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ABSTRACT
Although the celebrated Vickrey auction is strategy-proof
and guaranteed to achieve an efficient allocation in a single-
object auction, if there exists no outside party (i.e., a seller
or an auctioneer) with the right to collect the payment, the
collected payment will be wasted. Redistribution mecha-
nisms try to redistribute the payment to participating agents
as much as possible without violating strategy-proofness.
However, when a losing agent can obtain part of the pay-
ment, she may have an incentive to participate under mul-
tiple identities and receive a greater share of the redistribu-
tion.
Our goal is to develop false-name-proof redistribution mech-

anisms that are robust against such manipulations. First,
we prove that no mechanism simultaneously satisfies false-
name-proofness and allocative efficiency, except for the Vick-
rey auction. Next, we propose a class of false-name-proof re-
distribution mechanisms, which are characterized by several
parameters. We show that each mechanism in the class is
not dominated by any other false-name-proof mechanism in
terms of social welfare. Precisely, by choosing these param-
eters appropriately, all instances of this class are guaranteed
to achieve at least the same amount of social welfare ob-
tained by any false-name-proof mechanism. Furthermore,
we formalize an optimization problem that determines ap-
propriate parameter values based on prior information about
participating agents.
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1. INTRODUCTION
Mechanism design is a subfield of microeconomic theory

and game theory, which concerns designing collective decision-
making rules for multiple agents. Such rules are expected to
achieve several desirable properties, such as maximizing the
social welfare, while each agent pursues her own utility. Due
to the growing needs for agent technology and the Internet’s
popularity. vigorous research on mechanism design has been
conducted in the AI and MAS research communities.

In this paper, we consider redistribution mechanisms for
allocating a single object to participating agents. Although
the celebrated Vickrey auction is strategy-proof and guar-
anteed to achieve an efficient allocation, if there exists no
outside party who has a right to collect the payment, the
collected payment will be wasted. Redistribution mecha-
nisms try to distribute the payment to participating agents
as much as possible without violating strategy-proofness. As
a result, the welfare loss caused by wasting the payment can
be reduced to a certain extent. However, there exists no
strategy-proof mechanism that always achieves all of the fol-
lowing properties: allocative efficiency, individual rational-
ity, and strong budget-balance (which means we run neither
a surplus nor a deficit) [6, 11, 13].

Several researchers have proposed budget-balanced redis-
tribution mechanisms by abandoning efficient allocation [3,
5, 7]. An alternative approach is to relax budget balance,
so that the mechanism achieves an efficient allocation but
it wastes part of the payment [1, 2, 8, 9, 10, 12]. In this
case, the mechanism is usually required to be non-deficit,
i.e., it never runs a loss. If it suffers a deficit, it cannot be
sustained without an outside party (e.g., the government)
that is willing to subsidize the deficit.

One possible application domain of redistribution mech-
anisms consists of resource allocation problems in which a
resource is shared among the members of a community, e.g.,
a college’s tennis court, a car, or an electricity charger for
electric cars, which is co-owned by a community. It appears
unlikely that a redistribution mechanism would be applied
to a domain where anybody can participate. If receiving re-
distribution is possible just by participating/registering for
a mechanism, it will attract many participants who are not
really interested in the shared resource. For a redistribu-
tion mechanism to be successful, there must presumably be
a natural restriction on the possible participants, e.g., only
students/professors of a college or members of an established
community.

Of course, even if participation is restricted to community
members, a community member might have an incentive to



join the mechanism, even though she is not interested in
the shared resource at all, assuming that the redistribution
consists of actual money. For example, a person who is not
genuinely interested in playing tennis might create a fake
team and participate just to obtain the redistribution. Such
fake participation can perhaps be avoided if the redistribu-
tion consists of something that is useless to agents who are
not interested in the shared resource.
However, this is not the end of the story. A tennis team

could split itself and act as two different teams. Also, a
person could ask her friend, who does not own an electric
car, to participate in the mechanism and to hand over pri-
ority tickets. All these manipulations can be considered in-
stances of false-name manipulation, a type of manipulation
that has been considered in various application domains in-
cluding Internet auctions [4, 15, 16]. A mechanism that is
robust against such false-name manipulation is called false-
name-proof.
As far as the authors are aware, no existing redistribution

mechanisms (other than simply running the Vickrey auc-
tion and redistributing nothing) are false-name-proof. For
example, suppose that the Bailey-Cavallo mechanism [1, 2]
is applied to the assignment of a tennis court to a college’s
intramural teams. A delegate from each team registers and
bids. Suppose there are three teams, the highest bid is $15
by team A, the second highest bid is $12 by team B, and the
third highest bid is $9 by team C. Team A obtains the right
to use the tennis court. The original payment is $12, i.e.,
the second highest bid. The redistribution amount is 1/3
of the third highest bid for teams A and B and 1/3 of the
second highest bid for team C. Thus, team C obtains $4 (or
tennis equipment of an equivalent value). But now, if team
C creates fictitious team D and bids $1 for this team, then
teams C and D each receive 1/4 of the second highest bid,
i.e., 3. As a result, team C can increase its redistribution
from 4 to 6 by this false-name manipulation.
We first show an impossibility result for false-name-proof

redistribution: under some natural assumptions, there exists
no mechanism satisfying false-name-proofness and allocative
efficiency, except for the Vickrey auction without any re-
distribution. We propose a class of redistribution mecha-
nisms, each of which is false-name-proof. Furthermore, we
show that our proposed class is stable in a sense: for any
other given false-name-proof redistribution mechanism, we
can find a mechanism from the proposed class that domi-
nates it, and no dominance relation exists between any pair
of mechanisms from the class. We further analyze our mech-
anisms with and without prior information.When there is no
prior information on the distributions of the bidder valua-
tions and the number of bidders, we can find a further sta-
ble set based on prior-free dominance relations. Under some
assumptions, there is a class of mechanisms that prior-free-
dominate any false-name-proof mechanism.

