
Revenue Maximization via Hiding Item Attributes∗

Mingyu Guo
Department of Computer Science

University of Liverpool, UK
Mingyu.Guo@liverpool.ac.uk

Argyrios Deligkas
Department of Computer Science

University of Liverpool, UK
A.Deligkas@liverpool.ac.uk

Abstract
We study probabilistic single-item second-price
auctions where the item is characterized by a set
of attributes. The auctioneer knows the actual in-
stantiation of all the attributes, but he may choose
to reveal only a subset of these attributes to the
bidders. Our model is an abstraction of the fol-
lowing Ad auction scenario. The website (auc-
tioneer) knows the demographic information of its
impressions, and this information is in terms of a
list of attributes (e.g., age, gender, country of loca-
tion). The website may hide certain attributes from
its advertisers (bidders) in order to create thicker
market, which may lead to higher revenue. We
study how to hide attributes in an optimal way.
We show that it is NP-hard to compute the op-
timal attribute hiding scheme. We then derive a
polynomial-time solvable upper bound on the op-
timal revenue. Finally, we propose two heuristic-
based attribute hiding schemes. Experiments show
that revenue achieved by these schemes is close to
the upper bound.

1 Introduction
One advantage of Internet advertising is that it offers adver-
tisers the ability to target customers based on various traits
such as demographics. [Even-Dar et al., 2007] showed that,
for sponsored search of a given keyword, instead of running a
single auction for the keyword, we can split the whole auction
into many separate auctions based on visitors/impressions’
contexts (e.g., demographics). For example, if we know and
only know the visitors’ locations, then each location defines
a context. In this example scenario, splitting based on con-
text means separate auction for each location. Splitting based
on context increases the advertisers’ welfare. The explana-
tion is simple: after splitting, advertisers can tailor their bids
to the context. As a result, advertisers generally only win
(impressions from) visitors that they aim to target. On the
other hand, splitting may reduce the revenue received by the
auctioneer (publisher, e.g., website) due to the thin market
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problem: there may be few competitors for some contexts.
Actually, if for every context, there is only one advertiser in-
terested in it, then the total revenue is 0 under the standard
second-price auction.

[Ghosh et al., 2007] observed that having a single auction
for all contexts and having separate auction for each context
are not the only two options. There are other ways to split
based on context, and it may lead to much higher revenue.
The idea explored in [Ghosh et al., 2007] is to cluster the con-
texts into bundles, and run separate auction for each bundle.
For example, suppose there are three different contexts: Bei-
jing, Chicago, and London (assuming the only contextual in-
formation is the location and visitors are only from these three
cities). We can have one auction for the bundle Beijing and
Chicago (and a second auction for London only). The inter-
pretation (due to [Emek et al., 2012]) is that if a visitor is from
Beijing or Chicago, then the auctioneer informs the advertis-
ers that the impression is from one of these two cities, but not
exactly which. When this happens, both advertisers targeting
Beijing and advertisers targeting Chicago will compete in the
auction. Their bids depend on how much they value impres-
sions from Beijing and Chicago, respectively. Their bids also
depend on the conditional probability that the impression is
from Beijing (or Chicago) given that the impression is from
one of these two cities.

To put it more formally, [Ghosh et al., 2007] studied prob-
abilistic single-item second-price auctions (again, interpreta-
tion due to [Emek et al., 2012]). In such an auction, there
is only one item for sale under a second-price auction, but
the item has different possible instantiations. The auction-
eer knows the actual instantiation but the bidders do not.
The auctioneer may choose to hide certain information from
the bidders if this increases the revenue. The probabilistic
single-item second-price auction model is an abstraction of
the following Ad auction scenario. We have a website that
sells one advertisement slot. That is, there is only one item
– the only advertisement slot, but the item takes many pos-
sible instantiations, due to the fact that visitors/impressions
have different demographic profiles. The auctioneer knows
every visitor’s demographic profile, and he may hide cer-
tain information from the advertisers. As mentioned above,
[Ghosh et al., 2007] considered hiding information by clus-
tering: the auctioneer tells the bidders that the actual instan-
tiation is among several instantiations. [Emek et al., 2012;



