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ABSTRACT

Many important problems in multiagent systems involve the allo-
cation of multiple resources to multiple agents. If agents are self-
interested, they will lie about their valuations for the resources if
they perceive this to be in their interest. The well-known VCG

mechanism allocates the items efficiently, is incentive compatible
(agents have no incentive to lie), and never runs a deficit. Nev-
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1. INTRODUCTION

Many important problems in multiagent systems can be seen as
resource allocation problems. In such an allocation problem, there
are one or more items that must be allocated to the agents. We as-
sume that each agent has a privately hedthiation function that
indicates how much she values the items. Moreover, we assume
that agents arself-interested an agent will reveal her true val-

ertheless, the agents may have to make large payments to a partgation function only if doing so maximizes her utility. An allo-

outside the system of agents, leading to decreased utility for the
agents. Recent work has investigated the possibility of redistribut-
ing some of the payments back to the agents, without violating the
other desirable properties of the VCG mechanism.

We study multi-unit auctions with unit demand, for which previ-

cation mechanism (cauctior) takes as input the agents’ reported
valuations, and as output produces an allocation of the items to
the agents, as well as payments to be made by or to the agents.
A mechanism isncentive compatibléf it is a dominant strategy

for the agents to report their true valuations—that is, regardless of

ously a mechanism has been found that maximizes the worst-casavhat the other agents do, an agent is best off reporting her true val-

redistribution percentage. In contrast, we assume that a prior distri-
bution over the agents’ valuations is available, and try to maximize
the expected total redistribution. We analytically solve for a mech-
anism that is optimal amorgear redistribution mechanisms. The
optimal linear mechanism is asymptotically optimal. We also pro-
posediscretizatiorredistribution mechanisms. We show how to au-
tomatically solve for the optimal discretization redistribution mech-

uation. A mechanism isfficientif it always chooses an allocation
that maximizes the sum of the agents’ valuations.

The well-knownVCG (Vickrey-Clarke-Groveshechanism [20,
4, 10] is both incentive compatible and efficiénin fact, in suffi-
ciently general settings, the wider but closely related class of Groves
mechanisms coincides exactly with the class of mechanisms that
satisfy both properties [9, 14]. The VCG mechanism has an addi-

anism for a given discretization step size, and show that the result-tional nice property, which is that it satisfies then-deficitprop-
ing mechanisms converge to optimality as the step size goes to zero€erty: the sum of the payments from the agents is nonnegative,

We also present experimental results showing that for auctions with
many bidders, the optimal linear redistribution mechanism redis-
tributes almost everything, whereas for auctions with few bidders,
we can solve for the optimal discretization redistribution mecha-
nism with a very small step size.
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which means that the mechanism does not need to be subsidized by
an outside party. A stronger property than the non-deficit property
is that of (strong) budget balangevhich requires that the sum of
the payments from the agents is zero—so that no value flows out of
the system of agents. To maximize social welfare (taking payments
into account), we would prefer a budget balanced mechanism to
one that merely achieves the non-deficit property (assuming both
are efficient). Unfortunately, it is impossible to achieve budget bal-
ance together with incentive compatibility and efficiency [15, 9,
17]. 2 Previous research has sacrificed either incentive compati-
bility or efficiency to achieve budget balance [8, 18, 7]. Another

1We use the term “VCG mechanism” to refer to the Clarke mech-
anism. Sometimes people refer to the wider class of Groves mech-
anisms as “VCG mechanisms,” but we will avoid this usage in this
paper. In fact, the mechanisms proposed in this paper fall within
the class of Groves mechanisms.

2The dAGVA mechanism [6] is efficient, (strongly) budget bal-
anced, andayes-Naslincentive compatible, which means that if
each agent’s belief over the other agents’ valuations is the distri-
bution that results from conditioning the (common) prior distribu-
tion over valuations on the agent’s own valuation, and other agents
bid truthfully, then the agent is best off (in expectation) bidding
truthfully. In practice, it is somewhat unreasonable to assume that
agents’ beliefs are so consistent with each other and with the mech-
anism designer’s belief, so we use the much stronger and more
common notion of dominant-strategies incentive compatibility in
this paper.



