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Abstract

The VCG mechanism is the standard method to incentivize
bidders in combinatorial auctions to bid truthfully. Under the
VCG mechanism, the auctioneer can sometimes increase rev-
enue by “burning” items. We study this phenomenon in a set-
ting where items are described by a number of attributes. The
value of an attribute corresponds to a quality level, and bid-
ders’ valuations are non-decreasing in the quality levels. In
addition to burning items, we allow the auctioneer to present
some of the attributes as lower quality than they actually are.
We consider the following two revenue maximization prob-
lems under VCG: finding an optimal way to mark down items
by reducing their quality levels, and finding an optimal set of
items to burn. We study the effect of the following parame-
ters on the computational complexity of these two problems:
the number of attributes, the number of quality levels per at-
tribute, and the complexity of the bidders’ valuation func-
tions. Bidders have unit demand, so VCG’s outcome can be
computed in polynomial time, and the valuation functions we
consider are step functions that are non-decreasing with the
quality levels. We prove that both problems are NP-hard even
in the following three simple settings: a) four attributes, arbi-
trarily many quality levels per attribute, and single-step valua-
tion functions, b) arbitrarily many attributes, two quality lev-
els per attribute, and single-step valuation functions, and c)
one attribute, arbitrarily many quality-levels, and multi-step
valuation functions. For the case where items have only one
attribute, and every bidder has a single-step valuation (zero
below some quality threshold), we show that both problems
can be solved in polynomial-time using a dynamic program-
ming approach. For this case, we also quantify how much bet-
ter marking down is than item burning, and we compare the
revenue of both approaches with computational experiments.

Introduction

Combinatorial auctions allow agents to bid on bundles of
items. They are a key paradigm for resource allocation
in multiagent systems. The Vickrey-Clarke-Groves (VCG)
mechanism (Vickrey 1961; Clarke 1971; Groves 1973) is
the canonical method that is used to incentivize agents to
bid truthfully. While VCG maximizes social welfare, it is
well-known that it can be deficient with respect to revenue
(Conitzer and Sandholm 2006; Rothkopf 2007).
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It is easy to see that the auctioneer can increase the rev-
enue of VCG by destroying (“burning”) items. A closely
related idea is the deliberate damage of goods in order to
create price discrimination. Deneckere and McAfee (1996)
observed this phenomenon in practice, and studied several
theoretical settings where it increases social welfare. They
observed that some companies choose to remove some func-
tions from goods in order to achieve higher revenue. We in-
vestigate a similar option that auctioneers have, to represent
items as a lower quality than they actually are.

In our setting, items are described by a number of at-
tributes. The value of an attribute can be thought of as a
quality level. The quality levels induce a partial order over
items. As an example, consider a cloud computing services
provider, who offers a number of different specifications
for virtual machines to clients. Each virtual machine has a
number of characteristics like the number of cores, speed,
memory, and storage space. Clients have (different) valu-
ation functions that depend on their requirements and the
characteristics of virtual machines, though it is reasonable
to assume that all of them value better characteristics.

We explore marking down the quality of items, and the
special case of completely destroying items, from an auc-
tioneer’s perspective. Formally, we study the following two
revenue maximization problems under VCG: finding an op-
timal way to mark down items by reducing their quality lev-
els, and finding an optimal set of items to burn. We study
the effect of the following parameters on the computational
complexity of these two problems: the number of attributes,
the number of quality levels per attribute, and the complex-
ity of the bidders’ valuation functions. We provide positive
and negative results. The negative results hold even when
bidders have unit demand (in which case the allocation and
payments of VCG can be computed in polynomial time).

The valuation functions we consider are step functions
that are non-decreasing with the quality levels. Every agent
has its own valuation function. As a special case, we con-
sider single-step valuation functions, where there is a fixed
value for any item whose quality is above a certain thresh-
old, where this threshold comprises minimum quality levels
for every attribute, and for all items that do no meet this
threshold, the value is zero.

We prove that both problems are NP-hard even in the fol-
lowing three simple settings:



a) four attributes, arbitrarily many quality levels per at-
tribute, and single-step valuation functions,

b) arbitrarily many attributes, two quality levels per attribute
(low and high), and single-step valuation functions, and

c) one attribute, arbitrarily many quality-levels, and multi-
step valuation functions.

