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ABSTRACT

We study the problem where a group of agents need to
choose from a finite set of social outcomes. We assume ev-
ery agent’s valuation for every outcome is bounded and the
bounds are public information. For our model, no mecha-
nism simultaneously satisfies strategy-proofness, individual
rationality, non-deficit, and efficiency. In light of this, we
aim to design mechanisms that are strategy-proof, individ-
ually rational, non-deficit, and minimize the worst-case effi-
ciency loss.
We propose a family of mechanisms called the shifted

Groves mechanisms, which are generalizations of the Groves
mechanisms. We first show that if there exist mechanisms
that are strategy-proof, individually rational, and non-deficit,
then there exist shifted Groves mechanisms with these prop-
erties. Our main result is an Automated Mechanism De-
sign (AMD) approach for identifying the (unique) optimal
shifted Groves mechanism, which minimizes the worst-case
efficiency loss among all shifted Groves mechanisms. Fi-
nally, we prove that the optimal shifted Groves mechanism
is globally optimal among all deterministic mechanisms that
are strategy-proof, individually rational, and non-deficit.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms

Algorithms, Economics, Theory

Keywords

Groves Mechanisms, Automated Mechanism Design, Social
Decision

1. INTRODUCTION
Social decision-making is a fundamental problem in mul-

tiagent systems. This paper studies how to design economic
mechanisms for implementing good social outcomes. We
study the problem where a group of agents need to choose
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from a finite set of social outcomes. The agents’ valuations
for the outcomes are private information. We assume ev-
ery agent’s valuation for every outcome is bounded and the
bounds are public information (e.g., the bounds are pre-
scribed by the nature of the outcomes). One example setting
is the public project problem:

Example 1. Public Project Problem
n agents need to decide whether or not to build a public

project (e.g., a bridge accessible by everyone). The cost of
the project is 1. There are two outcomes:

• Outcome 1: not build

Every agent’s valuation for this outcome equals 0.

• Outcome 2: build, and every agent is responsible for
an equal share of the cost, which equals 1

n

Different agents value the project differently. We as-
sume an agent’s valuation for the project is between 0
(not appreciating at all) and 1 (as high as the cost of
the whole project). That is, taking the cost share into
consideration, every agent’s valuation for this outcome
is between − 1

n
and n−1

n
.

For social decision problems like the above, ideally, we
prefer mechanisms that satisfy the following properties:

• Strategy-proofness: Every agent’s dominant strategy
is to report truthfully, regardless of the other agents’
reports. It is without loss of generality to require
strategy-proofness due to the revelation principle.

• (Ex post) individual rationality: Every agent’s utility
(valuation of the chosen outcome minus payment) is
non-negative. Individual rationality is necessary when
participation is voluntary.

• Non-deficit property: The agents’ total payment is non-
negative.1 That is, no external subsidy is ever needed.
Another related but stronger property is budget bal-
ance, which requires that the agents’ total payment is
exactly 0. We require non-deficit, otherwise the mech-
anism is not sustainable.

• Efficiency: The mechanism always chooses the out-
come that maximizes the agents’ total valuation. (For
the public project problem, it means the project is
built if and only if the agents’ total valuation for out-
come 2 is higher.

1An individual agent may still pay negative payment.



For resource allocation settings, the above properties can
be simultaneously achieved, e.g., by the VCG redistribution
mechanisms [1, 5, 13]. However, when it comes to social
decision settings, sometimes an agent has to face an unde-
sirable outcome that is forced onto him by the others (e.g.,
an agent who does not appreciate the public project may
be forced to chip in to build the project). The VCG redis-
tribution mechanisms, when applied to the public project
problem, are not individually rational (unless we change the
definition of individual rationality) [7, 8, 14]. Actually, as we
will discuss in more details later on, for social decision set-
tings, no mechanisms can be simultaneously strategy-proof,
individual rational, non-deficit, and efficient.
In light of the above, we choose to sacrifice efficiency.2

Our aim is to design mechanisms that are strategy-proof,
individually rational, non-deficit, and as close to efficiency
as possible. Specifically, we try to minimize the worst-case
efficiency loss (the loss of efficiency in the worst case, as the
result of using an inefficient mechanism).
We adopt a (Computationally Feasible) Automated Mech-

anism Design approach [6, 2]. We propose a family of mech-
anisms called the shifted Groves mechanisms, which are gen-
eralizations of the Groves mechanisms. We first show that
if there exist mechanisms that are strategy-proof, individu-
ally rational, and non-deficit, then there exist shifted Groves
mechanisms with these properties. We use AMD to identify
the (unique) optimal shifted Groves mechanism, which min-
imizes the worst-case efficiency loss among all shifted Groves
mechanisms. Finally, we prove that the optimal shifted
Groves mechanism is globally optimal among all determin-
istic mechanisms that are strategy-proof, individually ratio-
nal, and non-deficit. Besides proposing optimal mechanisms
for a fundamental mechanism design setting, our approach
also demonstrates the effectiveness of using AMD to deliver
new economic results.

2. FORMAL MODEL DESCRIPTION
There are n agents who need to choose from k outcomes.

We use θi = (vi1, vi2, . . . , vik) to denote agent i’s type, where
vij represents agent i’s valuation for outcome j.
We make the following assumptions:

• vij is bounded below and above by known constants
Lij and Uij . It should be noted that both Lij and Uij

may be negative.

• For every i, agent i’s type space Θi is the whole of
[Li1, Ui1]× [Li2, Ui2]× . . .× [Lik, Uik].

• The set of type profiles is the whole of Θ1 ×Θ2 × . . .×
Θn.