Bro Miltersen and Sheffet, 2012] studied the exact same
model and went one step further. These two papers stud-
ied hiding information by signaling: the auctioneer sends
out different signals, and the bidders infer the probability
distribution of the actual instantiation, based on the sig-
nal received. It is easy to see that signaling is more gen-
eral than clustering. Interestingly, for full information set-
tings (settings where the auctioneer knows the bidders’ ex-
act valuations), [Ghosh et al., 2007] showed that it is NP-
hard to compute the optimal clustering scheme (optimal in
terms of revenue). On the other hand, [Emek et al., 2012;
Bro Miltersen and Sheffet, 2012] both independently showed
that, under the same full information assumption, it takes only
polynomial time to solve for the optimal signaling scheme.
This is mostly due to the fact that instantiations are treated as
divisible goods under signaling schemes,

In this paper, we continue the study of revenue-maximizing
probabilistic single-item second-price auctions. We observe
that in practice, Ad impressions are categorized based on mul-
tiple attributes. Given this, we argue that the most natural
way to hide information is by hiding attributes. For example,
let there be three attributes, each with two possible values:

• Age: Teenager, Adult
• Gender: Male, Female
• Location: US, Non-US

Together there are 23 possible instantiations. Under the
clustering scheme studied in [Ghosh et al., 2007], the web-
site is allowed to hide information by bundling any subset
of instantiations. However, not all bundles are natural. For
example, consider the bundle {(Teenager, Male, US), (Adult,
Female, Non-US)}. By creating this bundle, the website basi-
cally may tell the advertisers that a visitor is either a teenage
US male or an adult Non-US female. This does not appear
natural. The signaling scheme studied in [Emek et al., 2012;
Bro Miltersen and Sheffet, 2012] is even more general than
clustering, so it may also lead to unnatural bundles.

On the other hand, attribute hiding always leads to natural
bundles. For example, the website may hide the location at-
tribute. That is, if the actual instantiation is (Teenager, Male,
US), then the website may inform the advertisers that the vis-
itor is a teenage male. By hiding the location attribute, we es-
sentially created a bundle (Teenager, Male, ?), which consists
of both (Teenager, Male, US) and (Teenager, Male, Non-US).

Based on the above example, it is easy to see that attribute
hiding is clustering with a particular structure. It should be
noted that this relationship between attribute hiding and clus-
tering does not mean previous results on clustering apply to
our model. For example, one of the two main results from
[Ghosh et al., 2007] is a constructed clustering scheme that
guarantees one half of the optimal revenue (and one half of
the optimal social welfare). The construction does not apply
to our model since it generally leads to unnatural bundles.

In this paper, we first show that it is NP-hard to com-
pute the optimal attribute hiding scheme.1 We then derive

1We mentioned earlier that [Ghosh et al., 2007] proved a similar
result. The authors showed that it is NP-hard to solve for the optimal
clustering scheme. It should be noted that our NP-hardness result is

a polynomial-time solvable upper bound on the optimal rev-
enue. Finally, we propose two heuristic-based attribute hiding
schemes. Experiments show that revenue achieved by these
schemes is close to the upper bound.

Besides the aforementioned related work in the computer
science literature, bundling has also been well-studied in the
economics literature. [Palfrey, 1983] observed that for small
numbers of bidders, a revenue-maximizing auctioneer may
choose to bundle the items, and this makes bidders univer-
sally worse-off. On the other hand, for large numbers of
bidders, the auctioneer may choose to unbundle the items,
and this hurts the high-demand bidders while benefiting the
low-demand bidders. [Chakraborty, 1999] quantitatively an-
alyzed the bundling behavior of the auctioneer. The result is
that under a Vickrey auction, for each pair of objects, there
is a unique critical number. If there are fewer bidders than
this number, the seller chooses to bundle the items, and vice
versa. [Avery and Hendershott, 2000] studied more sophisti-
cated bundling policy, including bundling with discounts and
probabilistic bundling (the probability of bundling occurring
depends on the bids).

2 Model Description
There is a single item for sale characterized by k attributes
(attribute 1 to k). Attribute i has Ci possible values, ranging
from 0 to Ci − 1. Let m be the total number of possible
instantiations. That is, m =

∏
i Ci. In this paper, when we

mention polynomial time or NP-hardness, we mean in terms
of m.