For the case that items have only one attribute, and ev-
ery bidder has a single-step valuation, we show that both
problems can be solved in polynomial-time using a dynamic
programming approach. We also quantify how much better
marking down is than item burning, and compare the rev-
enue of both approaches empirically.

Other related work. Several authors have studied how
the auctioneer can increase her revenue using the infor-
mation asymmetry by revealing only partial information
about the items, using signaling (Emek et al. 2012; Mil-
tersen and Sheffet 2012; Guo and Deligkas 2013). Both
item burning and marking down the quality of items, can
be seen as another way the auctioneer can take advantage
of the information asymmetry between her and the bidders.
Other approaches have been studied in order to increase
the revenue in combinatorial auctions: bundling items to-
gether (Palfrey 1983; Ghosh, Nazerzadeh, and Sundarara-
jan 2007)1, generalizing the VCG to virtual valuation com-
binatorial auctions (VVCAs), affine maximizer combina-
torial auctions (Likhodedov and Sandholm 2004; 2005),
and mixed bundling auctions with reserve prices (Tang and
Sandholm 2012). Another way for the auctioneer to increase
the revenue of VCG is by removing bidders from the auc-
tion, as noted by Ausubel and Milgrom (2011) and Raste-
gari, Condon, and Leyton-Brown (2011).

The idea of burning items in VCG auctions has been stud-
ied from other perspectives. For example, item burning and
money burning with payments redistribution have been used
to increase the social surplus for the bidders (de Clippel,
Naroditskiy, and Greenwald 2009; Guo and Conitzer 2008).

Model Description

We study the allocation of m items among n agents us-
ing the VCG mechanism. Every item is characterized by
k numerical attributes that represent its quality. We use
(q1, q2, . . . , qk) to denote an item whose i-th quality at-
tribute equals qi. Higher attribute value corresponds to
higher quality. We define the following partial order over the
items: Given two items (q1, q2, . . . , qk) and (q′1, q

′
2, . . . , q

′
k),

if qi ≥ q′i for all i and qi > q′i for some i, then we say
the first item is “better”. Wlog, we assume the attribute val-
ues are non-negative integers. An agent’s valuation for an
item only depends on the item’s quality. That is, if two items
share the same quality attributes, then an agent’s valuations
for them are the same. Given two items, if they are compa-
rable based on the above partial order, then every agent’s
valuation for the better item is at least as high. We use
vi(q1, q2, . . . , qk) to denote agent i’s valuation for an item

1See Kroer and Sandholm (2013) for a detailed study of
bundling and VCG.

with quality (q1, q2, . . . , qk). We assume every agent’s valu-
ation for the worst quality equals 0, i.e., vi(0, 0, . . . , 0) = 0
for all i. A large portion of our paper deals with a restricted
agent valuation model. Agent i is called a simple agent if
her valuation function is a single-step function: there exists
a threshold (q1, q2, . . . , qk) and a value c > 0 such that

vi(q
′
1, q

′
2, . . . , q

′
k) =

{

c ∀j, q′j ≥ qj
0 Otherwise

We will use c|(q1, q2, . . . , qk) to denote (the valuation of)
such an agent. We assume the agents have unit demand,
which implies that VCG’s outcome can be computed in
polynomial time.

In this paper we focus on the VCG mechanism in the full
information setting, where the auctioneer knows agents’ val-
uation functions. The auctioneer has the ability to burn items
(remove some items from the auction), and mark down items
(present some item attributes as lower quality than they ac-
tually are). Marking down is more general than burning: an
item with quality (q1, q2, . . . , qk) can be marked down to
(0, 0, . . . , 0), which is equivalent to burning this item.

The following example shows that both burning and
marking down may increase VCG revenue, and marking
down may result in higher revenue than mere burning.