2. PRELIMINARIES
We introduce our model of the redistribution problem

where false-name manipulations are possible. Let N be the
set of all potential agents/identities and N ⊆ N be a set
of attending agents/identities. Note that in our model, set
N is a variable, since due to false-name manipulations the
number of attending identities can change. For a given set
of agents/identities N ⊆ N , let k(N) := |N | denote the
number of elements in the set N . We use k instead of k(N).

There exists an object that is going to be sold to the at-
tending agents N . Attending agent i ∈ N has a valuation
vi ∈ V where V = [0, V̄ ] for the object, where V denotes the
set (or domain) of all the possible valuations of an agent.
Let v = (vi)i∈N ∈ V k denote the profile of the valuations of
attending agents N , and let v−i ∈ V k−1 denote the profile
of the valuations of all agents except for i, when the set of
agents N is attending.

For each N ⊆ N , let Ak ⊆ {0, 1}k be the set of all possible
allocations a = (ai)i∈N ∈ {0, 1}k that satisfy

∑
i∈N ai ≤ 1.

Here ai = 1 indicates that agent i receives the object, and
ai = 0 indicates that she does not receive it. Mechanism
M = (f, p) consists of allocation rule f and payment rule
p. Allocation rule f is a set of functions f l : V l → Al,
where, for each l ∈ {1, . . . , |N |}, f l is a function that maps
any valuation profile v ∈ V l to an allocation of the object
a ∈ Al. For given v ∈ V k and i ∈ N , we let fi(v) := fk

i (v)
denote the allocation to agent i. Similarly, payment rule
p is a set of functions pl, where pl : V l → Rl gives the
payment for each agent. More precisely, for given v ∈ V k

and i ∈ N , let pi(v) := pki (v) denote the amount of money
that agent i pays (so that a negative amount means that i
receives money).

In this paper, we restrict our attention to mechanisms that
satisfy all of the following six assumptions.

Assumption 1 (Determinism). Mechanism M = (f, p)
is deterministic if for any N ⊆ N and for any v ∈ V k, there
exists a (deterministic) allocation a ∈ A such that f(v) = a.

That is, for any set of attending agents N and any valuation
profile v that they might have, the mechanism returns a
unique allocation, without any randomization.

Assumption 2 (Non-Deficit). Mechanism M = (f, p)
is said to satisfy non-deficit (ND) if for any N ⊆ N and any
v ∈ V k,

∑
i∈N pi(v) ≥ 0.

That is, the mechanism never runs a deficit.This assumption
seems natural, since if a mechanism does not satisfy it, we
need an outside party that is willing to subsidize the deficit
to execute the mechanism. Note that this assumption does
not require that no agent ever gets any money.

Assumption 3 (Anonymity). Mechanism M = (f, p)
is said to be almost anonymous if for any N,N ′ ⊆ N such
that |N | = |N ′| = k and for any v, v′ ∈ V k, the existence
of bijection σ : N → N ′ satisfying vi = v′σ(i) for any i ∈ N
implies that

vi · fi(v)− pi(v) = v′σ(i) · fσ(i)(v
′)− pσ(i)(v

′)

holds for any i ∈ N .

That is, agents’ names do not matter for their utility. This is
a natural extension of a traditional definition of anonymity,
which requires that if the valuations of the agents are per-
muted, then their utilities must be correspondingly per-
muted. Indeed, this corresponds to our requirement when
we set N = N ′.

Assumption 4 (Individual Rationality). Mechanism
M = (f, p) is said to be individually rational (IR) if for any
N ⊆ N , any i ∈ N , any v−i ∈ V k−1, and any vi ∈ V ,

vi · fi(vi, v−i)− pi(vi, v−i) ≥ 0.



That is, the mechanism must not give negative utility to any
agent who reports her true valuation to the mechanism. If
a mechanism violates this assumption, an agent might have
an incentive not to participate.

Assumption 5 (Sale Monotonicity). Mechanism M =
(f, p) is said to be sale monotone if for any N ⊆ N , any
i, j(i ̸= j) ∈ N , any v−i ∈ V k−1, any vi ∈ V , and any
ϵ > 0, ∑

i∈N

fi(v) = 1⇒
∑
i∈N

fi(vj + ϵ, v−j) = 1.

That is, when the good is sold to some agent under bids v,
it must also be sold to some agent (possibly a different one)
whenever another agent bids higher.

Assumption 6 (Cross-Monotonicity on Competition).
Mechanism M = (f, p) is said to be cross-monotone on
competition if for any N ⊆ N , any i, j(i ̸= j) ∈ N , any
v−i ∈ V k−1, any vi ∈ V , and any ϵ > 0,

fi(v) = 1⇒ fi(vj − ϵ, v−j) = 1.

That is, if an agent wins, then she must still win whenever
another agent decreases her bid. According to Assumptions
5 and 6, if we consider mechanisms with a reserve price, the
reserve price is determined independently of any valuation
profile.
We also introduce the following properties of mechanisms:

Definition 1 (Strategy-Proofness). Mechanism M =
(f, p) is said to be weakly strategy-proof (SP) if for any
N ⊆ N , any i ∈ N , any v−i ∈ V k−1, any vi ∈ V , and
any v′i ∈ V ,

vi · fi(vi, v−i)− pi(vi, v−i) ≥ vi · fi(v′i, v−i)− pi(v
′
i, v−i).

That is, a mechanism is strategy-proof if reporting the true
valuation is a dominant strategy for every agent when cre-
ating additional identifiers is not considered as a possibility.