• There do not exist two outcomes, so that the agents
always prefer one outcome than the other for all type
profiles. That is, for every pair of j and j′, we have∑

i
Uij ≥

∑
i
Lij′ .

Our analysis throughout the paper relies on the above
assumptions (e.g., we need the above to prove that our
AMD approach produces optimal mechanisms). However,

2The Faltings’ mechanism [3] also sacrifices efficiency. The
mechanism works for both resource allocation settings and
social decision settings, but again, it is not individually ra-
tional for our problem.

it should be noted that only the first assumption is needed
to apply the AMD approach, which takes the bounds as in-
put. For example, it could be that certain type values do
not exist (e.g., vij ’s possible values do not form an inter-
val or form a much narrower interval than [Lij , Uij ]) and/or
certain types/type profiles do not exist (e.g., due to inter-
dependence). For these cases, the AMD approach still lead
to a feasible mechanism. Of course, the mechanism is gen-
erally not optimal, because we fail to recognize that certain
profiles are impossible.

As mentioned earlier, it is impossible to simultaneously
have strategy-proofness, individually rationality, non-deficit,
and efficiency. Below we present the details. According
to Holmström [9], for convex type space (our setting), the
Groves mechanisms [4] are the only mechanisms that are
efficient and strategy-proof. The Groves mechanisms are
defined as follows:

• The mechanism chooses an outcome from argmaxj

∑
i
vij .

That is, the mechanism chooses an outcome that max-
imizes the agents’ total valuation.

• Let j∗ be the chosen outcome. For every i, agent i

receives
∑

i′ 6=i
vi′j∗ . That is, the amount an agent re-

ceives is equal to the other agents’ total valuation for
j∗.

• For every i, agent i then pays an amount that is inde-
pendent of i’s own type, which is denoted by hi(θ−i).

3

Different sets of hi functions correspond to different
Groves mechanisms.

Every Groves mechanism is efficient and strategy-proof,
but no Groves mechanism is both individually rational and
non-deficit. We need the hi(θ−i) term to be small enough,
so that agent i’s utility is non-negative. We also need the
hi(θ−i) term to be large enough, so that the agents’ total
payment is non-negative. However, we cannot satisfy both.
We use E(θi, θ−i) to denote the agents’ total valuation for
the efficient outcome. Under the Groves mechanisms, agent
i’s utility is simply E(θi, θ−i) − hi(θ−i), which needs to be
non-negative for ensuring individual rationality. Hence, we
have hi(θ−i) ≤ E(θi, θ−i) for all θi and all θ−i. The left-
hand side does not depend on θi, and the right-hand side is
minimized when θi = (Li1, Li2, . . . , Lik) (we use θi to denote
this type). Hence, individual rationality is equivalent to for
all i and all type profiles,

hi(θ−i) ≤ E(θi, θ−i) = max
j

(Lij +
∑

i′ 6=i

vi′j)

It does not hurt to set hi(θ−i) to exactly maxj(Lij +∑
i′ 6=i

vi′j). As mentioned earlier, we want this term to
be large enough for ensuring non-deficit. If we set it any
larger, individual rationality is violated. Once we fix the
hi(θ−i) term, there is one Groves mechanism left. If this
mechanism is not non-deficit, then no Groves mechanisms
are both individually rational and non-deficit. We use the
following example to show this.

Example 2. Let us consider a public project problem (de-
scribed in Example 1) with 2 agents. We have Li1 = Ui1 = 0,

3When we run the mechanism, we simply combine the pay-
ment terms in step 2 and 3. Throughout this paper, they
are presented separately as we analyze them separately.



Li2 = − 1
2
, and Ui2 = 1

2
. Let θ1 = θ2 = (0, 1

2
). That is,

vi1 = 0 and vi2 = 1
2
. For this type profile, the decision is

to build, both agents receive 1
2
(here, hi(θ−i) = 0). The

non-deficit property is violated here.

In conclusion, in light of the above impossibility result,
our aim is to design social decision mechanisms that are
strategy-proof, individually rational, non-deficit, and mini-
mize the worst-case efficiency loss.4

Definition 1. Let M be a mechanism. Let M(θi, θ−i) be
the agents’ total valuation under M for type profile (θi, θ−i).
We recall that E(θi, θ−i) represents the agents’ total valua-
tion for the efficient outcome. Mechanism M ’s worst-case

efficiency loss is defined as:

max
θi,θ−i

(E(θi, θ−i)−M(θi, θ−i))

3. SHIFTED GROVES MECHANISMS
We revisit the public project example. As we have seen, if

outcome 2 (build) is chosen, deficit may occur. On the other
hand, if outcome 1 is chosen, deficit never occurs.5 One idea
is then to “discourage” outcome 2 by asking the agents to
pay additional payments when outcome 2 is chosen (essen-
tially changing the agents’ valuations for outcome 2). For
example, we may shift the outcome “build” to “build, and
every agent pays x in addition to mechanism payments and
building cost”. This helps reducing deficit for two reasons.
First, after introducing these additional payments, less type
profiles are mapped to outcome 2, so the maximal deficit
when outcome 2 is chosen may potentially decrease. Sec-
ond, the additional payments also help offset the deficit. If
outcome 2 is chosen, we know that we have nx additional
payment to offset the deficit.
The above idea leads to the shifted Groves mechanisms:

• For every agent i, every outcome j, we introduce an
additional payment tij . That is, if outcome j is chosen,
agent i needs to pay tij in addition to her mechanism
payment. The tij are constants set by the mechanism
designer. The total additional payment for outcome j

is Pj =
∑

i
tij .

• Apply the Groves mechanisms on the modified out-
comes.

– The mechanism chooses an outcome from

argmax
j

∑

i

(vij − tij) = argmax
j

{−Pj +
∑

i

vij}

That is, the mechanism chooses an outcome that
maximizes the agents’ total valuation, considering
the additional payments.