An instantiation whose i-th attribute equals ai is written as

(a1, a2, a3, . . . , ak)

The space of all possible instantiations Ω is

{0, . . . , C1 − 1} × {0, . . . , C2 − 1} × . . .× {0, . . . , Ck − 1}

Definition 1. A natural bundle b is an element from the fol-
lowing set of all natural bundles (denoted by B):

{0, . . . , C1−1, ?}×{0, . . . , C2−1, ?}×. . .×{0, . . . , Ck−1, ?}

Natural bundles are bundles of instantiations resulting from
hiding attributes. An attribute of a natural bundle either
takes a specific value, or is represented by a question mark,
which means that this attribute is hidden. For example, let
k = 5, given the instantiation (a1, a2, a3, a4, a5), if we
hide attributes 1 and 3, then it results in the natural bundle
(?, a2, ?, a4, a5). This bundle has size C1C3. As another ex-
ample, every instantiation itself corresponds to a natural bun-
dle of size 1 (no attribute hidden). An instantiation ω belongs
to a natural bundle b if and only if for every attribute, either
ω and b share the same attribute value, or the attribute is hid-
den for b. Unlike the total number of arbitrary bundles, which
equals 2m, the total number of natural bundles is polynomial
in m, as shown below:

not implied by this earlier result, which relied on reduction involv-
ing unnatural bundles. Actually, our requirement on bundles being
natural greatly adds to the difficulty of the reduction, and our proof
is based on completely new techniques.



|B| =
∏

1≤i≤k

(Ci + 1) ≤
∏

1≤i≤k

C2
i = m2

The probabilities’ of different instantiations are based on
a publicly known distribution ∆(Ω). To simplify the presen-
tation, when discussing bidders’ valuations, we factor in the
probabilities. For example, if bidder i values ω at 5 when ω is
the actual instantiation, and ω happens with probability 0.1,
then we say bidder i’s valuation for ω is 0.5.

Let n be the number of bidders. Let vi(ω) be bidder i’s
(expected) valuation for instantiation ω. Following [Ghosh
et al., 2007; Emek et al., 2012; Bro Miltersen and Sheffet,
2012]2, we assume full information: the auctioneer knows
the bidders’ true valuations. Again, following previous mod-
els, we only consider bidders with additive valuations. That
is, bidder i’s valuation for bundle b, denoted by vi(b), equals∑

ω∈b vi(ω). Following previous models, the auction is the
Vickrey auction. We use S(b) to denote the revenue for
selling b as a bundle. S(b) is the second highest value in
{vi(b)|1 ≤ i ≤ n}.
Definition 2. An attribute hiding scheme is a way to cluster
the instantiations into natural bundles. An attribute hiding
scheme is characterized by a set of bundles {b1, b2, . . . , bt},
satisfying
• All bundles are natural: bi ∈ B for 1 ≤ i ≤ t
• The bundles are disjoint3: for every pair of bi and bj ,

there exists an attribute, so that for this attribute, bi and
bj take different values (neither is ?).

Under the attribute hiding scheme {b1, b2, . . . , bt}, instantia-
tions covered by bi will have their attributes hidden to match
bi. Essentially, instantiations in bi are sold in a bundle. In-
stantiations not covered by any bi are sold without hiding at-
tributes (sold separately as natural bundles of size 1).

Under attribute hiding scheme {b1, b2, . . . , bt}, the revenue
of the auctioneer equals∑

1≤i≤t

S(bi) +
∑

ω∈Ω−∪1≤i≤tbi

S(ω)

We introduce another function r. For b ∈ B, r(b) rep-
resents the extra revenue obtained by selling b as a bundle,
rather than selling instantiations in b separately. We have

r(b) = S(b)−
∑
ω∈b

S(ω)

The revenue of the auctioneer can then be rewritten as∑
1≤i≤t

r(bi) +
∑
ω∈Ω

S(ω)

The second term of the above expression does not de-
pend on the specific scheme. Therefore, the problem of de-
signing optimal attribute hiding scheme is equivalent to the
problem of searching for a set of disjoint natural bundles
{b1, b2, . . . , bt}, so that

∑
1≤i≤t r(bi) is maximized.

2Besides the full information setting, [Emek et al., 2012] also
discussed the more general Bayesian setting.

3If under an attribute hiding scheme, two different natural bun-
dles share one common instantiation, then for this instantiation, it is
not clear which attributes we should hide.

3 Hardness Result
Previously, [Ghosh et al., 2007] showed that it is NP-hard to
compute the optimal clustering scheme. The proof was by re-
duction from 3-partition. In this section, we prove a similar
result. We show that it is also NP-hard to compute the opti-
mal attribute hiding scheme. Our proof is by reduction from
monotone one-in-three 3SAT [Schaefer, 1978]. Monotone
one-in-three 3SAT is a variant of 3SAT. Monotone means that
the literals are just variables, never negations. One-in-three
means that the determination problem is to see whether there
is an assignment so that for each clause, exactly one literal is
true.
Theorem 1. It is NP-hard to compute the optimal attribute
hiding scheme.