approach is to allocate the items according to the VCG mechanism,sume that we have a prior joint probability distribution over the
and then to redistribute as much of the total VCG payment as pos- agents’ values,;. We denote the probability density function of
sible back to the agents, in a way that does not affect the desirablethis joint distribution byf(v1, ..., v,). We emphasize that we re-
properties of the VCG mechanism. Several papers have pursuedquire neither that the agents’ values are drawn from identical dis-
this idea and proposed some natural redistribution mechanisms [1,tributions, nor that they are independent. However, for the special
19, 2]. For example, in the Bailey mechanism [1], each agent re- case where agents’ values are independently drawn from the same
ceives a redistribution payment that equils times the VCG rev- distributiong(x) (U > = > L), we know from the theory of or-
enue that would result if this agent were removed from the auction. der statistics thaf (v1, ..., v.) = nlg(vi)g(v2) ... g(vs) for all
In the Cavallo mechanism [2], each agent receives a redistribution U > v1 > v > ... > v, > L. Ifthe agents’ values are not drawn
payment that equals/n times the minimal VCG revenue that can  independently or are not drawn from the same distribution, then we
be obtained by changing this agent's own bid. For revenue mono- do not always have an elegant analytical form for the joint distri-
tonic settings, Bailey’s and Cavallo’'s mechanisms coincide; in this bution f. However, we will see later that optimal-in-expectation
case we refer to this mechanism as the Bailey-Cavallo mechanism.linear redistribution mechanisms depend only on the expectations
More recently, there has been some research on firafitighal re- of v1, ..., vy, which can usually be obtained by sampling.
distribution mechanisms. For the case of a multi-unit auction with In a multi-unit auction with unit demand, the VCG mechanism
unit demand (that is, each agent wants at most one of the indistin- coincides with the(m + 1)-th price auction. In this auction, the
guishable units), a mechanism that maximizes the worst-case redis-bidders with the highest: bids (biddersl, ..., m) each win one
tribution percentage has been characterized [11, 16]. In this paper,unit, and each pay at the price of the + 1)-th bid (m»+1). (When
we continue the search for optimal redistribution mechanisms. Un- m = 1, this is the well-known second-price auction.) Because it is
like the worst-case work, we assume that a prior distribution over a special case of the VCG mechanism, the+ 1)-th price auction
the agents’ valuations is available, and we aim to maximizexhe is incentive compatible, efficient, and never incurs a deficit.
pectedtotal redistribution. (There are two related papers [13, 3], A redistribution mechanism works as follows: after collecting
in which the authors propose mechanisms that maximize the suma vector of bidsv; > v, > ... > wv,, we first run the VCG
of the agents’ utilities (taking payments into account) in expecta- mechanism(n + 1)-th price auction). The resulting allocation is
tion. However, these papers operate under the constraint that everyefficient (agentd . .. m each win a unit). However, because each
agent’s total payment must be nonnegative, which results in very winner has to pay.,+1, a total VCG payment ofnv,,+1 leaves
different mechanisms.) the system of agents. In order to achieve higher social welfare (tak-
The rest of this paper is layed out as follows. In Section 2, we ing payments into account), we try to redistribute a large portion of
cover the necessary background. In Section 3, we define linearthe total VCG payment back to the bidders, while maintaining the
redistribution mechanisms, and solve for the optimal linear redis- desirable properties of the VCG mechanism. tgbe the redis-
tribution mechanism. In Section 4, we show how to automatically tribution received by bidder. To maintain incentive compatibility,
(using linear programming) solve for mechanisms that are close to r; must be independent of biddés own bidv;. (It is not difficult
optimal based on a discretization of the valuation space. In Sec-to see that this is sufficient for maintaining incentive compatibil-
tion 5, we compare the linear and discretization mechanisms ex- ity: if an agent cannot affect her own redistribution payment, then

perimentally. she may as well ignore it when she determines her strategy; hence,
the incentives for bidding are the same as in the VCG mechanism,
2. BACKGROUND which is incentive compatible. In general, because our allocation

is efficient, the requirement that does not depend on; is also
necessary for incentive compatibility [9, 14].) Hence, we can write
1's redistribution as; (v—;) (sometimes short for;), wherev_; is

the multiset of bids other tham; these functiong; determine the
redistribution mechanism. In this paper, unless otherwise specified,
we consider onlyanonymousedistribution mechanisms, for which
ri:(-) = r;(-) = r(-) forall 4, j. That s, the redistributiofunction

is the same for all agents. This may still result in different redistri-
bution payments for the agents, because the input to the function,
v_4, can be different for different

We will focus on multi-unit auctions with unit demand in this pa-
per. In a multi-unit auction, multiple indistinguishable units of the
same good are for sale. In a multi-unit auction with unit demand,
each agent wishes to obtain at most one unit—that is, if the agent
receives more than one unit, her utility is the same as if she re-
ceives one unit. We note that an (unrestricted) single-item auction
is a special case of multi-unit auctions with unit demand.

In this setting, each agent has a privately held true value for re-
ceiving (at least) one unit. If an agent wins one unit, her utility

is her true value minus her payment; otherwise, her utility is the Another property of the VCG mechanism that we want to main-

negative of her payment. In(aealed-bid) mechanisravery agent L e ) i
reports her value (hdrid), and the mechanism determines which tain Is thenon-deficiproperty: the payments colleqted by t.he megh .
anism are at least the payments redistributed by it. This is crucial if

agents win a unit, as well as how much each agent pays, as a func-no external subsidy for the mechanism is availablie.our settin
tion of these bids. A mechanism(dominant-strategies) incentive this means thaE"y () < ’ 9
compatibleif it is a dominant strategy for each agent to bid her true i=1 Ti(V=) S M.

valuation—that is, bidding truthfully is optimal regardless of what

the other agents bid. Since we only study incentive compatible 3. LINEAR REDISTRIBUTION

mechanisms in this paper, we do not need to make a clear distinc- MECHANISMS

tion in our notation between the true values and the bids. We first restrict our attention to the family tifiear redistribution

We assume that we know the number of agened the num-  nechanisms. A linear redistribution mechanism is characterized by
ber of indistinguishable units. If m > n, then we can give every 3 jinear redistribution function of the following form:
agent a unit without charging any payments. Thus, we only con-
sider the casen < n. Let the set of agents kb= {1,...,n}, (Vi) = co + c1v—i1 + C2v—i2 + ...+ Cnm1V—i 1
where agent has thei-th highest value;. Let constants. andU Swithout the non-deficit constraint, we can simply redistribljte

be the lower bound and upper bound of the possible values. Hence of the expected total VCG payment to every agent, which leaves no
oo >U>wv >wv > ... >wv, > L >0. We also as- waste in expectation.