– Let j∗ be the chosen outcome. For every i, agent i
receives

∑
i′ 6=i

(vi′j∗ − ti′j∗). That is, the amount
an agent receives is equal to the other agents’ total
valuation for the chosen outcome j∗, considering

4For mechanisms that need to deal with tie-breaking, we
assume tie-breaking is done randomly, and the worst-case
efficiency loss considers all possible tie-breaking scenarios.
5If the chosen outcome is 1 (not build), then both agents
receive 0 and hi(θ−i) = 0 (e.g., h1(θ−1) = max{0,− 1

2
+

v22} = 0).

the additional payments. We also keep in mind
that agent i needs to pay the additional payment
tij∗ . Therefore, agent i’s net income at this point
should be

∑

i′ 6=i

(vi′j∗ − ti′j∗)− tij∗ = −Pj∗ +
∑

i′ 6=i

vi′j∗

– For every i, agent i then pays an amount that is
independent of i’s own type, which is denoted by
hi(θ−i).

Similar to the case without additional payments, we can
find an upper bound on hi(θ−i). Agent i’s utility equals
maxj{−Pj +

∑
i
vij}−hi(θ−i), which must be non-negative

for ensuring individual rationality. Therefore, we have hi(θ−i) ≤
maxj{−Pj +

∑
i
vij} for all θi. By setting θi = θi =

(Li1, Li2, . . . , Lik), we have

hi(θ−i) ≤ max
j

{−Pj + Lij +
∑

i′ 6=i

vi′j}

Again, it does not hurt to set hi(θ−i) to be exactly the right-
hand side. (This value does not affect strategy-proofness
and allocative efficiency. We need it large for achieving the
non-deficit property, but any larger value violates individual
rationality.)

Once we fix the hi(θ−i) terms, we observe that the shifted
Groves mechanisms are completely characterized by the to-
tal additional payments for the outcomes (the Pj). Both the
outcome and the payments do not depend on the individ-
ual additional payments (the tij). This leads to a conciser
definition of shifted Groves mechanisms.

Definition 2. A shifted Groves mechanism is charac-
terized by k constants P1, P2, . . . , Pk.

• The mechanism chooses an outcome from

argmax
j

{−Pj +
∑

i

vij}

• Let j∗ be the chosen outcome. For every i, agent i

pays

max
j

{−Pj + Lij +
∑

i′ 6=i

vi′j}+ Pj∗ −
∑

i′ 6=i

vi′j∗

We useM(P1, P2, . . . , Pk) to denote the shifted Groves mech-
anism characterized by the Pj .

It should be noted that the shifted Groves mechanisms
are special cases of Affine Maximizer Auctions (AMA) [10,
11]. There are many works on characterizing strategy-proof
mechanisms in social choice settings. Roberts [15] shows
that when the type space of agents is unrestricted (and there
exist three or more choices), the only strategy-proof mech-
anisms are affine maximizers (of which the shifted Groves
mechanisms are special cases). In our setting, the type
space of agents is bounded so the results in [15] do not
apply. There also exist works on characterizing strategy-
proof mechanisms in a restricted domain. For example, [12]
showed that all strategy-proof mechanisms are affine max-
imizers if the agents’ valuations are drawn from intervals.
However, [12] requires that the intervals be open (we use
close intervals in this paper), and more importantly, it also
requires that an agent’s interval for all outcomes are identical



(we do not require this, e.g., for the public project problem,
the agents obviously have different intervals for not build
and build). Therefore, [12] also does not apply. For our
setting, it remains to see whether all strategy-proof mech-
anisms are affine maximizers. Nevertheless, in this paper,
we show that the optimal shifted Groves mechanism is op-
timal among all strategy-proof mechanisms, without relying
on such characterization results.6

Based on how they are defined, all shifted Groves mecha-
nisms are strategy-proof and individual rational. Unlike the
Groves mechanisms, some shifted Groves mechanisms can
be non-deficit (while being individually rational).

Theorem 1. Given a setting, if there exist mechanisms
that are strategy-proof, individually rational, and non-deficit,
then there must exist shifted Groves mechanisms with these
properties.

To prove the above theorem, we introduce the following
lemma. We recall that

∑
i
Lij∗ is the agents’ lowest possible

total valuation for outcome j∗.

Lemma 1. If
∑

i
Lij∗ ≥ 0, then under all shifted Groves

mechanisms (for all values of the Pj), when outcome j∗ is
chosen, deficit never occurs.

Proof. When outcome j∗ is chosen, agent i’s payment
equals

max
j

{−Pj + Lij +
∑

i′ 6=i

vi′j}+ Pj∗ −
∑

i′ 6=i

vi′j∗

≥ −Pj∗ + Lij∗ +
∑

i′ 6=i

vi′j∗ + Pj∗ −
∑

i′ 6=i

vi′j∗ = Lij∗

Therefore, the agents’ total payment is at least
∑

i
Lij∗ ,

which is non-negative.

Without loss of generality, we assume
∑

i
Li1 ≥

∑
i
Li2 ≥

. . . ≥
∑

i
Lik. Now we are ready to prove the theorem.