Definition 2 (False-Name-Proofness). Mechanism
M = (f, p) is said to be wealky false-name-proof (FNP) if
for any N ⊆ N , any i ∈ N , any v−i ∈ V k−1, any vi ∈ V ,
any v′i ∈ V , any S ⊆ N \N , and any vS ∈ V |S|,

vi · fi(vi, v−i)− pi(vi, v−i) ≥ vi ·
∑

l∈S∪{i}

fl(v
′
i, v−i, vS)

−
∑

l∈S∪{i}

pl(v
′
i, v−i, vS),

where vS ∈ V |S| is a valuation profile reported by set of
identities S.

This condition is stronger than strategy-proofness as de-
fined above. Under a false-name-proof mechanism, for every
agent, using only one identity and reporting her true valu-
ation is a weakly dominant strategy, even though she can
use multiple identities. Indeed, if we set S = ∅, we obtain
strategy-proofness as a special case.

Definition 3 (Allocative Efficiency). Mechanism
M = (f, p) is said to satisfy allocative efficiency (AE) if for
any N ⊆ N , and any v ∈ V k,

f(v) ∈ arg max
a∈Ak

∑
i∈N

vi · ai.

Ex.2Ex.1

AE

NZRFNP

(Thm.1)

Ex.3

Figure 1: Illustration of Theorem 1.

This condition requires that for any valuation profile, an
agent with the highest valuation must win.

Definition 4 (Non-Zero Redistribution). Mechanism
M = (f, p) is said to satisfy non-zero redistribution (NZR)
if for some N ⊆ N , and some v ∈ V k,

∃i ∈ N s.t., fi(v) = 0 ∧ pi(v) < 0.

This condition is intended as a minimal requirement for a
mechanism to be considered a redistribution mechanism. It
requires that for at least one bid profile, the mechanism
returns some money to at least one loser.

3. IMPOSSIBILITY
Although the three conditions FNP, AE, and NZR defined

in the previous section seem quite natural for our redistribu-
tion problem, we now show that there exists no mechanism
that simultaneously satisfies all of them. The result is visu-
ally represented in Fig. 1.

Theorem 1. There exists no mechanism satisfying false-
name-proofness, allocative efficiency, and non-zero redistri-
bution.

We introduce two lemmas to establish this result.

Lemma 1. ∀N ⊆ N such that |N | = 2 and ∀v ∈ V 2,
any mechanism M = (f, p) satisfying strategy-proofness and
allocative efficiency cannot return any amount of money to
the loser. That is, when |N | = 2,

∀j ∈ N, [fj(v) = 0⇒ pj(v) = 0].

Proof. Consider an arbitrary N such that |N | = 2 and
an arbitrary v ∈ V 2. Without loss of generality, let N =
{i, j} and vi ≥ vj , so that (by AE) agent i is the winner.
It’s clear that when both agents have valuation 0, IR and
ND imply this lemma.

Assume for the sake of contradiction that for some v ∈ V 2,
loser j receives π > 0. Then, the winner must pay at least
π; otherwise, the mechanism violates ND.

Then, consider a modified valuation profile v′ = (vi, v
′
j)

such that v′j < π. Under it, loser j must receive the same
amount of money π; otherwise, the mechanism violates SP,
because j would have an incentive either to report v′j when
her valuation is vj , or to report vj when her valuation is v′j .
Therefore, winner i still has to pay at least π.

Let us next consider another modification, v′′ = (v′i, v
′
j),

such that π > v′i > v′j . By AE, agent i is still winning. By
IR, i pays at most v′i, which is strictly smaller than π.

Therefore, agent i with true valuation vi has an incentive
to misreport her valuation as v′i when the other agent j
has valuation v′j , to reduce her payment. This violates the
assumption that M is strategy-proof.



Lemma 2. When |N | = 2, any mechanism M = (f, p)
satisfying false-name-proofness, allocative efficiency, and non-
zero redistribution must sometimes return some money to
the loser, i.e., ∃v ∈ V 2 such that for some agent j,

fj(v) = 0 ∧ pj(v) < 0.

Proof. For a given mechanism M satisfying FNP and
NZR, let N̂ , v̂, and ĵ be the parameters that imply satisfac-
tion of the NZR condition: fĵ(v̂) = 0 and pĵ(v̂) < 0. Then,

by ND and IR for the losing agents, there is an agent i ∈ N̂
that wins the object and pays at least pĵ(v̂). Furthermore,
from AE, v̂i ≥ v̂ĵ holds.

Now, consider removing all losers except for ĵ, resulting
in a situation with only two agents, {i, ĵ}. By AE, agent ĵ

still loses. But we can now conclude that ĵ must receive at
least an amount of |pĵ(v̂)| > 0; otherwise, ĵ has an incentive
to make the situation identical to the above case by adding
a set of accounts N \ {i, ĵ}.The fake identities would not
win, and therefore, by IR, they would not be made to pay
anything. Thus, fĵ(v̂i, v̂ĵ) = 0 ∧ pĵ(v̂i, v̂ĵ) < 0 holds for the

set of two agents {i, ĵ}.

Lemma 2 states that if a mechanism never redistributes
when |N | = 2, then it violates at least one of AE, FNP,
and NZR. It should be noted that an NZR mechanism does
not necessarily redistribute anything when |N | = 2. For ex-
ample, the Bailey-Cavallo redistribution mechanism satisfies
NZR, but does not redistribute anything when |N | = 2.

Proof of Theorem 1. For the sake of contradiction, we
assume there exists a mechanism M satisfying all the three
properties simultaneously. Since false-name-proofness im-
plies strategy-proofness, for the case of k = 2, M cannot re-
turn any money to the loser for any valuation profile v ∈ V 2

(Lemma 1). However, Lemma 2 states that mechanism M
must return a non-zero amount of money to the loser for
at least one valuation profile v ∈ V 2. This is a contradic-
tion.

