose at most one
alternative besides q. To overcome this negative result, we introduced the SC-EI
setting, where the indifference set of each agent is publicly known. We developed
a class of IR and SP mechanisms that work in this setting called Approve and
Choose (AC) mechanisms, which can be optimal in terms of possible multiagent
choices/agent counts.

Our future work will extend the AC mechanisms in a setting with monetary
transfers and experimentally evaluate our mechanisms in various application
domains.
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