Proof. If
∑

i
Li1 < 0, then for some type profiles, the

agents’ total valuation for every outcome is negative. For
these type profiles, individual rationality and non-deficit
cannot coexist.
If

∑
i
Li1 ≥ 0, then under any shifted Groves mechanism,

outcome 1 never incurs deficit. We may simply “shift down”
every outcome except for 1 (for all j > 1, set Pj to be really
large), so that only outcome 1 can be possibly chosen (e.g.,
ensure that for all j > 1, −Pj +

∑
i
Uij <

∑
i
Li1). The

resulting mechanism simply always picks outcome 1, which
guarantees the non-deficit property according to Lemma 1.
We already know that all shifted Groves mechanisms are
strategy-proof (they are part of the AMA family) and indi-
vidually rational (the way we set the hi(θ−i) term guarantees
individual rationality).
In conclusion, if

∑
i
Li1 < 0, no mechanisms can be both

individually rational and non-deficit. If
∑

i
Li1 ≥ 0, there

exist shifted Groves mechanisms that are strategy-proof, in-
dividually rational, and non-deficit.

6It should be noted that even if all strategy-proof mecha-
nisms are affine maximizers for our setting, we still need
to prove that only “shifts” are needed to reach the optimal
mechanism, since affine maximizers also rely on “weights”
(multiplication).

Based on the proof of Theorem 1, from this point on, we
assume

∑
i
Li1 ≥ 0. Otherwise, no feasible mechanisms ex-

ist. For many settings, there exists an outcome which corre-
sponds to the status quo (e.g., not build in the public project
problem). The agents’ valuations for the status quo are all
equal to 0. If the status quo belongs to the set of outcomes,
then according to Theorem 1, there exist mechanisms that
are strategy-proof, individually rational, and non-deficit.

Given
∑

i
Li1 ≥ 0, we also have that for all j,

∑
i
Uij ≥

0, because our assumption is that there do not exist two
outcomes, so that the agents always prefer one to the other
for all type profiles.

We do not have to study all shifted Groves mechanisms.
First of all, we only consider those that are non-deficit (we
call these shifted Groves mechanisms feasible). We also ig-
nore those that are not onto.

Definition 3. A shifted Groves mechanismM(P1, P2, . . . , Pk)
is onto iff under it, for every outcome j, there exists at
least one type profile for which j is chosen by the mecha-
nism (or may be chosen by the mechanism assuming random
tie-breaking).

Formally, this means that for every pair of outcomes a

and b, we have

−Pa +
∑

i

Uia ≥ −Pb +
∑

i

Lib

Lemma 2. Let M(P1, P2, . . . , Pk) be a shifted Groves mech-
anism that is feasible but not onto. There must exist another
feasible shifted Groves mechanism that is onto, and has the
same or higher allocative efficiency for all type profiles.

Proof. IfM(P1, P2, . . . , Pk) is feasible but not onto, then
there exist two outcomes a and b, so that

−Pa +
∑

i

Uia < −Pb +
∑

i

Lib

We can simply decrease Pa so that

−Pa +
∑

i

Uia = −Pb +
∑

i

Lib

This modification does not change the allocative efficiency
of any type profile, except for maybe when via = Uia and
vib = Lib for all i. For this case, a may be chosen instead
of b. We have that

∑
i
Uij >

∑
i
Lij′ for every pair of j

and j′. That is, the above modification never decreases the
allocative efficiency. The modification also does not change
the payments of any agents when outcome a is not chosen.
So for outcomes other than a, the modified mechanism is
still non-deficit. Finally, when a is indeed chosen, agent i’s
payment equals

max
j

{−Pj + Lij +
∑

i′ 6=i

vi′j}+ Pa −
∑

i′ 6=i

vi′a

≥ −Pb + Lib +
∑

i′ 6=i

vi′b + Pa −
∑

i′ 6=i

vi′a

≥ −Pa +
∑

i

Uia + Pa −
∑

i′ 6=i

vi′a ≥ Uia

The total payment is then at least
∑

i
Uia, which is at least

0 (at least
∑

i
Li1). In summary, the modified mechanism



remains feasible and has the same or higher allocative effi-
ciency. We can repeat the above process until the mecha-
nism becomes onto.

Theorem 2. Let M(P1, P2, . . . , Pk) be a shifted Groves
mechanism that is both feasible and onto. M(P1, P2, . . . , Pk)’s
worst-case efficiency loss is maxj Pj −minj Pj.

Theorem 2 directly follows from the following two lemmas:

Lemma 3. Let M(P1, P2, . . . , Pk) be a shifted Groves mech-
anism. M(P1, P2, . . . , Pk) and M(P1−∆, P2−∆, . . . , Pk−∆)
are equivalent (∆ is an arbitrary constant).

The above lemma directly follows from Definition 2. It
implies that M(P1, P2, . . . , Pk) and M(P1 − minj Pj , P2 −
minj Pj , . . . , Pk − minj Pj) are equivalent. That is, it is
without loss of generality to focus on cases where the Pj

are non-negative, and at least one of the Pj is 0.

Lemma 4. Let M(P1, P2, . . . , Pk) be a shifted Groves mech-
anism that is feasible and onto. The Pj are non-negative and
minj Pj = 0. M(P1, P2, . . . , Pk)’s worst-case efficiency loss
is maxj Pj .

Proof. If maxj Pj = 0, then the mechanism is simply a
Groves mechanism, which is efficient (worst-case efficiency
loss is 0). We then analyze cases with maxj Pj > 0.
First of all, it is easy to see that the worst-case efficiency

loss is at most maxj Pj . We only need to prove that it is
also at least this much.
Let Pa = 0 and Pb = maxj Pj . a and b are different. We

construct the following type profile: vij = Lij for all i and
all j 6= a, b. Due to the onto property, we have

∑
i
Uia =

−Pa +
∑

i
Uia ≥ maxj(−Pj +

∑
i
Lij). We certainly have∑

i
Lia = −Pa +

∑
i
Lia ≤ maxj(−Pj +

∑
i
Lij). Therefore,

we can set the via so that
∑

i
via = maxj(−Pj +

∑
i
Lij).

