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ABSTRACT
For the problem of allocating one or more items among a
group of competing agents, the Vickrey-Clarke-Groves (VCG)
mechanism is strategy-proof and efficient. However, the
VCG mechanism is not strongly budget balanced: in gen-
eral, value flows out of the system of agents in the form of
VCG payments, which reduces the agents’ utilities. In many
settings, the objective is to maximize the sum of the agents’
utilities (taking payments into account). For this purpose,
several VCG redistribution mechanisms have been proposed
that redistribute a large fraction of the VCG payments back
to the agents, in a way that maintains strategy-proofness
and the non-deficit property. Unfortunately, sometimes even
the best VCG redistribution mechanism fails to redistribute
a substantial fraction of the VCG payments. This results
in a low total utility for the agents, even though the items
are allocated efficiently. In this paper, we study strategy-
proof allocation mechanisms that do not always allocate the
items efficiently. It turns out that by allocating inefficiently,
more payment can sometimes be redistributed, so that the
net effect is an increase in the sum of the agents’ utilities.

Our objective is to design mechanisms that are competi-
tive with the omnipotent perfect allocation in terms of the
agents’ total utility. We define linear allocation mechanisms.
We propose an optimization model for simultaneously find-
ing an allocation mechanism and a payment redistribution
rule which together are optimal, given that the allocation
mechanism is required to be either one of, or a mixture of,
a finite set of specified linear allocation mechanisms. Fi-
nally, we propose several specific (linear) mechanisms that
are based on burning items, excluding agents, and (most
generally) partitioning the items and agents into groups.
We show or conjecture that these mechanisms are optimal
among various classes of mechanisms.
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1. INTRODUCTION
Many problems in electronic commerce involve resource

allocation. For the problem of allocating one or more items
among a group of competing agents, the well-known Vickrey-
Clarke-Groves (VCG) mechanism [20, 5, 11] is strategy-
proof and efficient.1 That is, under the VCG mechanism, it
is a dominant strategy for the agents to report their true val-
uations for the items, and the mechanism allocates the items
in a way that maximizes the sum of the agents’ valuations.
In the context of resource allocation, the VCG mechanism is
also weakly budget balanced (aka. it satisfies the non-deficit
property): the sum of the agents’ payments is nonnegative
(in fact, each individual agent’s payment is nonnegative).
However, the VCG mechanism is not strongly budget bal-
anced, that is, the agents’ payments do not sum to zero.
Hence, in general, value flows out of the system of agents
in the form of VCG payments, which reduces the agents’
utilities. Actually, for sufficiently general settings, no mech-
anism satisfies strategy-proofness, efficiency and strong bud-
get balance at the same time [16, 10, 9, 18]. (By sacrificing
one of these properties, the others can be achieved [2, 7, 19,
6].)

In many cases, the objective of the allocation process is
to maximize the welfare of the agents, that is, the sum of
the agents’ utilities, taking payments into account. For this
purpose, several VCG redistribution mechanisms have been
proposed. These mechanisms first allocate the items effi-
ciently and charge the VCG payments. Then, a large frac-
tion of the VCG revenue is redistributed back to the agents,
in a way that maintains the desirable properties of the origi-

1As is often done, we use “the VCG mechanism” to refer to
the Clarke mechanism, and not to any other Groves mecha-
nism.



nal VCG mechanism, including strategy-proofness, the non-
deficit property, and (sometimes) individual rationality [4,
12, 17, 14, 13]. (A mechanism is individually rational if
participating in the mechanism never makes an agent worse
off.) However, in some cases, even the best redistribution
mechanism fails to redistribute a substantial amount of the
VCG revenue. That is, even though the VCG redistribu-
tion mechanisms maximize efficiency (the sum of the agents’
valuations), the total welfare (the sum of the agents’ utili-
ties, taking payments into account) can be very low (in fact,
zero), as a result of poor redistribution. Still, the previ-
ously proposed VCG redistribution mechanisms are optimal
in various senses—but only under the constraint that allo-
cation is efficient.

In this paper, we consider the natural next step of allowing
for inefficient allocation. It turns out that even though inef-
ficient allocation reduces efficiency, it sometimes allows for
greater redistributions, so that the net effect is an increase
in the sum of the agents’ utilities. Moulin [17] already pro-
vided an example where inefficient allocation can lead to
better results, but left a more thorough investigation for fu-
ture research. As we will see, the example mechanism that
he proposed will turn out to be useful for us.