Proof. Let us consider the following monotone one-in-three
3SAT instance with D clauses:

(xf(1) ∨ xf(2) ∨ xf(3)) ∧ (xf(4) ∨ xf(5) ∨ xf(6)) ∧ . . .

. . . ∧ (xf(3D−2) ∨ xf(3D−1) ∨ xf(3D))

There are 3D literals, and they are from a list of E vari-
ables (x1 to xE , f ’s range is between 1 and E). According
to [Schaefer, 1978], it is NP-complete to determine whether
there exists an assignment of the xi, so that the 3SAT instance
is true, and for each clause, there is exactly one true literal.

We will construct a probabilistic single-item auction sce-
nario with m possible instantiations and n bidders. Both m
and n are polynomial in E. We will show that for the con-
structed scenario, if we are able to solve for the optimal at-
tribute hiding scheme in polynomial time (in m), then we
are able to determine the above 3SAT instance in polynomial
time (in E). This implies that it is NP-hard to compute the
optimal attribute hiding scheme.

Our construction is as follows. Let the number of attributes
k be dlog2(D)e + dlog2(E)e + 11. All attributes are binary.
The total number of instantiations m is polynomial in E as
shown below.

m = 2dlog2(D)e+dlog2(E)e+11 ≤ 2log2(D)+log2(E)+13

= 8192DE ≤ 8192E4

Our proof relies on the following seven families of natural
bundles (Family 1 to 7):

(e, d, 0, ?, ?, 0, 1, 0, 1, 0, 1, 0, 1) (1)

(e, d, ?, 0, ?, 0, 1, 0, 1, 0, 1, 0, 1) (2)
(e, d, ?, ?, 0, 0, 1, 0, 1, 0, 1, 0, 1) (3)
(e, ?, 0, 0, 0, ?, ?, 0, 1, 0, 1, 0, 1) (4)
(?, d, 1, ?, ?, 0, 1, ?, ?, 0, 1, 0, 1) (5)
(?, d, ?, 1, ?, 0, 1, 0, 1, ?, ?, 0, 1) (6)
(?, d, ?, ?, 1, 0, 1, 0, 1, 0, 1, ?, ?) (7)

In the above, e is the binary representation of integer e
(1 ≤ e ≤ E). The representation’s width is dlog2(E)e. Simi-
larly, d is the binary representation of integer d (1 ≤ d ≤ D).
The representation’s width is dlog2(D)e. Finally, ? is ? re-
peated dlog2(E)e times (Family 5, 6, and 7) or dlog2(D)e
times (Family 4).



We recall that the problem of designing optimal attribute
hiding scheme is equivalent to the search of disjoint natural
bundles {b1, b2, . . . , bt}, so that

∑
1≤i≤t r(bi) is maximized.

Given a natural bundle b, r(b) depends on the bidders’ val-
uations. We will construct a set of bidders, so that for any
natural bundle b, r(b) = 0 by default. The exceptions are:
• For i = 1, 2, 3, we use bi(e, d) to represent the nat-

ural bundle characterized by e and d in Family i.
r(bi(e, d)) = 1 if and only if, in the 3SAT instance, vari-
able e appears in the i-th position of clause d.
• We use b4(e) to represent the natural bundle character-

ized by e in Family 4. Let N(e) be the number of times
variable e appears in the 3SAT instance. It is without
loss of generality to assume N(e) ≤ D (no literal ap-
pears twice in a clause). Let r(b4(e)) = N(e)(1 − ε).
Here, ε is a constant that is less than 1

D . The idea is to
make sure that N(e)(1− ε) > N(e)− 1.
• We use b5(d) to represent the natural bundle character-

ized by d in Family 5. r(b5(d)) = 3.
• We use b6(d) to represent the natural bundle character-

ized by d in Family 6. r(b6(d)) = 3.
• We use b7(d) to represent the natural bundle character-

ized by d in Family 7. r(b7(d)) = 3.
For now, we simply assume that it is possible to construct

a polynomial number of bidders, so that the values of r(b) for
different b are indeed as described above. We will provide the
specific construction toward the end.