This ensures that a is at least tied with all j 6= b. Again, due
to the onto property, we have −Pb +

∑
i
Uib ≥ maxj(−Pj +∑

i
Lij) ≥ −Pb +

∑
i
Lib. We set the vib so that outcome b

is tied with a. For this type profile, since we assume random
tie-breaking, a may be chosen ahead of b, which corresponds
to an efficiency loss of maxj Pj .

Next we try to find the optimal shifted Groves mecha-
nism. As mentioned earlier, we only need to consider shifted
Groves mechanisms that are feasible and onto. Also, we only
need to consider cases where the Pj are non-negative and at
least one of the Pj is 0.

Definition 4. A shifted Groves mechanismM(P1, P2, . . . , Pk)
is optimal, if there does not exist another shifted Groves
mechanism M(P ′

1, P
′
2, . . . , P

′
k), so that P ′

i ≤ Pi for all i.

Our aim is to minimize the worst-case efficiency loss. Based
on Lemma 4. the optimal shifted Groves mechanism should
minimize maxj Pj . We will prove later on that this is indeed
the case, and the optimal mechanism is unique. Before that,
we first propose a linear program based AMD approach for
identifying the optimal mechanism.
Given a shifted Groves mechanism M(P1, P2, . . . , Pk), we

can calculate the maximal deficit for outcome j∗ using the
following linear program:

Constants: Lij , Uij , Pj , j
∗

Variables: vij
Dummy Variables: di (di represents agent i’s pay-
ment)
Maximize: −

∑
i
di (maximize deficit)

Subject to:

For all j 6= j∗,

−Pj∗ +
∑

i

vij∗ ≥ −Pj +
∑

i

vij (1)

For all j,

di ≥ (−Pj + Lij +
∑

i′ 6=i

vi′j) + Pj∗ −
∑

i′ 6=i

vi′j∗ (2)

For all i and j,

Lij ≤ vij ≤ Uij

Constraint 1 ensures that we are dealing with type profiles
where outcome j∗ is chosen. Constraint 2 ensures that di
represents agent i’s payment. That is,

di = max
j

{−Pj + Lij +
∑

i′ 6=i

vi′j}+ Pj∗ −
∑

i′ 6=i

vi′j∗

This is true because the linear program will minimize the di
in order to maximize the objective.

The above linear program can be significantly simplified.
We may divide Constraint 2 into the following two:

For all j 6= j∗,

di ≥ (−Pj + Lij +
∑

i′ 6=i

vi′j) + Pj∗ −
∑

i′ 6=i

vi′j∗ (3)

For j = j∗,

di ≥ (−Pj + Lij +
∑

i′ 6=i

vi′j) + Pj∗ −
∑

i′ 6=i

vi′j∗ = Lij∗ (4)

Constraint 4 has nothing to do with the vij . For Con-
straint 1 and 3, they are the most relaxed if we set vij = Lij

for all i and all j 6= j∗, and we set vij∗ = Uij∗ for all i. After
simplification, we have

Constants: Lij , Uij , Pj , j
∗

Dummy Variables: di (di represents agent i’s pay-
ment)
Maximize: −

∑
i
di (maximize deficit)

Subject to:

For all j 6= j∗,

−Pj∗ +
∑

i

Uij∗ ≥ −Pj +
∑

i

Lij (5)

For all j 6= j∗ and all i,

di ≥ (−Pj +
∑

i′

Li′j) + Pj∗ −
∑

i′ 6=i

Ui′j∗ (6)

di ≥ Lij∗ (7)

Constraint 5 is already guaranteed by the onto property.
The objective value of the above linear program is simply

−
∑

i

max{max
j 6=j∗

{−Pj +
∑

i′

Li′j}+ Pj∗ −
∑

i′ 6=i

Ui′j∗ , Lij∗}



We use Dj∗(P1, P2, . . . , Pk) to denote the above objective
value. That is, Dj∗(P1, P2, . . . , Pk) represents the maximal
deficit under the shifted Groves mechanismM(P1, P2, . . . , Pk),
when outcome j∗ is chosen,
We notice that Dj∗(P1, P2, . . . , Pk) is non-increasing in

Pj∗ and non-decreasing in Pj for j 6= j∗. This leads to the
following AMD approach.

• Start from P1 = P2 = . . . = Pk = 0. That is, we start
from the original Groves mechanism, which is onto but
not necessarily feasible.

• For every outcome j∗, if Dj∗(P1, P2, . . . , Pk) is posi-
tive, then increase Pj∗ untilDj∗(P1, P2, . . . , Pk) reaches
0. This move maintains the onto property. If af-
ter the modification, it is no longer onto, then we
have −P ∗

j +
∑

i
Uij∗ < maxj 6=j∗{−Pj +

∑
i
Lij}. For

Dj∗(P1, P2, . . . , Pk), we then have

−
∑

i

max{max
j 6=j∗

{−Pj+
∑

i′

Li′j}+Pj∗−
∑

i′ 6=i

Ui′j∗ , Lij∗}

≤ −
∑

i

(max
j 6=j∗

{−Pj +
∑

i′

Li′j}+ Pj∗ −
∑

i′ 6=i

Ui′j∗)

< −
∑

i

(
∑

i

Uij∗ −
∑

i′ 6=i

Ui′j∗) = −
∑

i

Uij∗ ≤ 0

That is, Dj∗(P1, P2, . . . , Pk) is negative, which contra-
dicts with the algorithm description.

Theorem 3. The AMD process produces a unique opti-
mal shifted Groves mechanism that is feasible, onto, and has
minimal worst-case efficiency loss among all shifted Groves
mechanisms.