Example 1. For example, suppose there is only one at-
tribute (k = 1), thus the quality vector can be written as
a single value. There are two items, both with quality 2,
which is the highest quality. There are three agents. Agent
1 is a general agent, whose valuation function is as follows:
v1(0) = 0; v1(1) = 1; v1(2) = 100. Agent 2 and 3 are both
simple agents. Agent 2’s valuation is 200|2 (her valuation is
200 if the quality is at least 2, and her valuation is 0 oth-
erwise). Agent 3’s valuation is 2|1 (her valuation is 2 if the
quality is at least 1, and her valuation is 0 otherwise).

• Original VCG revenue: Agent 1 and 2 each wins one item
and pays 2. The original VCG revenue is 4.

• Optimal burning: The auctioneer burns one copy of the
items. As a result, agent 2 becomes the only winner. He
pays 100, and the VCG revenue increases to 100.

• Optimal marking down: Instead of burning, the auctioneer
marks down one copy of the items to quality 1. As a result,
agent 2 wins an item of quality 2 and agent 3 wins an item
of quality 1. Agent 2 pays 100 and agent 3 pays 1. That is,
after marking down, the VCG revenue increases to 101.

Given items’ qualities and agents’ valuations, we study
the following revenue maximization problems under VCG:

• Optimal burning: find an optimal set of items to burn.

• Optimal marking down: find an optimal way to mark
down items by reducing their quality levels.

We show that both are NP-hard in restricted settings. We
give complete proofs for two cases to illustrate our differ-
ent types of reduction (Theorems 1 and 4). The details of
other reductions are omitted due to space constraints. For
our polynomial-time algorithms for the single-attribute case,
we give complete details and proofs.



General Valuation Functions

In this section, we show that if we allow multi-step valua-
tion functions (non-simple agents), then both optimal burn-
ing and optimal marking down are NP-hard. This holds even
if there is only one quality attribute. The results are based on
reductions from the NP-hard minimum dominating set prob-
lem (Garey and Johnson 1979): given a graph, find a small-
est subset of nodes so that every node not in the subset is
adjacent to at least one node in the subset.

Theorem 1. For general agents, optimal burning is NP-
hard. This holds even if items have only one attribute.

Proof. We consider an arbitrary graph with z nodes. We
construct the following auction scenario. The numbers of
agents, items, and possible quality vectors are all polyno-
mial in z. The items are characterized by only one quality
attribute. For the constructed scenario, the problem of opti-
mal burning is equivalent to the problem of finding a mini-
mum dominating set in the graph. This suffices to show that
optimal burning is NP-hard.

We create 2z items. Item i has quality i (i from 1 to 2z).
We first create an agent whose valuation function v is as

follows. This agent is out bid by the other agents. The pur-
pose of constructing him is to ensure that item i’s VCG price
is at least v(i).

v(i) = 4i−1ǫ 1 ≤ i ≤ z (1)

v(z + i) = i 1 ≤ i ≤ z (2)

We then create the following z agents a1 to az with val-
uations according to (1) and (2) except that agent ai’s value
for the i th and (z + i)th items are:

vai
(i) = 3(4i−1ǫ)

vai
(z + i) = i+ 4i−1ǫ+ β

Let i ↔ j denote that node i and j are adjacent in the
graph. We create z agents b1 to bz with valuations according
to (1) and (2) except that agent bi’s value for the (z + i)th
item and any items (z + j) s.t. i ↔ j are:

vbi(z + i) = i+ 4i−1ǫ+ β
2

vbi(z + j) = j + β ∀j satisfying i ↔ j

ǫ and β (0 < β < ǫ) are set to be small enough so that all
the above valuation functions are increasing.

Under VCG, for 1 ≤ i ≤ z, ai wins item i and bi wins
item z+i. The agents’ total payment is

∑

1≤i≤2z v(i), which

is above 1 + 2 + . . .+ z.
We can set ǫ small enough, so that if we burn any item

between z + 1 to 2z, the agents’ total valuation is smaller
than 1+ 2+ . . .+ z. We do so, which ensures that we never
want to burn any item between z + 1 and 2z.