Thus, if we require FNP, then we cannot have both NZR
and AE. Our mechanisms satisfying both NZR and FNP in-
volve reserve prices, so their worst-case allocative efficiency
and social welfare (counting payments) are both zero. Mech-
anisms satisfying both AE and FNP are efficient, but they
cannot redistribute anything. Thus, their worst-case social
welfare is also zero. On the contrary, if we only require
SP (rather than FNP), then there are many redistribution
mechanisms that achieve perfect allocative efficiency and al-
most perfect social welfare for large numbers of agents.
As a conclusion to this section, we show the “tightness”

of the impossibility result by presenting three mechanisms,
each of which satisfies two of the three properties.

Example 1 (FNP, AE, but not NZR). Consider the
Vickrey auction without any redistribution.

Example 2 (AE, NZR, but not FNP). Consider (e.g.)
the Bailey-Cavallo mechanism proposed in [1, 2].

Example 3 (FNP, NZR, but not AE). Consider a mod-
ified Vickrey auction with a reserve price, so that only when
there are two agents, some money is given to the loser, and
no redistribution is made otherwise.

Since our main objective in this paper is to find false-
name-proof redistribution mechanisms, we must abandon
satisfying allocative efficiency. However, although it satis-
fies both FNP and NZR, the third example seems poor in
terms of social welfare. In the next section, we seek a class
of false-name-proof redistribution mechanisms that outper-
forms Example 3 above.

4. FALSE-NAME-PROOF REDISTRIBUTION
MECHANISMS

We now introduce a class of false-name-proof redistribu-
tion mechanisms that we call Exponentially Decreasing Re-
distribution (EDR) mechanisms.

Definition 5 (EDR). Mechanism M = (f, p) is an
exponentially decreasing redistribution (EDR) mechanism if
we can find a pair of sequences (ck)1≤k≤|N| and (rk)1≤k≤|N|
satisfying (i) c1 = r1 = 0, (ii) c2 ≥ 0, (iii) ∀k ≥ 3, 0 ≤ ck ≤
1
2
ck−1, and (iv) ∀k ≥ 2, rk = rk−1 + 2ck such that for any

N ⊆ N , and v ∈ V k, and any i, j ∈ N ,

fi(v) =

{
1 if vi ≥ max{maxj ̸=i vj , rk}
0 otherwise,

pi(v) =


rk if vi ≥ rk > maxj ̸=i vj

maxj ̸=i vj − ck if vi ≥ maxj ̸=i vj ≥ rk

−ck if maxj ̸=i vj ≥ max{vi, rk}
0 otherwise.

Each parameter rk indicates a reserve price, a well-known
concept in auction theory. When all agents bid under the
reserve price, the object is not sold and all agents get zero
utility. The mechanism starts by running the Vickrey auc-
tion, using rk as the reserve price when the number of at-
tending agents is k. Each parameter ck indicates the amount
of money redistributed to each agent when there are k bid-
ders and the item is sold. This includes the winner when
more than one agents bid over rk.

Note that when there exist more than one bidders whose
valuations are the highest, the mechanism uses a determin-
istic tie-breaking rule — the agent with the smallest index
gets the object. This tie-breaking rule still keeps our pro-
posed mechanism anonymous, because the winner and all
the losers with the same valuation always get the same util-
ity.

We first show that every EDR mechanism is strategy-
proof. That is, no agent can improve her utility by mis-
reporting her valuation.

Proposition 1. Any EDR mechanism is strategy-proof.

Proof. Suppose there are k agents and the others’ bids
are such that agent i with valuation vi does not win the ob-
ject when bidding truthfully. If she changes her bid in such
a way that she still loses, then she receives the same amount
ck (or 0 in the case where no agent wins) of redistribution.
On the other hand, if she overbids so that she wins, then her
payment is at least vi − ck (or rk ≥ vi in the case where no
agent wins originally), by the definition of the mechanism.
Hence, her utility cannot exceed ck (or 0 in the case where
no agent wins originally), which is the utility she receives
from telling the truth.

Next consider the case where i does win when reporting
truthfully. If she is the only agent whose valuation exceeds



reserve price rk, then she has no incentive to misreport, be-
cause the only way in which she can change her utility is
by bidding below rk, which will result in zero utility. On
the other hand, if there exists some other agent whose bid
vj also exceeds rk, then agent i pays maxj ̸=i vj − ck. Since
vi ≥ maxj ̸=i vj , her utility is at least ck, which is the utility
she would get from underbidding in a way that makes her
lose.

Using this proposition, we can show that any EDR mech-
anism satisfies FNP. In the proof, we also use two lemmas
that are given in the appendix.

Theorem 2. Any EDR mechanism is false-name-proof.

Proof. The proof is obtained by combining Proposition 1
and Lemmas 3 and 4 in the appendix.
First, we observe that for any fixed valuation profile v−i

and any false-name manipulation (v′i, vS) (by agent i with
true valuation vi, using a set of identities S ∪{i} and misre-
port v′i of her own valuation), we can always find misreport
v′′i (without using false names) that gives the same alloca-
tion to manipulator i,∑

l∈S∪{i}

fl(v
′
i, v−i, vS) = fi(v

′′
i , v−i).

Therefore, by Lemmas 3 and 4, it always holds that

pi(v
′′
i , v−i) ≤

∑
l∈S∪{i}

pl(v
′
i, v−i, vS),

regardless of whether i obtains the item or not. Hence, the
simple misreport of v′′i is at least as beneficial to i as the
false-name manipulation (v′i, v−i), because they result in the
same allocation for i but the former has a (weakly) lower
payment.
Furthermore, by Proposition 1, for agent i, misreporting

her valuation as v′′i is not beneficial:

vi · fi(v)− pi(v) ≥ vi · fi(v′′i , v−i)− pi(v
′′
i , v−i).