Proof. If we follow the AMD steps, then P1 must re-
main 0, because according to Lemma 1, D1(P1, P2, . . . , Pk)
is never positive. This implies that in all calculations, for
j > 1,

−P1 +
∑

i

Li1 =
∑

i

Li1 ≥
∑

i

Lij ≥ −Pj +
∑

i

Lij

This fact further simplifies Dj∗(P1, P2, . . . , Pk) for j
∗ > 1:

−
∑

i

max{max
j 6=j∗

{−Pj +
∑

i′

Li′j}+ Pj∗ −
∑

i′ 6=i

Ui′j∗ , Lij∗}

= −
∑

i

max{
∑

i′

Li′1 + Pj∗ −
∑

i′ 6=i

Ui′j∗ , Lij∗}

That is, the maximal deficit for outcome j∗ depends only
on Pj∗ (the other Pj values are irrelevant). Therefore, the
AMD algorithm does produce a feasible mechanism that is
onto.
Next, we prove the optimal mechanism is unique. Let

M(P ∗
1 , P

∗
2 , . . . , P

∗
k ) be an optimal mechanism. When we

start the AMD process, we have P1 = P2 = . . . = Pk = 0.
That is, we have Pj ≤ P ∗

j for all j. During the AMD,
if Dj(P1, P2, . . . , Pk) > 0. The AMD process increases Pj

to Pj + ∆ so that Dj(P1, P2, . . . , Pk) = 0. We recall that
Dj(P1, P2, . . . , Pk) is non-increasing in Pj and non-decreasing
in Pj′ for j′ 6= j. Therefore,

0 = Dj(P1, . . . , Pj−1, Pj +∆, Pj+1, . . . , Pk) ≤

Dj(P
∗
1 , . . . , P

∗
j−1, Pj +∆, P

∗
j+1, . . . , P

∗
k )

We also have

Dj(P
∗
1 , . . . , P

∗
j−1, P

∗
j , P

∗
j+1, . . . , P

∗
k ) ≤ 0

Therefore, we have P ∗
j ≥ Pj+∆. That is, after the AMD, we

have Pj ≤ P ∗
j for all j. Since we assumedM(P ∗

1 , P
∗
2 , . . . , P

∗
k )

to be optimal, we should have Pj = P ∗
j for all j after the

AMD. Since M(P ∗
1 , P

∗
2 , . . . , P

∗
k ) is arbitrarily chosen, the

optimal mechanism must be unique.
If there exists a non-optimal mechanismM(P ′

1, P
′
2, . . . , P

′
k)

that minimize the worst-case efficiency loss. Then there
must exist an optimal mechanism M(P ∗

1 , P
∗
2 , . . . , P

∗
k ) satis-

fying P ∗
j ≤ P ′

j for all j. Then by Lemma 4, M(P ∗
1 , P

∗
2 , . . . , P

∗
k )

should have the same or less worst-case efficiency loss.

Finally, based on Lemma 1, for all j with
∑

i
Lij ≥ 0, we

have Dj(P1, P2, . . . , Pk) ≤ 0 for all the Pj . This implies that
when conducting the AMD, if

∑
i
Lij ≥ 0, we simply leave

Pj to be 0.

4. GLOBAL OPTIMALITY
Theorem 3 only shows that the optimal shifted Groves

mechanism is optimal within the family of shifted Groves
mechanisms. Here, we show that it is also optimal among
all deterministic mechanisms that are strategy-proof, indi-
vidually rational, and non-deficit.

Lemma 5. When there are only two outcomes, the op-
timal shifted Groves mechanism has the lowest worst-case
efficiency loss among all deterministic mechanisms that are
strategy-proof, individually rational, and non-deficit.

Proof. We denote outcome 1 by a and outcome 2 by b.
We have the usual assumptions that

∑
i
Lia ≥

∑
i
Lib and∑

i
Lia ≥ 0. Let H be a deterministic mechanism that is

strategy-proof, individually rational, and non-deficit. Let ∆
beH’s worst-case efficiency loss. We show that there exists a
shifted Groves mechanism with the same or lower worst-case
efficiency loss.

If ∆ ≥
∑

i
Uib −

∑
i
Lia, then we can simply construct

a trivial shifted Groves mechanism that always chooses a

(choosing a never results in deficit), and this mechanism’s
worst-case efficiency loss is at most ∆. Therefore, we only
need to consider ∆ <

∑
i
Uib −

∑
i
Lia.

We consider the shifted Groves mechanism M(0,∆ + ǫ),
where ǫ is a small positive value (∆+ ǫ <

∑
i
Uib −

∑
i
Lia).

For simplicity, we simply call this mechanismM . M ’s worst-
case efficiency loss is at most ∆+ ǫ. If we can show that M
is non-deficit, then that means one feasible shifted Groves
mechanism has a worst-case efficiency loss of at most ∆+ ǫ.
ǫ can be made arbitrary small, which means that there must
exist a feasible shifted Groves mechanism with a worst-case
efficiency loss of at most ∆. This proves that the optimal
shifted Groves mechanism is globally optimal.

Now we prove that M is non-deficit. When outcome a is
chosen, by Lemma 1, deficit will not occur. We only need
to prove that when M chooses b, there will not be deficit.

Whenever M chooses b, we know that the agents prefer b
to a by at least ∆+ ǫ, which means that H must also choose
b.

Let (θi, θ−i) be a type profile for which M chooses b. For
this type profile, H must also choose b. We analyze agent
i’s payment under H and M .