wherev_; ; is thej-th highest bid among_; (the set of bids other The mechanism is complicated, and is perhaps easier to under-
thanv;). The coefficients:;; completely characterize the redistri-  stand using the auxiliary variables that we define in the derivation

bution mechanism. All previously proposed redistribution mecha- of this mechanism (in the next subsection).

nisms for this setting [2, 1, 19, 11, 16] are in fact linear redistribu-  The key property of the mechanisms in the theorem is that the

tion mechanisms. waste is always a multiple of: 1) the difference between two adja-

) ) . . L. cent (in terms of size) bids, or 2) the difference between the upper

3.1 Optimal-in-expectation linear redistribu- bound and the largest bid, or 3) the difference between the lowest
tion mechanisms bid and the lower bound. Moreover, the multiplication coefficient is

We will prove the following result, which characterizes a linear ~determined byn andn. Then, the OEL mechanism simply chooses
redistribution mechanism that maximizes the expected total redis- the best of these options. In contrast, under the worst-case optimal
tribution (among linear redistribution mechanisms). We call this Mechanism [11, 16], the waste is a linear combination of all of the

mechanism OEL (optimal-in-expectation, linear). bids (except for the highest).
The following special case and example should give some further
THEOREM 1. Givenm, n, and a prior distribution over agents’  intuition. _
valuations, the following; define a redistribution mechanism that The case wheré = m + 1 in Theorem 1 corresponds to the

maximizes expected redistribution, under the constraints that the redistribution mechanism in which each agent receives a redistri-
mechanism must be a linear redistribution mechanism, efficient, in- bution payment that is equal ta/n times the(m -+ 1)-th highest

centive compatible, and satisfy the non-deficit property. bid from the other agents. This is exactly the Bailey-Cavallo mech-
Let theo; be defined as follows: anism in our setting (multi-unit auctions with unit demand).
oo = U — Ev1, 0, = Ev; — Ev;+1, ando, = Ev, — L. Example 1.Consider the case where= 8 andm = 2, and the

) . T bids are all drawn independently and uniformly frgdn1]. In this
Theo, are determined by the given prior distribution. case Ev, — °=i for i Fi 1 )g SolU — 1yL ?010 }o 1

H H H ’ T 9 - ye ey O - 9 - yYe — g
Letk be any integer satisfying fori =0,...,8. (Werecall thaby = U — Evi,0n = Evn, — L,
ando; = Ev; — Eviy1 Otherwise.)argmini{oim(";Ll)/(Ti’) li —
modd,i = 0,...,n} is then{3,5}. The expected amount failed
to be redistributed i®sm (" ") /(%) = &. (The expected total
VCG payment is3.)
_ . o 1 o
G(n,m,i) = (::7;:11)/(7?:11) (i < m) . One optlmal solutlon is given b@f;. =1 an.dczl .0 for other .

: 1. Hence this expectation optimal linear redistribution mechanism

ke argmim{oim(";l)/(?) |i —modd,i=0,...,n}

Let functionG and H be defined as follows:

N (11 n—m-—1 -
H(n,m, i) = (0 )/ (1) (6> m) is defined byr; = %v_; s, which is actually the Bailey-Cavallo
i istributionNa™ 7 — By.t 3
o If 0 < k < m, then mechanism[1, 2]. The tot.al redlstrlbutlgnEi:0 i = 41;3—;—41;4.
o ) ‘ The expected amount failed to be redistributedi{Quvs — Jv3 —
ci = (-1) G(n,m,z)forz%k+1,...,m, %U4):%E(U3—v4):%.
ek =m/n—3 ", (=1)"T'G(n,m,i), The other optimal solution is given by = 2,c4 = —-%,¢5 =
ande; = 0 for otheri. %,.an.dci = 0 for oth_eri. .Henc_e this expectation optimal linear
redistribution mechanism is defined by = 2v_; 3 — Sv_; 4 +
o If k=0, then 2v_; 5. The total redistribution i§"7 | r; = 2vs — 3v5 + 3vs.
ci=(-1)""'G(n,m,i)fori=1,...,m, 'Ig'he expected arr:ount failed to be redistributef {§ (vs —ve)) =
Co:Um/n—Uzgl(—l)m_iG(n,m,i), ZE(’US*’UG): 13-
ande; = 0 for others. 3.2 Deriving an optimal linear redistribution

mechanism

e lfm+1<k<n,then
i1 . ) In this subsection, we derive the OEL mechanism and prove its
¢ = (1) H(n,m,i)fori=m+1,....k—1, optimality. Our objective is to find an linear redistribution mecha-
ek =m/n— Zf;;l+1(_1)m*i*1}[(n7 m,i), nism that redistributes the most in expectation. To optimize among
the family of linear redistribution mechanisms, we must solve for
the optimal values of the;. We want the resulting redistribution
mechanism to be incentive compatible and efficient, and we want
it to satisfy the non-deficit property. The first two properties are

andc; = 0 for others.

e If k = n,then

ci= (=)™ H(n,m,i)fori=m+1,...,n—1, satisfied by all the mechanisms inside the linear family, so the only
co=Lm/n—L Zn:1+1(71)m7171H(n, m, i), constraint is the non-deficit property. The following optimization

model can be used to find the linear redistribution mechanism (the
¢;) that redistributes the most in expectation, while satisfying the
non-deficit property.

andc¢; = 0 for otheri.