Combining these three equations/inequalities, we have

vi · fi(v)− pi(v) ≥ vi · fi(v′′i , v−i)− pi(v
′′
i , v−i)

≥ vi ·
∑

l∈S∪{i}

fl(v
′
i, v−i, vS)−

∑
l∈S∪{i}

pl(v
′
i, v−i, vS),

which coincides with the definition of FNP.

We demonstrate the behavior of an EDR mechanism on
the tennis court example and illustrate its robustness to
false-name manipulations.

Example 4. Consider the same problem setting described
in Section 1, and apply an EDR mechanism with c2 = 4,
c3 = 2, c4 = 1, r2 = 8, r3 = 12, and r4 = 14.
When only three teams, A, B and C, participate in the

EDR mechanism, A gets the right to use the tennis court
at price $10 = $12 − $2, and the other teams receive $2
each. Next, consider the situation where team C uses two
identifiers, team C and team D.
Since there are 4 participants from the mechanism’s per-

spective, it uses parameters r4 and c4. Thus, the sum of the
redistributions to teams C and D becomes $2, which is the
same as the original redistribution to team C.

FNP mechanisms

2 -EDR
(Prior-free undominated in EDR)

(Welfare undominated)

EDR

n

Figure 2: Welfare/prior-free dominance relations

Algorithm 1 Obtaining an EDR Mechanism ((ck)1≤k≤|N|,
(rk)1≤k≤|N|) That Welfare Dominates a Given FNP Mech-
anism M ′ = (f ′, p′).

1: Init: c1 = r1 = 0.
2: for k = 2, . . . , |N | do
3: ck ← 1

2
max{i,j}∈N,v∈V k

∑
l∈{i,j}(−p

′
l(v) + f ′

l (v) ·
maxl′∈N\l{r′k, vl′})

4: rk ← rk−1 + 2ck
5: end for
6: return ((ck)1≤k≤|N|, (rk)1≤k≤|N|)

The class of EDR mechanisms includes the Vickrey auc-
tion as a special case, which can be obtained by setting
ck = rk = 0 for all k. However, the Vickrey auction obvi-
ously violates NZR. The next result shows a necessary and
sufficient condition for an EDR mechanism to satisfy NZR.

Theorem 3. An EDR mechanism satisfies non-zero re-
distribution if and only if it satisfies c2 > 0.

Proof. First we show the “if” part. When c2 > 0, we
can find at least one valuation profile v ∈ V 2 such that the
loser gets a non-zero amount of redistribution. For instance,
consider N = {1, 2} and v = (v1, v2) = (2c2, 0) ∈ V 2. Then
agent 1 wins the object and pays 2c2 (because r2 = r1+2c2 =
2c2), and agent 2 receives c2. Hence, the EDR mechanism
satisfies the NZR condition.

To prove the “only if” part: if c2 = 0, then the corre-
sponding EDR mechanism coincides with the Vickrey auc-
tion, which violates NZR.

As a corollary, we can obtain the following result.

Corollary 1. An EDR mechanism allocates efficiently
if and only if c2 = 0.

5. OPTIMALITY OF PROPOSED MECHA-
NISMS

In this section, we show the “optimality” of the proposed
mechanisms among all false-name-proof mechanisms. By in-
troducing a binary relation called welfare dominance over
the set of all possible mechanisms, we characterize EDR
mechanisms by the property of being welfare undominated
by other FNP mechanisms.

To define the relation, we first introduce the notion of
social welfare with respect to a given valuation profile.

Definition 6 (Social Welfare). For a given mech-
anism M , a set of agents N ⊆ N , and a valuation profile



v ∈ V k, let

SW(M, v) :=
∑
i∈N

[
vi · fi(v)− pi(v)

]
be the social welfare of mechanism M with respect to valua-
tion profile v.

We then formally define the welfare dominance relation.

Definition 7 (Welfare Dominance). Mechanism M̃

is said to welfare dominate mechanism M (or M̃
WD−−→ M)

if for any N ⊆ N and any v ∈ V k,

SW(M̃, v) ≥ SW(M, v).

That is, mechanism M̃ welfare dominates mechanism M if
M̃ always has a (weakly) higher social welfare than M . We
can easily observe from the definition that the relation over
the set of all possible mechanisms is transitive and antisym-

metric: for any three mechanisms M,M ′,M ′′, M
WD−−→ M ′

and M ′ WD−−→ M ′′ implies M
WD−−→ M ′′ (transitivity), and

for any two mechanisms M,M ′, having both M
WD−−→ M ′

and M ′ WD−−→M implies M ′ = M (antisymmetry). Here, we
consider two mechanisms “equal” if they provide the same
social welfare on every profile.
For given FNP mechanism M ′ = (f ′, p′), Algorithm 1 re-

turns a pair of sequences (ck)1≤k≤|N| and (rk)1≤k≤|N| cor-
responding to an EDR mechanism M that welfare domi-
nates M ′. (Intuitively, the right-hand side of Step 3 in Al-
gorithm 1 corresponds to the maximal average redistribu-
tion that an agent could obtain using two identities. When
one of these two identities is winning the item, we need to
subtract from their total payment the Vickrey-with-reserve
payment, which is not counted as redistribution.) By utiliz-
ing this algorithm, we show that the EDR mechanisms are
the only false-name-proof mechanisms that are not welfare
dominated by any other mechanism. In other words, the
EDR mechanisms form a kind of “stable set,” in the sense
that there is no welfare dominance relation between any two
EDRs, and any FNP mechanism is welfare dominated by
an EDR. Fig. 2 illustrates dominance relations among FNP
mechanisms.