Case 1: Under M , given θ−i, no matter what agent i re-
ports, the outcome is always b. If this is the case, then under
H, given θ−i, no matter what agent i reports, the outcome
is always b. (Whenever b is chosen under M , H must also
choose b.) H is deterministic. Agent i’s payment under H

must be fixed (does not change with the report). Otherwise,
H is not strategy-proof. Let x be agent i’s payment. x must
be at most Lib. Otherwise, H is not individually rational.
Agent i’s payment under M is exactly Lib according to the
definition. That is, for Case 1, agent i pays the same or
more under M .
Case 2: Under M , given θ−i, both a and b may be chosen

(depending on θi). When b is chosen, agent i pays

max{Lia +
∑

i′ 6=i

(vi′a − vi′b) + ∆+ ǫ, Lib}

We divide Case 2 into the following sub-cases.
Case 2i: If under H, given θ−i, no matter what agent i

reports, the outcome is always b, then as analyzed earlier,
agent i pays at most Lib. That is, for Case 2i, agent i pays
the same or more under M .
Case 2ii: Under H, given θ−i, for some θi, outcome a is

chosen, and for some other θi, outcome b is chosen. We
recall that H is deterministic. When a is chosen, agent
i’s payment must be a fixed amount that is independent
of θi. Otherwise, H is not strategy-proof. We use pHa to
denote this amount. Similarly, we use pHb to denote the
fixed payment paid by i whenever b is chosen. Let CH =
pHb −pHa . This CH value is a critical value: whenever agent i
favors outcome b by more than CH , outcome b will be chosen
(otherwise, a is chosen). This critical value CH must be less
than

∑
i′ 6=i

(vi′a − vi′b)+∆+ ǫ. Otherwise, H may choose a

when the agents favor b by more than ∆, which contradicts
with the fact that H’s worst-case efficiency loss is ∆. H

is individually rational, which means that we either have
pHa ≤ Lia or pHb ≤ Lib. Otherwise, agent i may end up not
able to afford either outcome. So we have pHb − CH ≤ Lia

or pHb ≤ Lib. That is,

p
H
b ≤ max{Lia + C

H
, Lib}

≤ max{Lia +
∑

i′ 6=i

(vi′a − vi′b) + ∆ + ǫ, Lib}

Therefore, for Case 2ii, agent i pays the same or more under
M when b is chosen.

Theorem 4. The optimal shifted Groves mechanism has
the lowest worst-case efficiency loss among all determinis-
tic mechanisms that are strategy-proof, individually rational,
and non-deficit.

Proof. If there is only one outcome, then the optimal
shifted Groves mechanism is the original Groves mechanism,
which obviously minimizes the worst-case efficiency loss (as
it is efficient). Lemma 5 already proved the case with two
outcomes. We then consider cases with more than two out-
comes.
We first analyze the worst-case efficiency loss of the opti-

mal shifted Groves mechanism M(P ∗
1 , P

∗
2 , . . . , P

∗
k ). Reusing

the analysis in the proof of Theorem 3, we must have P ∗
1 = 0.

For j > 1, P ∗
j = 0 if

−
∑

i

max{
∑

i′

Li′1 −
∑

i′ 6=i

Ui′j , Lij} ≤ 0

Otherwise, P ∗
j is the minimal value that makes

−
∑

i

max{
∑

i′

Li′1 + P
∗
j −

∑

i′ 6=i

Ui′j , Lij} = 0

According to Lemma 4, the worst-case efficiency loss is
simply maxj P

∗
j . Let P ∗

b = maxj P
∗
j . If P ∗

b = 0, then
the shifted Groves mechanism is efficient, which obviously
minimizes the worst-case efficiency loss. We only consider
P ∗
b > 0. When P ∗

b > 0, P ∗
b is the minimal value that makes

−
∑

i

max{
∑

i′

Li′1 + P
∗
b −

∑

i′ 6=i

Ui′b, Lib} = 0

Let us then consider the following settings:

• Setting 1 is the original setting. That is, for all i and
j, vij is in [Lij , Uij ].

• Setting 2 is a restricted version of setting 1.

– Outcome 1: For all i, let vi1 = Li1.

– Outcome b: For all i, let vib’s range be the same
as before, that is, in [Lib, Uib].

– Outcome j other than 1 and b: For all i, let vij =
Cij . Cij is a constant chosen from [Lij , Uij ]. We
need

∑
i
Cij =

∑
i
Li1. The Cij exist because∑

i
Lij ≤

∑
i
Li1 ≤

∑
i
Uij .

• Setting 3 is obtained by dropping all outcomes other
than 1 and b.

– Outcome 1: For all i, let vi1 = Li1.

– Outcome b: For all i, let vib’s range be [Lib, Uib].

Let Hi be the strategy-proof, individually rational, and
non-deficit mechanism that minimizes the worst-case effi-
ciency loss in setting i. Let αi be Hi’s worst-case efficiency
loss.

α1 ≥ α2: Setting 2 is a restricted version of setting 1,
so H1 applies in setting 2, which means that the optimal
worst-case efficiency loss in setting 2 is at most α1.

α2 ≥ α3: We first consider setting 2 and H2. It is without
loss of generality to assume that H2 only chooses outcome
1 and b, because given a type profile, if H2 chooses outcome
j 6= 1, b, then we may simply change H2 so that it chooses 1
instead. Then for all i, ask agent i to pay an additional pay-
ment equal to Li1 −Cij . This makes the agents “as if” they
are choosing outcome j. This change does not affect the
agents’ utilities (strategy-proofness and individual rational-
ity are not affected). This change does not affect the total
payment, as

∑
i
(Li1 −Cij) = 0 (non-deficit is not affected).

This change does not affect the allocative efficiency, as the
agents’ total valuations for outcome 1 and j are the same.
In conclusion, we can apply H2 to setting 3, which implies
that the optimal worst-case efficiency loss in setting 3 is at
most α2.