In expectation, this mechanism fails to redistribute

Variables: co,c1,...,¢cn-1
om ("1 /() Maximize E(} ;. ri)
Subject to:
This mechanism is uniquely optimal among all linear redistribu- For every bid vectot/ > v1 > v > ... > v, > L
tion mechanisms if and only if the choicekofs unique and there Sor i < Mumg
does not exist an evérand an odd;j such thai; = o; = 0. Ti=Co + C1V—i1 +C2V—i2 + ...+ Cn—1V—in—1




Given the prior distributionF (mwvm+1) is a constant, so we may
rewrite the objective of the above model as
Minimize E(mumy1 — > 5, T4)

Sincer; = co+ci1v—i1 +c2v_i2+ ...+ Crn1V_; n—1, Where
v_,,; is thej-th highest bid among bids other thés own bid, we
have the following:

1= Co + C1V2 + C2U3 + C3V4 ...+ Cn—2Un—1 + Cn—1Vn

re = Co+ C1V1 + C2U3 + C3V4 ... + Cr—2Un—1 + Cn—1Vn

73 = Cp + C1V1 + C2V2 + C3V4 ... + Cn—2Un—1 + Cn—1Vn

Tn—1 = Co + C1V1 + CaV2 + C3V3 ...+ Cn—2Un—2 + Cn—1Vn

Tn = Co + C1V1 + C2V2 + C3V3 ... + Cn—2Un—2 + Cn—1Un—1

We canwritemvm 41—y ;- s 85go+q1v1+q2v2+. . .4gnVn,
where the coefficientg; are listed below:

do = —ncCo
g =—(i—1)cic1i—(n—d)e;fori=1,2,.... mm+2,...,n
Gm+1 =M — MCm — (N —m — 1)emi1

(We note that we introduced a dummy variabjgin the above
equations—since there are only— 1 other bids,c,, will always
be multiplied by0, but adding this variable makes the definition
of the ¢; more elegant.) Givem andm, qo,...,qn (n + 1 val-
ues) are determined by, ...,cn—1 (n values). Conversely, if
qQo, - - -,qn—1 are fixed, then we can completely solve for the val-
ues ofco,...,cn—1 (@and hence also fog,). This results in the
following relation among the;:

g — 2lg 4 (2ln=) (DR gy
(_1)n—1 (n—1)(§zn:j!)m2-1q" _ (_1)mm(n—l)(n—n2ll)m(n—m)
After simplification we obtain:

DOUICS Vi Gy I

Now, we can use thg as the variables of the optimization model,
since from them we will be able to infer the. Becausenv,,+1 —
> i = qo+qiv1+gev2 +. . .+ gnvn, We can rewrite the non-
deficit constraint by requiring that the latter summation is nonneg-
ative. Also, theg; must satisfy the previous inequality (otherwise
there will be no corresponding).

— (_1)mm(n—l)

m

Variables: qo, q1,...,qn
Minimize E(qo + qiv1 + q2v2 + ... + gn¥n)
Subject to:

For every bid vectot/ > v1 > v > ... > v, > L
qo + qiv1 + q2v2 + ...+ guvn 20
YL (DT e = (=) m (")

In what follows, we will cast the above model into a linear pro-
gram. We begin with the following lemma[11]:

LEMMA 1. The following are equivalent:
1) g0 + qrv1 + qev2 + ... + guvn, > 0forall U > v1 > vy >
.2v > L
@q+LY" g+ U—-L)YF ¢>0fork=0,...,n

PrROOF (1)=(2): (2) can be obtained from (1) by setting =
ve =...=v =Uandvg41 = vg42 =...=vn, = L.

(2)=(1): Let us rewritel’ = qo + q1v1 + q2v2 + . .. + GnVn
asqo + LZ?:l gi + (v1 — v2) Z;:l qi + (v2 — v3) 2?21 q; +
oot (Un—1 —vn) Z?:Hl ¢+ (vn—L)37, gi- If Zf:l 20
foreveryk =1,...,n,thenT > qo + LY.}, ¢i > 0 (because
v1 —v2,v2 — V3, . ..,vn — L are all nonnegative). Otherwise, It
be the index so thaz:f;1 ¢ i1s minimal (hence negative). To make

T minimal, we want,, — v/ 1 (which is multiplied bny;1 qi)
to be maximal. So the minimal value f@tis g0 + LY ., ¢: +
(U — L)Y, ¢ > 0, which is attained when, = vs = ...
v = U andvgr 41 = vy = ... = v, = L. HenceT is always
nonnegative. []

Letzr = (g0 + LY 27, ¢)/(U — L) + Zf:1 g for k =
0,...,n. Thex; correspond (one to one) to thyg, SO we can use
the z; as the variables in the optimization model. The first con-
straint of the optimization model now becomes > 0 for every
k. Sincexy — xp—1 = qr fork = 1,...,n, the second constraint
becomes

S )T (@ — ) = ()™ m (")

After simplification we get:

(=1 (D = ()" m(")