In Section 2, we cover some basic definitions that we will
use in this paper. In Section 3, we briefly review the worst-
case optimal VCG redistribution mechanism [12, 17]. In Sec-
tion 4, we define a class of allocation mechanisms that we call
linear allocation mechanisms, and propose an optimization
model for simultaneously finding an allocation mechanism
and a payment redistribution rule which together are opti-
mal, given that the allocation mechanism is required to be
either one of, or a mixture over, a finite set of specified linear
allocation mechanisms. In Section 5 to Section 6, we pro-
pose several specific mechanisms that are based on burning
items, excluding agents, and (most generally) partitioning
the items and agents into groups. We show or conjecture
that these mechanisms are optimal among various classes of
mechanisms.

2. PROBLEM DESCRIPTION
We will restrict our attention to multi-unit auctions with

unit demand in this paper. In such auctions, multiple indis-
tinguishable units are for sale at the same time, and each
agent is interested in one and only one unit.

Let the number of units be m. (m = 1 corresponds to a
single-item auction.) Let the number of agents be n. We
consider only cases where n > m. (Otherwise, it is clearly
optimal to give every agent a unit and charge nothing.) For
the ith agent, we denote her reported value (bid) for winning
one unit by v̂i, and we denote her true value for winning one
unit by vi. In a strategy-proof mechanism, it is optimal for
each agent to set v̂i = vi, and we only study strategy-proof
mechanisms in this paper. Hence, from here on, we use the
vi to denote both the reported values (bids) and the true
values. Without losing generality, we assume that v1 ≥ v2 ≥
. . . ≥ vn ≥ 0. A bid profile is a vector V = (v1, v2, . . . , vn).

Let M be a strategy-proof allocation mechanism. (In this
paper, we use “allocation mechanism” to refer to the mech-
anism before redistribution—for example, in a VCG redis-
tribution mechanism, the VCG mechanism is the allocation
mechanism, whereas the complete mechanism also includes
the redistributions.) M does not need to be deterministic: in
general, M can be a probability mixture over t deterministic

mechanisms M1, . . . , Mt. (When t = 1, M is deterministic.)
With probability pi, mechanism Mi is chosen (

Pt

i=1 pi = 1).
For each bid profile V , we define UM (V ) to be the total

efficiency (sum of obtained valuations) that results under
M for V (this does not take payments into account). We
have UM (V ) =

Pt

i=1 piUMi
(V ). Similarly, let PM (V ) be

the total revenue (sum of the agents’ payments) that results
under M for V . We have PM (V ) =

Pt

i=1 piPMi
(V ).

For multi-unit auctions with unit demand, the VCG mech-
anism is just the (m + 1)th price auction: the agents with
the m highest bids each win one unit and each pay the value
of the (m+1)th-highest bid. Hence, if M is the VCG mech-
anism, UM (V ) =

Pm

i=1 vi and PM (V ) = mvm+1.
Given a strategy-proof allocation mechanism M and a bid

profile V , without redistribution, the agents’ welfare under
M equals UM (V )−PM (V ). (We assume quasilinear prefer-
ences throughout the paper, so that utilities and payments
have the same units.) The welfare can potentially be in-
creased by introducing redistribution payments. We require
that the redistribution payment to each agent is indepen-
dent of her own bid, so that the mechanism will remain
strategy-proof. That is, agent i receives a redistribution
payment R(V∼i), where V∼i is the bid profile without vi

(v1, . . . , vi−1, vi+1, . . . , vn), and R is any real-valued func-
tion.

Not all redistribution functions (R) are feasible. For a
redistribution mechanism to be feasible, we require two addi-
tional properties. First, we require that PM (V ) ≥

Pn

i=1 R(V∼i)
for all V . That is, the mechanism must satisfy the non-
deficit property: the total redistribution should never exceed
the revenue collected by M . Otherwise, we need external
funds to subsidize the mechanism.

We also require that the mechanism be (ex-post) individ-
ually rational: if M is deterministic, then for any bid profile
V , every agent’s utility after redistribution must be nonneg-
ative. If M is not deterministic, then for any bid profile V ,
every agent’s expected utility after redistribution must be
nonnegative.