Theorem 4. The class of EDR mechanisms consists ex-
actly of all the FNP mechanisms that are not welfare domi-
nated by any other FNP mechanism.

The theorem is proven in Propositions 2 and 3, which
correspond to “external stability” and “internal stability,”
respectively.

Proposition 2. For any given FNP mechanism M ′, there
exists an EDR mechanism M that welfare dominates M ′.

Proof. For any given FNP mechanism M ′, Algorithm 1
returns EDR mechanism M . We proceed by mathematical
induction. Here, csumk denotes the sum of the redistributions
when the number of attending agents is k. (1) If k = 1,
r1 = csum1 = 0 holds in mechanism M . Since mechanism M ′

satisfies r′1 ≥ r1 = 0 and c′
sum
1 = 0 by SP, M gets (weakly)

higher social welfare than M ′.
(2) If k = 2, because M ′ is FNP, an agent cannot increase

her utility by increasing the number of attending agents from
1 to 2 using two identifiers. Thus, we obtain r′2 ≥ r′1+2c2 ≥

2c2 = r2, or, r′2 ≥ r2. We next consider the difference
between the sum of the redistributions in M and in M ′.
For mechanism M with v ∈ V 2, we have csum2 = 2c2. For
mechanism M ′ with v ∈ V 2, we have c′

sum
2 ≤ 2c2. Thus, we

obtain csum2 − c′
sum
2 ≥ 0. As a result, we have r′2 ≥ r2 and

csum2 ≥ c′
sum
2 and thus we see that M obtains higher social

welfare than M ′.
(3) We assume by induction that for k = k′−1 (k′ ≥ 3), we

have SW (M, v) ≥ SW (M ′, v), implying that r′k′−1 ≥ rk′−1.
When we consider the case of k = k′ under this assumption,
we obtain r′k ≥ rk and csumk ≥ c′

sum
k in a similar manner as

the case of k = 2. Therefore, we can obtain M ′ WD−−→M .

Proposition 3. No EDR mechanism is welfare domi-
nated by any other FNP mechanism.

Proof. We first show that no EDR mechanism is welfare
dominated by another EDR mechanism. For a given pair of
EDRs, M and M ′, let (ck) and (c′k) be the corresponding
parameters, respectively. Then, we can find the minimum
k such that ck ̸= c′k; otherwise, these two mechanism coin-
cide, i.e, M = M ′. Let k∗ be this minimum number and
assume, without loss of generality, that ck > c′k. From
the definition of EDR mechanisms, it holds that rk > r′k.

Now, for a valuation profile v ∈ V k∗
such that vi > rk∗

for some i, SW(M, v) > SW(M ′, v) holds, because the for-
mer mechanism M redistributes more money to the agents
than the latter mechanism M ′. In contrast, for a valua-
tion profile v′ ∈ V k∗

such that rk∗ > vi > r′k∗ for all i,
SW(M, v′) < SW(M ′, v′) holds, because the former mech-
anism cannot sell the object to any agent, but the latter
can. These two inequalities prove that there is no welfare
dominance relation between any two different EDRs.

To complete the proof, assume for the sake of contradic-
tion that given EDR M , there exists FNP mechanism M ′

that welfare dominates M , i.e, M ′ WD−−→ M . From the dis-
cussion above, M ′ is not described in Definition 5. Then,
by Proposition 2, we construct an EDR M ′′ that dominates

M ′, i.e., M ′′ WD−−→M ′ WD−−→M . If we assume that M ′′ = M
holds, antisymmetry implies that M ′ is an EDR mechanism,
which is against the assumption. Therefore, considering only
the case of M ′′ ̸= M is sufficient to complete the proof. By

transitivity, we have M ′′ WD−−→ M for the two EDR mecha-
nisms M ′′ and M , contradicting the above.

An implication of the result is that, when we are only in-
terested in welfare-maximizing FNP mechanisms, it suffices
to focus only on EDR mechanisms, even if a mechanism de-
signer has prior knowledge about the environments, such as
the number of attending agents and their valuations. How-
ever, the class is still quite broad, and selecting one out of
all EDRs is a difficult task for mechanism designers. In the
next section we discuss some guidelines for doing so, without
prior knowledge.

6. FURTHER ANALYSES
As discussed in the previous section, focusing on EDR

mechanisms is without loss of generality if we are interested
in welfare-maximization. Therefore, we introduce another
binary relation over EDR mechanisms to find a smaller “sta-
ble set” in the class.

When a mechanism designer does not have any knowledge,
it seems natural to treat all possible situations equally. We



Algorithm 2 Obtaining an 2n-EDR that Prior-Free Dom-
inates a Given EDR Mechanism M ′ = (f ′, p′).

1: Init: c∗1 = r∗1 = 0.
2: c∗2 ← r′|N|/4

3: r∗2 ← r′|N|/2
4: for k = 3, . . . , |N | do
5: c∗k ← 1

2
c∗k−1

6: r∗k ← r∗k−1 + 2c∗k
7: end for
8: return ((c∗k)1≤k≤|N|, (r

∗
k)1≤k≤|N|)

introduce a new relation called prior-free dominance, which
successfully structures a stable set. Furthermore, mecha-
nisms among the stable set can be characterized to have
(ck) proportional to 2−k.