Let og U—Ev1,0i:Evi—EUHl(i:l,...,n—l)
ando, = Ev, — L. Theo; are all nonnegative constants that we
know from the prior distribution. The objective of the optimization
model can be rewritten as follows:
E(go+ qiv1 + q2v2 + ... + qn¥n)
=qo+qEvi +q@FEve+...+qg.Ev,
=xo(U—-L)+q(Evi—L)+g2(Eva—L)+...+qn(Ev,— L)
=zo((U — L) — (Ev1 — L)) + (zo + q1)((Ev1 — L) — (Bvz —
L)) + (w0 + a1 + ¢2)(Bva — L) — (Evs — L)) + ... + (w0 +
G+ ...+ qn)(Ev, — L)
=00xg + 0121+ ...+ 0nTn

We finally obtain the following linear program:

Variables: zo, z1,...,%n

Minimize ooxzg + 0121 + ... + onTn

Subject to:

Yo (=1 (7w
At this point, for any givem andm, for any prior distribution,

it is possible to solve this linear program using any LP solver; then,

using the above, the resulting can be transformed back tg to

obtain an optimal-in-expectation linear redistribution mechanism.

However, this will not be necessary. The following claim gives an

analytical solution of this linear program.

= )"

m

CLAaIM 1. Letk be any integer satisfying
k € argmini{oim (" ")/ (?)|i — modd,i = 0,...,n}.

The above linear program has the following optimal solution:
z =m(" ")/ (}), andz; = 0fori # k.

m

The optimal objective value is;m (") /(1).

This solution is the unique optimal solution if and only if the
choice ofk is unique and there does not exist an evamd an odd
Jj such thabo; = o; = 0.
PROOF We can rewrite the second constraint as
Yo (=D (m (7)) =1

This results in the program

Variables: zo, z1,...,%n
Minimize ooxzg + 0121 + ... + 0onxn

Subject to:
2 ()/(m(","))zi =
i=0...n;t—m odd

X (/)41

i=0...n;i—m even




Theo; are nonnegative. To minimize the objective, we want all

One property of mechanisms that we have not discussed so far

thex, to be as small as possible. Itis not hard to see that it does notis individual rationality. participating in the mechanism should not

hurt to set ther; for which i — m is even to zero: in fact, setting
them to a larger value will only force the for whichi —m is odd

make agents worse off. The next claim shows that, if the prior
distribution does not distinguish among agents, OEé&xisnterim

to take on larger values, by the last constraint. (It should be noted individually rational—that is, in expectation, agents benefit from

that if there exists an evenand an odd such thab; = o; = 0,
then we can increase the correspondin@gndz; at no cost to the

objective without breaking the constraint, hence the solution is not

unique in that case.) This results in the following linear program:

Variables: zo, z1,...,%n
Minimize oozo + 0121 + ...
Subject to:

()/(m (" )z =1

i=0...n;t—m odd

We want ther; to be as small as possible. However, the second
constraint makes it impossible to set all theto 0. For each;
with ¢ — m odd, if we increase it by, the left side of the second
constraint is increased bfy) /(m (™ "))é and the objective value
is increased by;d. We need the left side of the second constraint
to increase tal (starting from0), while minimizing the increase
in the objective value. To do so, we want to find the (with
i — m odd) that has the minimal cost-gain ratio (where the cost
is 0;0, and the gain i§”) /(m(™"))é). It follows that for any in-
tegerk satisfyingk € argmini{oim(";l)/(?)ﬁ — modd,i =
0,...,n}, the linear program has the following optimal solution:
z, = m("")/(?) andz; = 0 for i # k. The resulting optimal

n

objective value i9xm (" ") /(})-
In the above argument, there were only two conditions under
which we made a choice that is not necessarily uniquely optimal: if

(and only if) there exists an evénd an odg such thab; = o; =

0, then, as we explained, there exist optimal solutions where some

x; With m — ¢ even is set to a positive value (in fact, it can be set to
any value in this case); and if (and onlydfygmin; {o;m (" ") / (7

|i — modd,i = 0,...,n} is not a singleton set, then there exists
another optimal solutlon with anothey, set to a positive value (in
fact, in this case, multiple,, may simultaneously be set to a posi-
tive value). O

By transforming ther; from Claim 1 to the corresponding, we
obtain the OEL mechanism from Theorem 1.

3.3 Properties of the OEL mechanism

participating in the mechanism (they receive nonnegative expected
utilities).

CLaim 3. If the prior distribution is symmetric across agents
(for example, the agents’ values are independent and identically
distributed), then the OEL redistribution mechanism is ex-interim
individually rational.

PrROOF Omitted due to space constraintg.]

As an aside, if the prior is not symmetric across agents, then we
can explicitly add the ex-interim individual rationality constraint
(or the strongeex-postindividual rationality constraifd) into our
optimization model. This still results in a linear program. While
it is possible to give a special-purpose algorithm for solving this
linear program, it does not admit an elegant analytical solution.

In Theorem 1, we gave an expression for the expected amount
that OEL fails to redistribute, which depended on the prior. In the
next claim, we give an upper bound on this that does not depend on
the prior.

CLAIM 4. For any prior, the OEL mechanism fails to redis-
tribute at most

U -Lm "N/

in expectation. This bound is tight.