LetO be an optimal attribute hiding scheme corresponding
to the above construction. If r(b) = 0, then it is without loss
of generality to assume b /∈ O. Therefore, we can ignore
bundles not in the above seven families. Some bundles from
Family 1 to 3 can also be ignored for the same reason. For
presentation purposes, we call the remaining bundles helpful
bundles. A bundle b is helpful if and only if r(b) > 0.

Let us consider a fixed variable e (1 ≤ e ≤ E). e ap-
pears N(e) times in the 3SAT instance, so there are exactly
N(e) pairs of d (1 ≤ d ≤ D) and i (1 ≤ i ≤ 3), so
that bi(e, d) is helpful. We use be,1, be,2, . . . , be,N(e) to de-
note these N(e) helpful bundles. They are the only helpful
bundles that intersect b4(e). If some of these bundles are
not in O, then none of them is in O. The reason is that
r(b4(e)) = N(e)(1 − ε) > N(e) − 1, so it is better off to
add b4(e) into O (and push out be,1 to be,N(e) if they are in
O). In summary, for e from 1 to E, we must have one of the
following two:
• be,1, be,2, . . . , be,N(e) are all in O. b4(e) is not in O.

• None of be,1, be,2, . . . , be,N(e) is in O. b4(e) is in O.
Let T be the set of e values where be,1, be,2, . . . , be,N(e)

are all in O. Let F be the set of e values where none of
be,1, be,2, . . . , be,N(e) is in O. We use O1234 to denote the set
of helpful bundles in O that belong to Family 1 to 4. We have∑

b∈O1234

r(b) =
∑
e∈T

N(e) +
∑
e∈F

N(e)(1− ε)

= ε
∑
e∈T

N(e) + (1− ε)3D

b4(e)

be,1 be,2 . . . be,N(e)

Figure 1: Either be,1, be,2, . . . , be,N(e) are all in O, or none of
them is in O and b4(e) is in O. Edge represents conflict.

b5(d)

b6(d) b7(d)

b1(e1, d)

b2(e2, d)b3(e3, d)

Figure 2: Exactly one among {b5(d), b6(d), b7(d)} appears
in O. At most one among {b1(e1, d), b2(e2, d), b3(e3, d)} ap-
pears in O. Edge represents conflict.

Let us then consider a fixed variable d (1 ≤ d ≤ D). b5(d),
b6(d), and b7(d) pair-wise intersect. Therefore, in O, at most
one of them can appear. Actually, exact one of them appears.
If none of them appears in O, then we can add b5(d) into O,
which results in higher revenue. Let e2 and e3 be the second
and third variables in clause d of the 3SAT instance. The
only helpful bundles b5(d) intersects with are b2(e2, d) and
b3(e3, d). By removing these two from O (if they are in O
to start with) and adding b5(d) into O, the revenue increases.
Therefore, for any d from 1 to D, O contains exactly one
of {b5(d), b6(d), b7(d)}. We use O567 to denote the set of
helpful bundles in O that belong to Family 5 to 7. We have∑

b∈O567

r(b) = 3D

∑
b∈O

r(b) =
∑

b∈O1234

r(b)+
∑

b∈O567

r(b) = ε
∑
e∈T

N(e)+(2−ε)3D

Among helpful bundles characterized by d from Family 1
to 3, the only helpful bundle that can coexist with b5(d) is
b1(e1, d), where e1 is the first variable in clause d of the 3SAT
instance. Similarly, among helpful bundles characterized by
d from Family 1 to 3, the only helpful bundle that can coexist
with b6(d) is b2(e2, d), where e2 is the second variable in
clause d of the 3SAT instance. Finally, among helpful bundles
characterized by d from Family 1 to 3, the only helpful bundle
that can coexist with b7(d) is b3(e3, d), where e3 is the third
variable in clause d of the 3SAT instance. The relationship is
illustrated by Figure 2.

For every d, no matter which of {b5(d), b6(d), b7(d)} ap-
pears in O, among helpful bundles characterized by d from
Family 1 to 3, there is at most one that can be in O. There-
fore, the total number of helpful bundles from Family 1 to 3
in O is at most D. ∑

e∈T
N(e) ≤ D



∑
b∈O

r(b) = ε
∑
e∈T

N(e) + (2− ε)3D ≤ 6D − 2Dε

If we are able to compute the optimal attribute hiding
scheme in polynomial time, then we are also able to deter-
mine in polynomial time whether