The problem is then to choose a subset from items 1 to
z to burn. Let S be the subset. Let S̄ be {1, 2, . . . , z} − S.
We analyze the revenue change after S is burned. We lose
∑

i∈S v(i), which was the revenue for selling the burned

items. For item i in S̄, there is no change in terms of revenue.
It is still won by ai, who still pays v(i). For item z + i with
i ∈ S, ai now wins it instead of bi. The VCG price changes

from v(z+i) to vbi(z+i). For these items, the total increase

in revenue is
∑

i∈S(4
i−1ǫ+ β

2 ) =
∑

i∈S v(i)+ |S|β2 . Com-

bining all revenue changes so far, we have gained |S|β2 by
burning. Finally, for items z+ i with i /∈ S, bi still wins it. If
there exists j ∈ S with i ↔ j, then bj is a loser and bj’s val-
uation for z+i is i+β. Hence, bi pays i if there is no such bj
and pays i+β otherwise. That is, bi pays β in extra if i ↔ j
for some j ∈ S. In summary, for every item burned, we gain
β
2 extra revenue, and for every item not burned and adja-
cent to a burned item (the corresponding nodes are adjacent
in the graph), we gain β extra revenue. Under the optimal
burning scheme, the set of items burned S must correspond
to a minimum dominating set of the graph.

Theorem 2. For general agents, optimal marking down is
NP-hard. This holds even if items have only one attribute.

Given the above NP-hardness results, from now on we
focus only on simple agents.

Multi-Attribute Setting

In this section, we show that even if we only consider sim-
ple agents, and there are multiple attributes (e.g., at least 4
attributes), then both optimal burning and optimal marking
down are NP-hard. The results are based on reductions from
the NP-hard monotone one-in-three 3SAT problem (Schaefer
1978). Monotone means that the literals are just variables,
never negations. One-in-three means that the determination
problem is to see whether there is an assignment so that for
each clause, exactly one literal is true.

Theorem 3. For simple agents, optimal burning is NP-hard.
This holds if the number of quality attributes is at least 4.

Theorem 4. For simple agents, optimal marking down is
NP-hard. This holds if the number of quality attributes is at
least 4.

Proof. We consider an arbitrary monotone one-in-three
3SAT instance with z variables. We construct the following
auction scenario. The numbers of agents, items, and possible
quality vectors are all polynomial in z. The items are charac-
terized by 4 quality attributes. For the constructed scenario,
the problem of optimal marking down is equivalent to the
problem of finding a satisfying assignment of the monotone
one-in-three 3SAT instance. This suffices to show that opti-
mal marking down is NP-hard.

Let the variables be x1 to xz . Let c be the number of
clauses. c is less than z3 if we ignore duplicate clauses.

We construct the following items. For 1 ≤ i ≤ z and
1 ≤ j ≤ c, if xi appears in clause j, then we create one copy
of (i, z − i, j, c − j) (denoted by item Aij). For 1 ≤ i ≤ z,
we create one copy of (i, z − i, 0, 0) (denoted by item Bi).

We construct the following agents. We use zi to denote
the number of appearances of xi in the 3SAT instance. For
1 ≤ i ≤ z, we create zi + 2 agents. We name this set of
agents Si. The quality requirement for all is (i, z − i, 0, 0)
and their valuations are 1, 1, 1

2 , . . . ,
1
zi
, 1+ziǫ

zi+1 , respectively.

We choose δ that is smaller than 1
z

. We set ǫ < δ, and make



sure that 1
zi

> 1+ziǫ
zi+1 . For 1 ≤ j ≤ c, we create two agents

both with type δ|(0, 0, j, c− j).
Let us first analyze the VCG revenue before marking

down. Given i, the total number of items better than or equal
to (i, z− i, 0, 0) is zi+1. They are won by the highest zi+1
agents in Si. Everyone pays 1+ziǫ

zi+1 . The total revenue from

these items is then 1 + ziǫ. Summing over all i, the total
VCG revenue is z + 3cǫ.

There is no point marking down any of the Bi. Given i, if
we mark down any attribute of Bi, then no agent wants the
item. As a result, there is one less winner among Si, which
never increases the revenue. Let the variables in clause j be
i1, i2, and i3. There are three items better than (0, 0, j, c −
j), which are Ai1j , Ai2j , and Ai3j . We should mark down
exactly one of them to (0, 0, j, c− j), which leads to δ extra
revenue (only two agents bid δ for this quality). At most we
gain cδ extra revenue (δ for each clause).