PROOF Given a prior distribution (and therefore, given #g,
the expected amount failed to be redistributedjs (" ") /(})
foranyk € argmini{oim (", )/(Z)|z —modd,i =0,...,n}.
If o, = (U-L)(} )/ () forall i with i —m odd,

..... n;i—m odd

ando; = 0 for all otherz ('[hIS is in fact a feasible setting of the
0:), thenargmini{o;m (" )/(l)|z —modd,i =0,...,n} =

{i|0 < i < n,i —modd}. Sok can be any as long as‘ —mis

odd. In this case, the expected amount not redistributed is exactly
U-Dm(70/ Y ().

Now suppose that there is another distribution under which the

In the remainder of this section, we prove some properties of the mechanism fails to redistribute strictly more in expectation. Then,

OEL mechanism. First we have that there cannot be another re-

distribution mechanism that always redistributes at least as muchm(" 1)/

to every agent as OEL. That is, the OEL mechanisraridomi-
nated[12]. (This does not immediately follow from Theorem 1,

because that theorem only proved optimality among linear redistri-
bution mechanisms, whereas this claim applies to all redlstrlbutlon ¢=0,.

mechanisms.)

CLAIM 2. Foranym,n and anyL, U, there does not exist any
redistribution mechanism (other than OEL) that, for every multiset
of bids, redistributes at least as much to every agent as OEL.

PrROOF Omitted due to space constraints. Undominated redis-
tribution mechanisms are characterized in [12].]

It should be noted that Claim 2 only applies to the OEL mech-

anism, as defined in Theorem 1. Under certain circumstances (as

detailed in Theorem 1), this mechanism is not uniquely optimal;

the new set ob; must satisfyo;m (" 1) /(7) >

k
> (M) = oim(".")/(}) for any i with
,..yni—m odd

m

i=

i —m odd. It follows that] > o; for anyi with s — m odd. Since

> 0; = U — L andoj > 0 for anyi with i — m even,
..,n;i—m odd
ehave > o} > U — L, which is a contradiction. (J
1=0,...,n

We note that as goes to infinity (for fixedm), the expected
amount that fails to be redistributed goe9ftence OEL is asymp-
totically optimal. For Example 1, Claim 4 gives an upper bound on
the expected amount failed to be redistributed.8281 (we recall
that the actual amount is/12, so the bound is not very close in
this case).

So far, we have only considered anonymous redistribution mech-
anisms (that is, mechanisms with the same redistribution function

and the other optimal mechanisms do not always have the property“A mechanism is ex-post individually rational if every agent re-

of Claim 2.

ceives nonnegative utility faany bids.



r(-) for each agent). If we allow the redistribution mechanism to  For simplicity, we will assume that is continuous. The optimiza-

be nonanonymous, then we can use differgrfor different bid- tion model is the following:

ders. Moreover, even for the same bidder, we can use different

¢; depending on the order of the other bidders (in terms of their

bids), and there arén — 1)! such orders. Thus, it is clear that

to optimize among the class of nonanonymous linear redistribution N

mechanisms, we need significantly more variables, and analytical Sl_Jbljéc':'t'fof’L_

solution of the linear program no _Ionger.seems tractable. How- For every bid vectot/ > v > w2 > ... > v, > L

ever, we do have the following claim, which shows that the OEL S (v_) < M

mechanism remains optimal even among nonanonymous linear re- =1 -

distribution mechanisms, if the prior is symmetric. Let R* be the optimal objective value for this model. (To be

precise, we have not proved that an optimal solution exists for this

CLAIM 5. If the prior distribution is symmetric across agents model: it could be that the set of feasible solution values does not

(for example, the agents’ values are independent and identically include its least upper bound. In this case, simply/tétbe the

distributed), then no nonanonymous linear redistribution mecha- least upper bound.) Since we are not able to solve this model ana-

nism can redistribute strictly more than the OEL mechanism (which lytically, we try to solve it numerically.

is anonymous) in expectation. We divide the intervalL, U] (within which the bids lie) intaV

. . equal parts, with step size = (U — L)/N. Let k denote the
PROOF. Let us define the average of two (not necessarily anony- sybinterval:I (k) = [L + kh, L+ kh+h] (k = 0,1,..., N — 1).

mous) redistribution mechanisms as follows: for any multiset of pefiner” : R*~! — R as follows: forallly > @, > 25 > ... >

Variable function: r : R®~! — R, r continuous
Maximize
rir(v_q) f(ur,ve,. .., vn)dvidvus . . . dop

bids, for any agent, if one redistribution mechanism redistributes ;> I " (2 @0, .. . 20 1) = 2"[k1, ko, ... kn_1] where
x to agenti, and the other redistribution mechanism redistribytes .. — | (2, — L)/h| (except thate; = N — 1 if z; = U). Here,
to 4, then the average mechanism redistribtes- y) /2 toi. Itis the z""[k1, ka2, . .., kn_1] are variables. We call such a mechanism

not difficult to see that if two redistribution mechanisms both never g giscretization redistribution mechanism of step dize
incur a deficit, then the average of these two mechanisms also sat-
isfies the non-deficit property. This averaging operation is easily = CLAaIM 6. A discretization redistribution mechanism satisfies

generalized to averaging over three or more mechanisms. the non-deficit constraint if and only if