Above, we have proved that α1 ≥ α3. According to
Lemma 5, in setting 3, α3 is achieved by the optimal shifted
Groves mechanism. We run the AMD process on setting 3.
We get that α3 is the minimal value that makes

−
∑

i

max{
∑

i′

Li′1 + α3 −
∑

i′ 6=i

Ui′b, Lib} = 0

Now earlier we have shown that the optimal shifted Groves
mechanism in setting 1 (the original setting) has the same



worst-case efficiency loss as α3. Given that α1 ≥ α3, we must
have that the optimal shifted Groves mechanism is optimal
in the original setting, which concludes the proof.

Corollary 1. There exists a mechanism that is strategy-
proof, individually rational, non-deficit, and efficient, iff for
all j > 1, we have

−
∑

i

max{
∑

i′

Li′1 −
∑

i′ 6=i

Ui′j , Lij} ≤ 0

Proof. According to Theorem 4, there exists a mecha-
nism that is strategy-proof, individually rational, non-deficit,
and efficient, iff the optimal shifted Groves mechanism is ef-
ficient.
Now the optimal shifted Groves mechanism is efficient iff it

is M(0, 0, . . . , 0). That is, the optimal shifted Groves mech-
anism is efficient iff the AMD process carries out no updates
at all, which is exactly when for all j > 1, we have

−
∑

i

max{
∑

i′

Li′1 −
∑

i′ 6=i

Ui′j , Lij} ≤ 0

If for all j > 1,
∑

i
Lij ≥ 0, then the above corollary ap-

plies. In this case, the original Groves mechanismM(0, 0, . . . , 0)
(efficient) is the optimal shifted Groves mechanism.

5. NUMERICAL EXPERIMENTS
Given a setting, let the optimal shifted Groves mechanism

be M(P ∗
1 , P

∗
2 , . . . , P

∗
k ). We recall that we must have P ∗

1 = 0.
For j > 1, P ∗

j = 0 if

−
∑

i

max{
∑

i′

Li′1 −
∑

i′ 6=i

Ui′j , Lij} ≤ 0

Otherwise, P ∗
j is the minimal value that makes

−
∑

i

max{
∑

i′

Li′1 + P
∗
j −

∑

i′ 6=i

Ui′j , Lij} = 0

At the end, the maximal P ∗
j defines the optimal worst-case

efficiency loss.
We revisit Example 1 (the public project problem). There

are only two outcomes. The optimal shifted Groves mecha-
nism is M(0, P ∗

2 ). For j = 2, we have

−
∑

i

max{
∑

i′

Li′1 −
∑

i′ 6=i

Ui′2, Li2}

= −
∑

i

max{−
∑

i′ 6=i

n− 1

n
,−

1

n
} > 0

We then need to find the minimal P ∗
2 that makes

−
∑

i

max{P ∗
2 −

∑

i′ 6=i

n− 1

n
,−

1

n
} = 0

We get that P ∗
2 = (n−1)2

n
, which is then the optimal worst-

case efficiency loss of the public project problem.
Resource allocations with externalities can also be mod-

elled as social decision problems, for which our AMD ap-
proach can be applied. Below we present a variant of the
k-winner selection problem described in [16].

Example 3. There are n agents. We need to choose at
most 2 winners (e.g. there are 2 Ad slots for n advertisers).

There are 1 + n + n(n−1)
2

outcomes. There is 1 outcome
that selects 0 winners. There are n outcomes that select
1 winner. Finally, there are n(n−1)

2
outcomes that select 2

winners.
Agent i’s valuation for an outcome consists of two parts.

One part is her valuation for winning, which is a value from
0 to 1. The other part is her “externality” toward the other
agent selected by the outcome, if she is not the only winner.
The externality value is from −1 to 1.

For outcome {} (no winners), the agents’ valuations are
all 0. For outcome {a} (the only winner is a), agent a’s
valuation is from 0 to 1, and the other agents’ valuations
are all 0. For outcome {a, b} (the winners are a and b),
agent a’s valuation is from −1 to 2 (same for b), and the
other agents’ valuations are all 0.

As usual, we sort the outcomes according to the agents’
minimal total valuations. So outcome 1 should be {}. We
have Li1 = Ui1 = 0. The next n outcomes should be {a} for
a = 1, 2, . . . , n. For outcome j among these outcomes, we
have

∑
i
Lij = 0, so these outcomes never cause deficit and

can be ignored. Finally, the next n(n−1)
2

outcomes should
be {a, b} for every pair of a and b from 1, 2, . . . , n.

The worst-case efficiency loss is caused by one of the out-
comes that selects 2 winners. Due to symmetry, we only
consider the outcome {1, 2}. We denote this outcome by j.
We have that the worst-case efficiency loss for this outcome
is Pj , where Pj is the minimal value that makes

−
∑

i

max{
∑

i′

Li′1 + Pj −
∑

i′ 6=i

Ui′j , Lij} = 0

Plugging in the numbers, we have

−
∑

i

max{Pj −
∑

i′ 6=i

Ui′j , Lij} = 0

Simplify it, we get

−2max{Pj − 2,−1} − (n− 2)max{Pj − 4, 0} = 0

Solving the above equation, we get that Pj should be 2.
That is, the optimal worst-case efficiency loss is 2.

6. CONCLUSION
For the problem where a group of agents need to choose

from a finite set of outcomes, we proposed the optimal shifted
Groves mechanism, which is strategy-proof, individually ra-
tional, non-deficit, and minimizes the worst-case efficiency
loss. One immediate future research direction is to study
other objectives, such as minimizing the expected efficiency
loss given a prior distribution. We may also consider settings
where we drop certain assumptions (e.g., an agent’s valua-
tion space is not a closed interval, or the agents’ valuations
are interdependent).
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