We assume we marked down k items (k ≤ c) and gained
kδ extra revenue. One thing we have not yet mentioned is
that marking down comes at a cost. Given i, if any Aij is
marked down, then we lose ziǫ revenue. On the other hand,
given i, if all of Aij have been marked down, then we still
just lose ziǫ revenue. That is, at the minimum, we lose ǫ for
every item marked down. The net gain is then k(δ− ǫ). This
expression is maximized when k = c. That is, the maximum
revenue gain by marking down is c(δ − ǫ). This maximum
revenue is achievable if the marking down scheme satisfies
that 1) for every clause j, we mark down exactly one Aij ;
2) for every i, we either mark down all of Aij or mark down
none. Thus, the maximum revenue is achievable if and only
if the 3SAT instance is satisfiable.

The above NP-hardness proofs are based on scenarios
with 4 attributes. By modifying the scenarios slightly, we
may derive another set of NP-hardness results. That is, even
if all quality attributes are binary (an attribute value is 0 or
1), if the number of attributes is linear in log(nm), then both
optimal burning and optimal marking down are NP-hard.

Corollary 1. For simple agents and binary attributes, opti-
mal burning is NP-hard.

Corollary 2. For simple agents and binary attributes, opti-
mal marking down is NP-hard.

The Single-Attribute Setting

In this section, we focus on simple agents and the case of
one quality attribute. In this setting, both optimal burning
and optimal marking down can be solved in polynomial-time
using a dynamic programming approach. We then quantify
how much better marking down is than item burning in this
setting, and conclude with computational experiments.

For single-attribute settings, every pair of items are com-
parable. Let H be the best item’s quality. That is, the items’
qualities are all from 0 to H . Here, it is wlog to assume
H ≤ m (H = m if all items have different qualities). We
use (m1,m2, . . . ,mH) to denote the set of all items, where
mi is the number of items of quality i.

Here, an agent’s valuation function is characterized by an
valuation and a quality threshold. The winner determina-

tion problem under VCG can be solved using the following
greedy algorithm. We loop from quality 1 to H (worst to
best). In the i-th round, we consider all items of quality i.
We allocate the items to the highest unallocated agents who
accept quality i (whose thresholds are at most i).

Start with an empty queue Q = {};
for i from 1 to H do

Q := Q+ Si, where Si is the set of agents whose
thresholds are equal to i;
Each of the mi highest agents in Q wins an item of
quality i (or every agent in Q wins if |Q| ≤ mi);
Remove all winners from Q;

end
Algorithm 1: Winner Determination

For presentation purpose, we assume that all agents’ val-
uations are different. That is, given two different agents v|q
and v′|q′, we must have v 6= v′. This assumption is not
restrictive for the following reasons. Given a fixed set of
items, the VCG revenue is continuous in the agents’ valu-
ations. The optimal VCG revenue after burning / marking
down is therefore also continuous in the agents’ valuations
(it is the maximum over a finite number of ways to burn /
mark down). Given a set of agents, if there exist ties among
the valuations, then we may simply perturb the valuations
infinitesimally to get rid of ties. We solve the optimal burn-
ing / marking down problem by working on the perturbed
valuations. The resulting optimal revenue is infinitesimally
close to the original optimal revenue. Therefore, the corre-
sponding burning / marking down scheme is infinitesimally
close to optimality.

Throughout the section, we will stick to the VCG out-
come produced by the above winner determination algo-
rithm, which is unique given the no-tie assumption. We
introduce the following notation, which will be used fre-
quently in this section. Let Wi be the set of agents allocated
in the round i. Let Qi be the set of losers after round i (some
of them may win in later rounds). Let Top(Qi) be the agent
with the highest valuation in Qi. If Qi is empty, then we de-
fine Top(Qi) to be the dummy agent 0|0. We use vTop(Qi)

to denote Top(Qi)’s valuation. An agent is called a loser if
he does not get allocated at the end of the algorithm.

Lemma 1. If Top(Qi) does not win, then every agent in Wi

pays vTop(Qi).