Definition 8 (Prior-Free Dominance). A mechanism

M̃ is said to prior-free dominate another mechanism M (or

shortly M̃
PFD−−−→M) if ∀N ⊆ N ,

[∃v ∈ V k,SW(M, v) > SW(M̃, v)]

⇒ [∃v′ ∈ V k,SW(M̃, v′) > SW(M, v′)]

and ∃N ′ ⊆ N ,

∀v ∈ V k(N′),SW(M̃, v) > SW(M, v) (1)

Intuitively, mechanism M̃ prior-free dominates another
mechanism M if (i) for any set of agents, M̃ does not al-

ways “lose” to M , and (ii) for some set of agents, M̃ al-
ways “defeats”M . Mechanism M is prior-free dominated by
mechanism M̃ if M̃ prior-free dominates M . The following
is this section’s main result, which gives the subclass of EDR
mechanisms that consists exactly of the EDRs that are not
prior-free dominated by any EDR mechanism.

Theorem 5. The class of EDR mechanisms whose cor-
responding pair of sequences (ck)1≤k≤|N| and (rk)1≤k≤|N|
satisfies ∀k ≥ 3, ck = 1

2
ck−1 are the only EDR mechanisms

that are not prior-free dominated by any EDR mechanism.

We refer to this class of mechanisms as 2n-EDR mech-
anisms. Algorithm 2 returns a 2n-EDR mechanism when
an EDR mechanism M ′ is given. If a 2n-EDR mechanism
is given to Algorithm 2, it the same 2n-EDR mechanism.
Fig. 2 illustrates the relations among FNP, EDR, and 2n-
EDR mechanisms. This theorem is proven separately in
Propositions 4 and 5.

Proposition 4. For a given non-2n-EDR mechanism M ′,
there exists a 2n-EDR mechanism M∗g that prior-free dom-
inates M ′.

Proof. Here, we assume that EDR mechanism M ′ is of
the form given in Definition 5 and that an 2n-EDR mecha-
nism M∗ is generated by Algorithm 2. Since r′k = r′k−1+2c′k
and c′k ≤ 1

2
c′k−1 for any k ≥ 2, it must holds for any EDR

mechanism M ′ that r′2 ≥ 1
2
r′|N|, and thus for M∗ with pa-

rameters (c∗k) and (r∗k), we have that for k ≥ 2, r′k ≥ r∗k. Fur-
thermore, since sequence (c′k) is decreasing (weakly) faster
than (c∗k), there exists a number k∗ ≥ 2 such that c′k > c∗k
for all k < k∗ and c′k ≤ c∗k for all k ≥ k∗. Importantly, when

k∗ > 2, we have that for any k < k∗, r′k > r∗k holds, because
both are EDR mechanisms.

As a result, it holds that for any k < k∗, r′k > r∗k and
c′k > c∗k, and for any k ≥ k∗, r′k ≥ r∗k and c′k ≤ c∗k. Therefore,
a valuation profile v′ that gives a higher social welfare under
M ′ than under M∗ exists (i.e., the precondition of Eq. (1)
holds) only when k < k∗. But in that case, we can always
find a different valuation profile v∗ ∈ V k satisfying r∗k <
v∗(1) < r′k, which gives a strictly higher social welfare under

M∗ than under M ′. Thus Eq. (1) holds. Also, for any
k ≥ k∗, obviously there exists no valuation profile that gives
a higher social welfare to M ′, because Eq. (1) also holds. As

a result, M∗ PFD−−−→M ′.

Proposition 5. No 2n-EDR mechanism is prior-free dom-
inated by any EDR mechanism.

Proof. We denote by SW(M ′, v) the social welfare of
EDR mechanism M ′ and by SW(M∗, v) the social welfare
of 2n-EDR mechanism M∗. We prove that it holds that
∀N ⊆ N , ∃v ∈ V k s.t.: SW(M ′, v) ≤ SW(M∗, v). It will
suffice to show that any one of (a), (b), or (c) is satisfied:
(a) c∗k > c′k, (b) r∗k ≤ r′k and c∗k = c′k, or (c) r∗k < r′k and
c∗k < c′k. Thus, we prove this theorem by showing that at
least one condition is satisfied for any k. We give a proof by
mathematical induction.

(1) If k = 1, (b) is satisfied, since c′k, c
∗
k, r

′
k, and r∗k are 0.

(2) If k = 2, we obtain that r∗2 = 2c∗2 and r′2 = 2c′2.
Therefore, one of (a), (b), or (c) must be satisfied.

(3) By induction, we assume that at least one condition
is satisfied for k = k′ − 1 (k′ ≥ 3). If (a) is satisfied for
k = k′− 1, we directly see that (a) is satisfied for k = k′, by
Definition 5.

If (b) is satisfied for k = k′ − 1, we obtain c∗k′ ≥ c′k′ from
Definition 5 and the definition of 2n-EDRmechanisms. If (a)
is not satisfied for k = k′, c∗k′ ≤ c′k′ holds. These inequalities
imply c∗k′ = c′k′ . For the reserve price, because c∗k′ = c′k′ , we
obtain r∗k′ ≤ r′k′ . Thus, (b) holds for k = k′.

Finally, if (c) is satisfied for k = k′−1, then r∗k′−1 < r′k′−1

holds. We assume that (c) is not satisfied for k = k′; we may
assume this is so because r∗k′ ≥ r′k′ (otherwise, one of the
other conditions holds). From Definition 5 and the definition
of 2n-EDR mechanisms, we obtain that c∗k′ = 1/2 · (r∗k′ −
r∗k′−1) and c′k′ = 1/2 · (r′k′ − r′k′−1). From this, we see that
c∗k′ > c′k′ (using that r∗k′−1 < r′k′−1 and r∗k′ ≥ r′k′). Thus,
we conclude that (a) holds for k = k′.

As a result, we prove that it holds that ∀N ⊆ N , ∃v ∈ V k

s.t. SW(M ′, v) ≤ SW(M∗, v).