∑
b∈O r(b) is equal to the

upper bound 6D − 2Dε. If they are equal, then we have a
satisfactory assignment of the 3SAT instance. For variable
e, be,1 to be,N(e) determine whether e is true or not. If they
are all in O, then e is set to be true. Otherwise (if none of
them is in O), e is set to be false. When the upper bound
is reached,

∑
e∈T N(e) = D, which implies that under the

above assignment, there are exactly D true literals. Next, we
show that two true literals cannot appear in the same clause.
That is, there is exactly one true literal for each clause under
the assignment, and all clauses are satisfied (there are D true
clauses). Given d, let the variables in clause d be e1, e2, e3.
b1(e1, d), b2(e2, d), and b3(e3, d) are all helpful bundles. We
proved that among helpful bundles characterized by d from
Family 1 to 3, there is at most one that can be in O. There-
fore, only one of b1(e1, d), b2(e2, d), b3(e3, d) can be in O.
That is, only one of e1, e2, e3 is set to be true.

The other direction can be shown similarly. If there is a sat-
isfactory assignment of the 3SAT instance, then

∑
b∈O r(b)

should match the upper bound 6D − 2Dε.
In conclusion, for the constructed auction setting, it is NP-

hard to determine whether the optimal revenue
∑

b∈O r(b) +∑
ω∈Ω S(ω) reaches 6D − 2Dε+

∑
ω∈Ω S(ω).

Finally, we still need to show that it is possible to construct
a polynomial number of bidders, so that the values of r(b)
are exactly as described above. Due to space constraint, we
present the construction and omit the proof.
• We construct two bidders who both value every instanti-

ation equally, and the valuation for every instantiation is
L (L > max{D, 3}).
• For every helpful bundle b, we construct two new bid-

ders. By default, both bidders value all instantiations in
b at L and value all instantiations outside of b at 0. The
exceptions are that one bidder values instantiation b|0? at
r(b) + L and the other bidder values instantiation b|1? at
r(b) + L. Here, b|y? is the instantiation resulting from
replacing all ? in b by y.

4 Tree-Structured Attribute Hiding Schemes
In this section, we study a special family of attribute hiding
schemes, which we call the tree-structured schemes.

Let b be a non-unit natural bundle (bundle of size greater
than 1). For b, at least one attribute is hidden. Let x be one of
the hidden attributes of b. We can split b into Cx disjoint nat-
ural bundles by revealing attribute x. The resulting bundles
are b|0x, b|1x, . . . , b|Cx−1

x . b|ix represents the natural bundle ob-
tained by replacing the x-th attribute of b by i. If b belongs to
an attribute hiding scheme O, then after splitting b, the new
scheme becomes

(O − {b}) ∪ {b|0x, b|1x, . . . , b|Cx−1
x }

It is easy to see that the new scheme is still feasible (the bun-
dles remain disjoint).

Tree-structured attribute hiding schemes are results
of recursive splitting (revealing attribute) starting from
{(?, ?, . . . , ?)}. At every step, we either terminate and keep
the current scheme, or pick a non-unit bundle from the current
scheme, and split (reveal) one of its attributes.
Definition 3. An attribute hiding scheme O is tree-structured
if and only if it satisfies one of the following:
• O = {(?, ?, . . . , ?)}: the scheme is simply hiding all

attributes and selling all instantiations in a single bundle.
• There exists a tree-structured attribute hiding schemeO′.

There exists a bundle b ∈ O′ whose x-th attribute is
hidden. After splitting b by revealing attribute x, the
resulting scheme is equivalent to O.4

Let us consider an example with three binary attributes.
{(?, ?, ?)} is, by definition, a tree-structured attribute hiding
scheme. Starting from {(?, ?, ?)}, if we pick (?, ?, ?) and re-
veal its second attribute, then we get

(?, ?, ?)

(?, 0, ?) (?, 1, ?)

The leaves {(?, 0, ?), (?, 1, ?)} characterize a new tree-
structured attribute hiding scheme. If we further split the first
bundle (?, 0, ?) based on its third attribute, then we get

(?, ?, ?)

(?, 0, ?)

(?, 0, 0) (?, 0, 1)

(?, 1, ?)

Again, the leaves {(?, 0, 0), (?, 0, 1), (?, 1, ?)} characterize a
new tree-structured attribute hiding scheme.
Proposition 1. If there are at most two attributes, then all
attribute hiding schemes are tree-structured.5

Proposition 2. If there are at least three attributes, then there
exist attribute hiding schemes that are not tree-structured.