Proof. Let a be an agent in Wi. If a does not exist, then
Top(Qi) wins an item in round i. The other winners stay
the same with or without a. Therefore, every agent in Wi

pays the value of Top(Qi).

Lemma 2. If Top(Qi) wins (which can only happen in
rounds later than i), then every agent in Wi has the same
payment as Top(Qi).

Proof. We use U∗(A,S) to represent the optimal social wel-
fare when we allocate items in A to agents in S. Let a be an
agent in Wi and let va be his valuation. We use {Item ≤ x}
to represent all items of quality up to x. Similarly, we use



{Agent ≤ x} to represent all agents of thresholds up to x.
a’s VCG payment equals

U∗({Item ≤ i}, {Agent ≤ i})− va + vTop(Qi)

+U∗({Item > i}, {Agent > i} ∪Qi − Top(Qi))

−U∗({Item ≤ i}, {Agent ≤ i}) + va

−U∗({Item > i}, {Agent > i} ∪Qi)

= vTop(Qi)+U∗({Item > i}, {Agent > i}∪Qi−Top(Qi))

−U∗({Item > i}, {Agent > i} ∪Qi).

T op(Qi)’s VCG payment can be simplified to the same ex-
pression.

The above lemmas show that items of the same quality
share the same VCG price. Next, we show that the VCG
price is nondecreasing in the quality.

Lemma 3. Agents in Wi pay vTop(Qj), where j is the mini-

mum value satisfying j ≥ i and Top(Qj) is a loser.

Lemma 3 directly follows from Lemma 1 and Lemma 2.

Proposition 1. The prices of the items are nondecreasing in
the qualities. That is, if i > i′, then agents in Wi pay the
same or more, compared to agents in Wi′ .

Proof. By Lemma 3, we have j ≥ j′, agents in Wi

pay vTop(Qj) and agents in Wi′ pay vTop(Qj′ )
. Since both

Top(Qj) and Top(Qj′) are losers, we have Qj is a superset
of Qj′ . Therefore, vTop(Qj) ≥ vTop(Qj′ )

.

Now we are ready to describe a dynamic programming
approach for solving the optimal burning and the optimal
marking down problems. Due to space constraint, we will
only present the solution of the optimal marking down prob-
lem. The solution of the optimal burning problem is similar.

We define MD(t̄, p̄, d̄) to be the optimal VCG revenue
after marking down, under the following extra conditions:

• Only agents whose thresholds are at least t̄ are allowed in
the auction. The other agents are considered removed. t̄ is
from 1 to H . The function returns 0 if t̄ = H + 1.

• Based on Lemma 3, we know that the VCG price of an
item must be either equal to a certain agent’s valuation, or
the price is 0. Here, we require that the VCG price of any
item is at least equal to the p̄-th highest valuation from
the agents. p̄ is from 1 to n+1. (We define the (n+1)-th
highest valuation to be 0.) The function returns 0 if p̄ = 1.

• Only items with the d̄ highest quality are in the auction.
The other items are considered burned. d̄ is from 1 to m.
The function returns 0 if d̄ = 0.

MD(1, n + 1,m) is then the optimal VCG revenue after
marking down.

The original item vector is (m1,m2, . . . ,mH) (there are
mi items of quality i). Let the new item vector after optimal
marking down be (m′

1,m
′
2, . . . ,m

′
H) (after marking down,

there are m′
i items of quality i). It should be noted that

∑

m′
i

may be smaller than
∑

mi, since some items may have been
burned (marked down to quality 0).

Suppose that after marking down, the minimum price of
any item is equal to the p-th highest valuation from the

agents. Let v be this valuation. Let t be the highest qual-
ity of the item whose VCG price is v. For now, we assume
that we know v, p, and t.