Now let us assume thatis a nonanonymous linear redistribu- n n
tion mechanism, and thatredistributes strictly more than the OEL iz 2 [k ke, ki, ki, kn] S m(L A+ kg h)
mechanism in expectation when the prior distribution is symmet- foreveryN —12> ki > kz > ... > kn 2 0.
ric across agents. Let be any permutation of elements. We PrROOF. Omitted due to space constraint$.]
permute the way treats the agents accordingtpand denote the
new mechanism by™. That is,r” treats agentr(i) the wayr The following linear program finds the optimal discretization re-
treatsi. Since we assumed that the prior distribution is symmetric distribution mechanism for step size The variables are
across agents, the expected total amount redistributed biiould 2"[k1, ka2, ..., kn_1] for all integersk; satisfyingN — 1 > ki >
be the same as that redistributedsbyNow, if we take the average k2 > ... > k,—1 > 0. The objective is the expected total
of ther™ over all permutationsr, we obtain an anonymous linear  redistribution, wherep[k1, k2, ..., kn] = P(v1 € I(k1),v2 €
redistribution mechanism that redistributes as much in expectation I (k2),...,vn € I(kn)) (We note that thevk:, k2,. .., kn] are

asr (and hence more than the OEL mechanism). But this con- constants).
tradicts the optimality of the OEL mechanism among anonymous
linear redistribution mechanisms[]

Variables: z"[.. ]
Maximize ZN—IZklszZ...Zk,LZO
p[k’hk‘z,...,kn] E:L:l Z[k’hk‘z,...,ki71,k‘i+1,...,k‘n]
4. DISCRETIZATION REDISTRIBUTION Subject to:
MECHANISMS ForeveryN —1> k1 > ke >...2k, >0

n . .

In the previous section, we only considered linear redistribution Lici 2lkroka, o kic1o ki, s bn] < UL A Bmgah)
mechanisms. This restriction allowed us to find the optimal linear Let z*"[.. ] denote the optimal solution of the above linear pro-
redistribution mechanism by analytically solving a linear program.  gram and let*" denote the corresponding optimal discretization
In this section, we consider a larger domain of eligible mechanisms, ragistrioution mechanism. Le®*" denote the optimal objective
and proposeliscretization redistribution mechanismshich can  ya1ye. The next claim shows that discretization redistribution mech-

be automatically designed [5] and can outperform the OEL mech- gnisms cannot outperform the best continuous redistribution mech-
anism. (In this section, for simplicity and to be able to compare gpisms.

to the previous section, we only consider anonymous mechanisms,
and we do not impose an individual rationality constraint. How- CLAIM 7. R*™" < R*.
ever, all of the below can be generalized to allow for nonanony-
mous mechanisms and an individual rationality constraint.)

We study the following problem: given a prior distributigr(the
joint pdf of vi,va, ..., v,), we try to find a redistribution mecha-
nism that redistributes the most in expectation among all redistribu-
tion mechanisms that can be characterized by continuous functions.

PrROOF For anye > 0, we will show how to construct a contin-
uous function’ so thatr’. < r*" everywhere, and the measure of
the set{r*" # r.} is less than.

Let B be the greatest lower bound ef" (r*” is bounded be-
low because it is a piecewise constant function with finitely many

pieces). For giverU > z1 > z2 > ... > xp—1 > L, let
®An exception is Claim 2, which shows that there is not even d(z1,...,2n-1) be the minimal distance from any, — L to the
a nonanonymous mechanism that always redistributes at least agiearest multiple ofe. For anys > 0, letrs(z1,...,zn-1) =

much as OEL to every agent (besides OEL itself). M@y, 1) ifd(x, ..., 1) > 6, andrs(z, ..., Zno1)



=r"a1,. . o) = (6—d(z1,. . 2e 1)) (P (1, Tn1) Variables: 2"[.. ]
— B)/d otherwise. o ' _ Maximize D 1 5p, sky>. k>0
It is easy to see that the functiog is contmuou; at}qny point plk1, ko, ... kal Doy 2lk1, ke, oo kic1, kg, - . K
whered(z1,...,x,—1) > §, because at these points,” is con- Subject to:
tinuous. Furthermore, the function is continuous at any point where ForeveryN — 1>k > ky > ... >k, >0
§ > d(z1,. ._.7xn71) >0, b(_ec_ause*h ano_ld are both continuous S zlky ke, kicy kg, - k] <
at these points. Moreover, it is also continuous at any point where mE(vmi1|v1 € I(k1),v2 € I(ka), ..., vn € I(kyn))
d(zx1,...,zn_1) = 0, because at such a poirit* (z1, . .., n_1)— — : — ; .
(6—d(x1, .. ~7$7L—1))(T*h(x17~~~71’n71)_B)/6 _ r*”(ml, L The |ntU|t|qn behind this linear program is the followmg. In
n_1). Finally, at any point wheré(z1, . . ., zn_1) = 0, the func- t_he previous linear program, th_e pon—deflc_lt con_stralnts were foec-
tion is continuous because on any paifit ..., ., , at distance tively set for theowestvalues within each discretized block, which
at mosty > 0 from a1, . .., xn_1, the function will take value at guaranteed that they would hold for every val_ug inthe blqck. In this
mosty(H — B) /5, whereH is an upper bound ori (H is finite). !lnear program, _however, we set thfa non-deficit constraints by t_ak-
As § goes 100, so does the measure of the gefh # 75} ing theexpectatllo.mver the valugs in each block. Generally, this
Moreover,rs < r* everywhere. Hence we can obtainwith the will result in deficits fo_r values |nS|_de the block, so this program
desired property by letting it equaj for sufficiently smalls. does not produce feasible mechanisms.