7. CONCLUSION AND FUTURE WORK
In this paper, we first proved an impossibility result on

FNP redistribution: under some natural assumptions, there
exists no mechanism satisfying FNP and Pareto efficiency,
except for the Vickrey auction without any redistribution.
We then proposed a class of redistribution mechanisms, called
EDR, each of which is FNP and welfare-undominated. Af-
ter that, we refined the class of undominated mechanisms in
a prior-free sense and we proposed a class of mechanisms,
each of which is prior-free undominated. Future work will
extend our results to more complicated environments. For
one, it would be interesting to consider redistribution mech-
anisms with more than one object, such as multi-unit and
combinatorial redistribution auctions. Another direction is
to consider an online model of redistribution [14].
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APPENDIX
Lemma 3. Consider an arbitrary EDR mechanism M and

an arbitrary set of agents N . Suppose agent i ∈ N wins

the object when the set of agents N reports valuation pro-
file v ∈ V k. Further, suppose that agent i still wins when a
set of agents S ⊆ N \ N also joins the market and reports

vS ∈ V |S|. Then, it must be the case that for any j ∈ N \{i},
pj(v) ≤

∑
l∈S∪{j} pl(v, vS).

Proof. Let (ck)1≤k≤|N| be the sequence of parameters of
EDR mechanism M . From the definitions (i),(ii), and (iii) of
an EDR mechanism, agent j receives ck(N) when the set of
attending agents is N . Since all agents l ∈ S∪{j} lose when
S joins the market, each agent l ∈ S∪{j} receives ck(N∪S), so
that the sum of their redistributions is (|S|+1)ck(N∪S). By
the definition of EDR mechanisms, it holds that ck(N∪S) ≤
ck(N)/2

|S|}. Therefore, we have that ck ≥ (|S|+ 1)ck(N∪S),
implying that pj(v) ≤

∑
l∈S∪{j} pl(v, vS).

Lemma 4. Consider an arbitrary EDR mechanism M and
an arbitrary set of attending agents N . Suppose agent i ∈ N
wins the object when the set of agents N reports valuation
profile v ∈ V k. Further, suppose that if set of agents S ⊆
N \ N also joins the market and reports vS ∈ V |S|, then
agent i′ ∈ S ∪ {i} wins the object. Then, it must be the case
that pi(v) ≤

∑
l∈S∪{i} pl(v, vS).

Proof. Let (ck)1≤k≤|N| and (rk)1≤k≤|N| be the sequences
of parameters of the EDR mechanism. For any N and any
S ⊆ N \ N , by the definition of EDR mechanisms we have

that rk(N∪S) = rk + 2
∑|S|

m=1 ck+m.
Let i′ ∈ S∪{i} be the winning agent when S also joins the

market, and let v(2) and v+S
(2) be the second-highest valuation

when N is the set of agents and when N ∪ S is the set of
agents, respectively. That is, v(2) = maxj ̸=i vj and v+S

(2) =

maxj′∈N∪S\{i′} vj′ . Then, there are four cases: (I) rk > v(2)
and rk(N∪S) > v+S

(2) , (II) rk > v(2) and rk(N∪S) ≤ v+S
(2) ,

(III) rk ≤ v(2) and rk(N∪S) > v+S
(2) , and (IV) rk ≤ v(2) and

rk(N∪S) ≤ v+S
(2) .

In (I), the LHS of the inequality that we seek to prove is
rk, and the RHS is rk(N∪S)−|S|ck(N∪S). Because rk(N∪S) =

rk + 2
∑|S|

m=1 ck+m and the sequence (ck) is nonincreasing
with respect to k (for k ≥ 2), so that ck(N∪S) ≤ ck+m for
any S ⊆ N \N and any m = {1, . . . , |S|}, we have pi(v) =
rk = rk(N∪S) − 2

∑
1≤m≤|S| ck+m ≤ rk(N∪S) − |S|ck(N∪S) =∑

l∈S∪{i} pl(v, vS).

In (II), the LHS is the same as in (I), while the RHS
is v+S

(2) − (|S|+ 1)ck(N∪S). Because v+S
(2) ≥ rk(N∪S), we have

rk = rk(N∪S)−2
∑

1≤m≤|S| ck+m ≤ rk(N∪S)−ck+1−
∑

1≤m≤|S|

ck+m ≤ v+S
(2) − (|S|+ 1)ck(N∪S). Thus, it holds that pi(v) =

rk ≤ v+S
(2) − (|S|+ 1)ck(N∪S) =

∑
l∈S∪{i} pl(v, vS).

In (III), the LHS is v(2) − ck, and the RHS is rk(N∪S) −
|S|ck(N∪S). Since, when S also joins, the second-highest bid
v(2) is still in the market and there exists no bid greater
than rk(N∪S), it must hold that v(2) ≤ rk(N∪S). Moreover,
as we stated in the proof of Lemma 3, ck(N∪S) ≥ 1

2|S| ck
for any N ⊆ N and S ⊆ N \ N (k > 0). Therefore,
pi(v) = v(2) − ck ≤ rk(N∪S) − ck ≤ rk(N∪S) − |S|ck(N∪S) =∑

l∈S∪{i} pl(v, vS).

Finally, in (IV), the LHS is v(2) − ck, and the RHS is

v+S
(2) − (|S|+ 1)ck(N∪S). Clearly, v(2) ≤ v+S

(2) . Furthermore,

since ck ≥ 2|S|ck(N∪S) holds for any N ⊆ N and S ⊆ N \N ,

we obtain: pi(v) = v(2) − ck ≤ v+S
(2) − 2|S|ck(N∪S) ≤ v+S

(2) −
(|S|+ 1)ck(N∪S) =

∑
l∈S∪{i} pl(v, vS).