By Proposition 1, we have that all items with quality up
to t must have price v. The revenue gained by selling items
with quality up to t is then v

∑

1≤i≤t m
′
i. We recall that Qt

is the set of unallocated agents after round t (here we are
talking about the winner determination problem involving
the marked down items). By Lemma 2, Top(Qt) must be
a loser. If Top(Qt) is a winner, then he wins an item of
quality higher than t, and he pays the same price v, which
contradicts with our assumptions. Since Top(Qt) is a loser,
by Lemma 1, we have vTop(Qt) = v. This implies that from
round 1 to t, the agents allocated are exactly the set of agents
whose valuations are higher than v (such an agent must be
allocated before the end of round t, otherwise he should be
placed higher than Top(Qt); also, no agents whose valua-
tions are lower than v can be allocated, as such an agent
cannot afford to pay v under VCG). As a result, the revenue
gained by selling items with quality up to t can be rewritten
as vC(t, v), where C(t, v) is the number of agents whose
valuations are higher than v and whose thresholds are at
most t. Given t and v, this part of the revenue can be eas-
ily calculated.

We then consider the revenue gained by selling items
with quality higher than t. The set of items under discus-
sion are (0, . . . , 0,m′

t+1, . . . ,m
′
H). The total number is then

d =
∑

t+1≤i≤H m′
i. These d items can be interpreted as the

results of marking down, from the items with the d highest
original quality. It is wlog to assume that the item with the
i-th highest quality (counting duplicates) among the marked
down items is marked down from the item with the i-th high-
est quality among the original items. Furthermore, since for
items with quality higher than t, the VCG price is by as-
sumption higher than v, we have that the VCG payments of
the items with quality higher than t are only determined by
agents whose thresholds are at least t+1 (all items with qual-
ity higher than t are sold at prices higher than v, so all agents
in Qt do not win and their valuations are too low to effect
the VCG payments). Therefore, the revenue gained by sell-
ing items with quality higher than t is MD(t+ 1, p− 1, d).

The overall revenue after marking down is then vC(t, v)+
MD(t + 1, p − 1, d). We notice that MD(t + 1, p − 1, d)
is nondecreasing in d. We want to maximize d. We re-
call that the items with the d highest original quality are
marked down to (0, . . . , 0,m′

t+1, . . . ,m
′
H), and the items

with the m − d lowest original quality are marked down to
(m′

1, . . . ,m
′
t, 0, . . . , 0). We need to ensure that it is possi-

ble to mark down the items with the m − d lowest origi-
nal quality to (m′

1, . . . ,m
′
t, 0, . . . , 0), so that the prices for

items with quality up to t are all v, and the number of win-
ners is exactly C(t, v). Let xi (1 ≤ i ≤ t) be the number of
agents whose valuations are greater than v and whose thresh-
olds are equal to i. Let g be the threshold of Top(Qt). Let
h be the smallest i so that xi is not empty. By Lemma 1
and Lemma 2, for all h ≤ i ≤ t, Top(Qi) is either a win-
ner or the same as Top(Qt). As a result, for h ≤ i < g
(if such i exists), we need to ensure that Top(Qi) is a win-
ner. For max{g, h} ≤ i < t, Top(Qi) may be the same as



Top(Qt). Finally, the number of winners and the number of
items should match. Mathematically, the above translates to

m′
i = 0 1 ≤ i < h

∑

1≤j≤i m
′
j <

∑

1≤j≤i xj h ≤ i < g
∑

1≤j≤i m
′
j ≤

∑

1≤j≤i xj max{g, h} ≤ i < t
∑

1≤j≤i m
′
j =

∑

1≤j≤i xj i = t

We need to mark down the items with the m − d lowest
original quality to (m′

1, . . . ,m
′
t, 0, . . . , 0), so that the above

inequalities hold. Meanwhile, we want to minimize m − d
(maximize d). Algorithm 2 shows how this can be done.

Let m′
i = 0 for i < h;

for i from h to g − 1 do
if
∑

1≤j<i m
′
j +mi <

∑

1≤j≤i xj then

Let m′
i = mi;

else
Let m′

i =
∑

1≤j≤i xj − 1−
∑

1≤j<i m
′
j ;

end

end
for i from max{g, h} to t− 1 do

if
∑

1≤j<i m
′
j +mi ≤

∑

1≤j≤i xj then

Let m′
i = mi;

else
Let m′

i =
∑

1≤j≤i xj −
∑

1≤j<i m
′
j ;

end

end
Assign m′

t a value so that
∑

1≤j≤t m
′
j =

∑

1≤j≤t xj ;