As we mentioned earlier, tree-structured attribute hiding
schemes are results of recursive splitting starting from the
bundle of all instantiations. At every step, we either termi-
nate or split a non-unit bundle in some way. For every natural
bundle b, let t(b) be the optimal revenue for selling instanti-
ations in b, as a result of making optimal recursive splitting
decisions on b. t((?, ?, . . . , ?)) is then the optimal revenue of
tree-structured attribute hiding schemes. Given a bundle, we
either sell it as a whole, or split it in some way as a first step.
Let h(b) be the set of hidden attributes of b. We have

t(b) = max{S(b), max
x∈h(b)

∑
0≤i≤Cx−1

t(b|ix)}

If b has size 1, then h(b) = ∅. That is, for unit bun-
dles, t(b) = S(b). Given the values of t(b) for all b with

4Two schemes are equivalent if they share the same set of non-
unit bundles.

5This proposition implies that if there are at most two attributes
(m can still be large), then we can compute the optimal attribute hid-
ing scheme in polynomial time, because it must be tree-structured.



|h(b)| = y, we can then easily compute the values of t(b) for
all b with |h(b)| = y+1. The total number of natural bundles
|B| is polynomial in m. For every b, t(b) is the maximum of
at most k + 1 values, which is at most log2m + 1. There-
fore, the optimal revenue t((?, ?, . . . , ?)) can be computed in
polynomial time. The corresponding optimal scheme can be
obtained along the way.

5 Upper Bound and Weighted Matching
Our objective is to find a set of disjoint natural bundles, de-
noted by O, which maximizes

∑
b∈O r(b). We can model

it as an integer program. We introduce |B| binary variables.
For b ∈ B, let zb be a binary variable. If zb = 1, then it
means b ∈ O. The number of binary variables |B| is polyno-
mial in m. The objective is to maximize

∑
b∈B zbr(b). The

constraints are that bundles in O are disjoint. That is, for
b1, b2 ∈ B, if b1 and b2 intersect, zb1 + zb2 ≤ 1. The number
of constraints is at most |B|2, which is polynomial in m. In
summary, the optimal revenue can be computed based on an
integer program with polynomial numbers of variables and
constraints. One upper bound can then be computed in poly-
nomial time if we consider the linear relaxation (replacing
binary variables by non-integer variables).

Some preprocessing can vastly reduce the number of vari-
ables in the above program. We first observe that, by defini-
tion, r(b) = 0 for all b with size 1. That is, we can safely
set zb = 0 for all b with size 1. We then observe that, for
any natural bundle b with size greater than 1, if the following
expression is true, then it means that instead of selling b as a
single bundle, we can achieve higher revenue by recursively
splitting it, in which case we can safely set zb = 0.

S(b) < max
x∈h(b)

∑
0≤i≤Cx−1

t(b|ix)

In Section 6, our simulation shows that when computing
the upper bound, the above observations indeed vastly reduce
the number of variables in the linear program. For example,
for settings with 10 binary attributes and 10 bidders, origi-
nally, there are as many as (2 + 1)10 = 59049 variables. Af-
ter preprocessing, there are only 220.28 variables on average
over repeated simulations.

We then discuss another heuristic for generating attribute
hiding schemes with high revenue. This heuristic only applies
to settings where all attributes are binary. If all attributes are
binary, then a natural bundle with only one attribute hidden
contains exactly two instantiations. The heuristic is based on
maximum weighted matching. We view all instantiations as
vertices. If two instantiations can be merged into a natural
bundle b, and r(b) > 0, then we create an edge with weight
r(b) between them. Maximum weighted matching can be
solved in polynomial time. The matching result character-
izes the optimal attribute hiding scheme under the additional
constraint that at most one attribute is hidden.6

6In Section 6, our simulation shows that there are generally very
few natural bundles with at least two hidden attributes, and cannot
be recursively split to achieve higher revenue. That is, the optimal
scheme generally contains very few bundles with two or more hid-
den attributes. This somewhat justifies the heuristic requirement that
at most one attribute is hidden.

6 Experiments
In this section, we evaluate the performances of the proposed
heuristic-based attribute hiding schemes. For different val-
ues of k, C̄, and n, we construct problem instances with k
attributes, each attribute taking C̄ possible values, and n bid-
ders. The total number of possible instantiations is then C̄k.
For each instantiation, bidders’ valuations are drawn indepen-
dently from U(0, 1).7 For every setup, we repeat 100 times
and report the averages.