. : . . . . . sh H : H

Now, r’ is a feasible redistribution mechanism, because italways ~ Let2"[.. ] denote the optimal solution of the above linear pro-
redistributes less thari”. Moreover, becausgis a continuous pdf ~ 9ram, and lef™ denote the (not necessarily feasible) corresponding
on a compact domain, as— 0, the difference in expected value optimal discretization redistribution mechanism. It denote the
betweenr’ andr*" goes to0. Hence, we can create continuous OPtimal objective value. We have the following claims:
redistribution functions that come arbitrarily close®" in terms
of expected redistribution, and hengé (the least upper bound of CLAIM 10. Ifthe bids are independent and identically distributed,
the expected redistributions that can be obtained with continuousthen?”™ > R*.
functions) is at | *h, . .
unctions) is at least - PrROOF Omitted due to space constraintg.]

The next claim shows that if we make the discretization finer, we
will do no worse. CLAIM 11. Ifthe bids are independent and identically distributed,

thenR" < R*" + mh.

CLAIM 8. R*' < R*"/2, . .
- PrROOF Omitted due to space constraintg.]

PROOF Omitted due to space constraintg.]

Hence, by solving the linear program for determiniRg", we
get a lower bound oi?* and a discretization redistribution mech-
anism that comes close to it. If we also have that the bids are inde-
pendent and identically distributed, by solving the linear program
forhdetermininth, we get an upper bound dR* that is close to
R*".

The next claim shows that as we make the discretization finer and
finer, we converge to the optimal value for continuous redistribution
mechanisms.

CLAIM 9. limp_o R*™" = R*.

PROOF. For anyy > 0, there exists a continuous redistribu-
tion mechanisnr™ such that its expected redistribution is at least
R* — ~. r* is continuous on a closed and bounded domain, so

5. EXPERIMENTAL RESULTS

r* is uniformly continuous. Hence for any > 0, there exists We now have two different types of redistribution mechanisms
§ > 0sothatlr*(z1,z2, ..., Tn-1) — (21,25, ..., 2h_1)| < € with which we can try to maximize the expected total redistributed.
as long asmax;{|r; — x|} < §. Chooseh < 4§, and define The OEL mechanism has the advantage that Theorem 1 gives a
2"k, k2, .o kno1] bY 7 (L 4 kvh, L + kohy ... L + kn_1h) simple expression for it, so it is easy to scale to large auctions. In
forall N —1 >k > ko > ... > ko1 > 0. 2"[..] cor- addition, it is optimal among all linear redistribution mechanisms,
responds to a feasible discretization mechaniém In addition, although nonlinear redistribution mechanisms may perform even
r" > r* — . Hence, the expected redistribution of the opti- better. On the other hand, the discretization mechanisms have the
mal discretization mechanism with step size (at mas§ R*" > advantage that, as we decrease the step/sizee will converge
R" > R* — v — ne. Sincev ande are both arbitrarily small, to the maximum amount that can be redistributed by any continu-
limy_o R*" > R*. By Claim 7,lim;, o R** < R*. O ous redistribution mechanism. The disadvantage of this approach
is that it does not scale to large auctions. Fortunately, we will see
We note that a discretization redistribution mechaniénis de- that, as the auctions get larger, OEL redistributes almost the entire
fined by a finite number of real-valued variables: namely, one vari- total VCG payment, so OEL is certainly very close to optimal. On
ablezh[kl, kay...,kn_1] foreveryN —1 > k1 > ko > ... > the other hand, for smaller auctions, OEL is not that close to op-

kn—1 > 0. Because of this, we can use a standard LP solver to timal, but for these auctions we are able to solve for the optimal
solve for the optimal discretization redistribution mechanistn discretization redistribution mechanism with very small step size,
(for givenm, n, h and prior). At least for small problem instances, which we show is very close to optimal using the upper bound-
we can seth to very small values, and by Claim 9, we expect the ing technique. Thus, we can redistribute almost optimally for both
resulting mechanism to be close to optimal. small and large auctions.

But how do we know how far from optimal we are? As it turns In the following table, for different: (number of agents) and
out, the discretization method can also be used to find upper boundsm (humber of units), we list the expected amount of redistribution
on R*. Here, we will assume that agents’ values are independent by both the OEL mechanism and the optimal discretization mech-
and identically distributed. The following linear program gives an anism (for specific step sizes). The bids are independently drawn
upper bound orR”*. from the uniform[0, 1] distribution.



VCG | OEL R R Future research on optimal-in-expectation redistribution mecha-
0.5000] 0.3333] 0.4218 (N=100)| 0.4269 nisms can take a number of directions. One can try to solve for an
8282(7) 82838 82‘21?12 (N:gg) 82%2 optimal-in-expectation redistribution mechanism that is not neces-
0'7143 0.6667 0-6701 §N;15; 0'7040 sarily linear. One can also try to extend the results of this paper to
: : : — : more general settings, for example, settings without unit demand,
0.5000] 0.3333] 0.4169 (N=100)| 0.4269 or even combinatorial auctions. Finally, it would be interesting to

0.8000| 0.5000| 0.6848 (N=40) | 0.7103 , -
1.0000| 0.8000] 0.8944 (N=25) | 0.9355 see whether agents’ expected welfare can be improved even further

1.1429| 1.0000| 1.0280 (N=15)| 1.0978 by allocating units inefficiently, and if so, by how much.
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