Algorithm 2: Marking Down to Maximize d

If m′
i = mi, then we do not mark down any items of

quality i. If m′
i < mi, then we need to burn some of the

items of quality i. If m′
i > mi (this can only happen when

i = t), we need to mark down m′
t − mt items of higher

quality to quality t. The last part determines the maximum
value of d:2

d∗ =

{ ∑

t+1≤i≤n mi − (m′
t −mt) m′

t > mt
∑

t+1≤i≤n mi m′
t ≤ mt

Combining the two parts of revenue, the optimal revenue
after marking down can be calculated as follows:

MD(1, n+ 1,m) = vC(t, v) +MD(t+ 1, p− 1, d∗)

The above is on the basis that we know the values of t,
p, and v. For actual calculation, we need to maximize over
all possible values of t and p (v is determined by p). Actual
calculation is done as follows.

MD(t̄, p̄, d̄) =

max
t̄≤t≤H,1≤p≤p̄

{vC(t, v) +MD(t+ 1, p− 1, d∗) + F (t, p)}

2If we only allow burning, then d
∗ is always just∑

t+1≤i≤n
mi. We still run Algorithm 2 to determine the values

of the m
′
i, as it mostly just involves burning. If m′

t > mt, then m
′
t

cannot be achieved by burning. So for burning, the sanity check
function F also needs to ensure m

′
t ≤ mt.

Here, we also added an extra term F (t, p), which serves as
a sanity check. That is, F (t, p) = 0 if the pair of t and p
is a valid pair. Otherwise, F (t, p) = −∞. t and p form a
valid pair if it is possible to mark down the items so that the
minimum VCG price is equal to the p-th highest valuation
from the agents, and the highest quality of the cheapest item
is t. F checks three things: 1) whether the agent with the p-
th highest valuation has a threshold that is less than or equal
to t; 2) whether there exists at least one agent who can afford
the p-th highest valuation and has a threshold that is less than
or equal to t; and 3) whether d∗ is non-negative.

The number of possible parameter sets for MD is polyno-
mial in m and n (we recall that H ≤ m). Given a parameter
set, MD’s value is a maximum over a polynomial number of
choices. The calculation of d∗ and F both take polynomial
time. Therefore, the overall process takes polynomial time.

We then quantify the ratio between the optimal VCG rev-
enue after burning and the optimal VCG revenue after mark-
ing down.3

Theorem 5. For simple agents and single-attribute settings,
the ratio between the optimal VCG revenue after burning
and the optimal VCG revenue after marking down is between
1/H and 1, where H is the highest possible quality. The
above bounds are tight.

The above Theorem only says that in extreme cases,
marking down can lead to H times more revenue. The fol-
lowing numerical experiment suggests that on average, the
revenue after marking down is only slightly higher than
the revenue after burning. On the other hand, both marking
down and burning significantly improves upon the original
VCG. The experimental setup is as follows: m = H = 10.
The items’ qualities and the agents’ quality requirements
are drawn i.i.d. from {1, 2, . . . , H}. The agents’ valuations
are drawn i.i.d. from U(0, 1). We average over 100 cases.
The ratio between the optimal revenue after marking down
and the original VCG revenue is 14.912 (n = 5), 3.228
(n = 10), 1.170 (n = 20), and 1.029 (n = 40). The ratio
between the optimal revenue after burning and the original
VCG revenue is 14.901 (n = 5), 3.208 (n = 10), 1.152
(n = 20), and 1.018 (n = 40). It is expected that when n/m
becomes large, marking down and burning become less ef-
fective. For large n/m, generally every item is highly con-
tested, making marking down and burning undesirable.

Open problems

An open problem is to decide if the optimal marking
down/burning problems are tractable for the cases with sim-
ple agents and items with two or three attributes. It seems
that neither our reduction nor our algorithm can be extended
to these cases, thus new techniques should be proposed in or-
der to answer these questions. Another interesting direction
is to study the case with single attribute items and simple
agents under the Bayesian setting.

3As a comparison, the worst-case ratio between the original
VCG revenue and the revenue after burning (marking down) is 0.
There exist scenarios where the original VCG revenue is 0, and
after burning (marking down), the VCG revenue becomes positive.
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