Setup Tree Match UB #Opt #Var HM
k = n = 3
C̄ = 2 13.33 11.58 15.42 47 5.82 1.08

k = n = 5
C̄ = 2 3.953 3.810 4.354 35 15.8 1.54

k = n = 10
C̄ = 2 0.836 0.927 0.950 0 220.28 4.76

k = n = 3
C̄ = 3 9.251 NA 10.58 25 13.28 0.96

k = n = 5
C̄ = 3 1.767 NA 1.976 0 45.39 0.3

k = n = 8
C̄ = 3 0.296 NA 0.361 0 326.18 0.01

The table fields are described below:
• Tree, Match, UB: Comparing to selling all instantia-

tions separately, the extra revenue in terms of percent-
age. Tree is short for optimal tree-structured scheme.
Match is short for optimal scheme based on maximum
weighted matching (only applies to C̄ = 2). UB is short
for upper bound on the optimal revenue.
• #Opt: Among 100 repeated simulations, how many

times one of the heuristic-based schemes reaches the up-
per bound (therefore guarantees optimality8).
• #Var: How many variables are in the linear program for

computing upper bound.
• HM: How many natural bundles with at least two hidden

attributes cannot be split to achieve higher revenue.

7 Future Research
Given the fact that it is NP-hard to compute the optimal at-
tribute hiding scheme, one direction of future research is
to study whether there are heuristic-based attribute hiding
schemes that guarantee a constant fraction of the optimal rev-
enue. A similar direction is to see how much revenue we lose
by not allowing unnatural bundles.

7We also experimented with the CATS test suite [Leyton-Brown
et al., 2000]. Our model assumes additive valuations, so we need to
contrive a way to interpret the bids produced by CATS as additive
bids. One example way is to interpret each bid as an individual
additive bidder. Given a bid, if an item belongs to it, then we assume
that the corresponding bidder’s valuation for the item is equal to the
value of the bid, and otherwise 0. Under the above assumption, for
8 goods (3 binary attributes), 3 bidders (ignore all bids after the first
3), and the arbitrary distribution, over 100 instances, the optimal
tree-based scheme increases the revenue by 6.38 percent (compared
to not bundling), and it is close to the upper bound 7.76 percent.

8Even if the heuristic-based schemes do not reach the upper
bound, they may still possibly be optimal.



References
[Avery and Hendershott, 2000] Christopher Avery and Ter-

rence Hendershott. Bundling and optimal auctions of mul-
tiple products. Review of Economic Studies, 67:483–497,
2000.

[Bro Miltersen and Sheffet, 2012] Peter Bro Miltersen and
Or Sheffet. Send mixed signals: earn more, work less. In
Proceedings of the ACM Conference on Electronic Com-
merce (EC), Valencia, Spain, 2012.

[Chakraborty, 1999] Indranil Chakraborty. Bundling deci-
sions for selling multiple objects. Economic Theory,
13(3):723–733, 1999.

[Emek et al., 2012] Yuval Emek, Michal Feldman, Iftah
Gamzu, Renato Paes Leme, and Moshe Tennenholtz. Sig-
naling schemes for revenue maximization. In Proceedings
of the ACM Conference on Electronic Commerce (EC), Va-
lencia, Spain, 2012.

[Even-Dar et al., 2007] Eyal Even-Dar, Michael Kearns, and
Jennifer Wortman. Sponsored search with contexts. In
Workshop on Internet and Network Economics (WINE),
San Diego, CA, USA, 2007.

[Ghosh et al., 2007] Arpita Ghosh, Hamid Nazerzadeh, and
Mukund Sundararajan. Computing optimal bundles for
sponsored search. In Workshop on Internet and Network
Economics (WINE), San Diego, CA, USA, 2007.

[Leyton-Brown et al., 2000] Kevin Leyton-Brown, Mark
Pearson, and Yoav Shoham. Towards a universal test suite
for combinatorial auction algorithms. In Proceedings
of the ACM Conference on Electronic Commerce (EC),
pages 66–76, Minneapolis, MN, USA, 2000.

[Palfrey, 1983] Thomas R Palfrey. Bundling decisions by
a multiproduct monopolist with incomplete information.
Econometrica, 51(2):463–83, March 1983.

[Schaefer, 1978] Thomas J. Schaefer. The complexity of sat-
isfiability problems. In Proceedings of the Annual Sympo-
sium on Theory of Computing (STOC), San Diego, Cali-
fornia, USA, 1978.