With redistribution, for a bid profile V , the agents’ wel-
fare is UM (V )−PM (V )+

Pn

i=1 R(V∼i). Our goal is to find a
strategy-proof allocation mechanism M and a redistribution
function R that are feasible and maximize this expression.
However, this is not a well-defined objective, because the
value of this expression depends on V . It could be that one
choice of M and R maximizes the expression for some V ,
while another choice of M and R maximizes the expression
for another V . In this paper, we pursue a worst-case analy-
sis approach. Such approaches have been commonly used in
the literature on redistribution mechanisms [12, 17]2 as well
as the literature on digital goods auctions [1, 8, 15]. Specif-
ically, consider an omnipotent perfect allocation mechanism
that magically identifies the agents with the m highest true
valuations, without asking for their bids, and allocates the
units to these agents at no charge. Clearly this mechanism
obtains the largest welfare that we could hope for (without
deficits). Our objective is to design mechanisms that are
competitive with this perfect allocation mechanism. We say
a redistribution mechanism (M, R) is α-competitive with the

2However, other objectives have been pursued as well, for ex-
ample, maximizing the expected redistribution with respect
to a prior [13], or making sure that there is no other feasi-
ble mechanism that always redistributes at least as much to
every agent [14].



perfect mechanism if the agents’ welfare under (M, R) is at
least α

Pm

i=1 vi, for all bid profiles V . (
Pm

i=1 vi is the agents’
welfare under the perfect mechanism.) Our objective is to
find the redistribution mechanism (M, R) that is the most
competitive, that is, that maximizes α, while satisfying the
individual rationality and non-deficit properties.

3. VCG REDISTRIBUTION MECHANISMS
In this section, we first review the worst-case optimal VCG

redistribution mechanism. Then, to motivate the rest of
the paper, we construct an example feasible strategy-proof
mechanism that allocates inefficiently and has a higher com-
petitive ratio (with the perfect mechanism) than all feasible
strategy-proof mechanisms that always maximize efficiency.

In previous work [12], we characterized the worst-case op-
timal (WCO) VCG redistribution mechanism, which max-
imizes the fraction of VCG revenue that is redistributed
in the worst case, among all VCG redistribution mecha-
nisms that are individually rational and satisfy the non-
deficit property. The WCO mechanism uses the following
redistribution function:

R(V∼j) =
Pn−1

i=m+1 ciV∼j(i)

ci =
(−1)i+m−1(n−m)(n−1

m−1)
i

Pn−1

j=m (n−1

j )
1

(n−1

i )

Pn−1
j=i

`

n−1
j

´

Here, V∼j(i) is the ith-highest bid among V∼j (the bids other
than j’s bid).

Around the same time, Moulin [17] independently char-
acterized the same mechanism, based on a different objec-
tive. 3 Specifically, Moulin tries to minimize the worst-case
ratio between the VCG revenue that fails to be redistributed
and the total efficiency, also among all VCG redistribution
mechanisms that are individually rational and satisfy the
non-deficit property. In fact, Moulin’s characterization of
WCO implies that the WCO mechanism has the highest
competitive ratio (in the sense of this paper) among all (ef-
ficient) VCG redistribution mechanisms with the required
properties.

Claim 1. The WCO mechanism has the highest compet-
itive ratio α with the perfect allocation mechanism, among
all (efficient) VCG redistribution mechanisms that are indi-
vidually rational and satisfy the non-deficit property.

Proof. Moulin’s objective is to find a redistribution func-

tion R that minimizes
PM (V )−

Pn
i=1 R(V∼i)

UM (V )
in the worst case.

This is equivalent to maximizing
UM (V )−PM (V )+

Pn
i=1 R(V∼i)

UM (V )

in the worst case. The denominator equals the agents’ wel-
fare under the perfect mechanism, because M is by defini-
tion efficient (in any VCG redistribution mechanism, units
are allocated according to the original VCG mechanism).
Therefore, Moulin’s objective is equivalent to maximizing
the competitive ratio with the perfect mechanism.

Given the number of agents n and the number of units m

(n > m), the WCO mechanism’s competitive ratio αWCO(n, m)
is characterized by the following equation:

3The objectives only result in the same mechanism if indi-
vidual rationality is required. If it is not required, then the
objective we used still results in the WCO mechanism, but
Moulin’s does not.

αWCO(n, m) = 1 −
(n−1

m )
Pn−1

j=m (n−1

j )

When n = 3 and m = 2, the WCO mechanism is not com-
petitive at all: αWCO(3, 2) = 0. In contrast, the following
simple mechanism that allocates inefficiently is somewhat
competitive:

• Burn (throw away) one unit.

• Allocate the remaining unit according to the WCO
mechanism for n = 3 and m = 1.

The new mechanism is feasible and strategy-proof be-
cause it is equivalent to the WCO mechanism for n = 3
and m = 1. It is not efficient because one unit is burned.
Since αWCO(3, 1) = 1

3
, the new mechanism is 1

3
-competitive

with the perfect allocation mechanism for one unit (m = 1).
That is, the new mechanism guarantees a welfare of 1

3
v1

for any bid profile V . Since v1 ≥ v2, it also guarantees a
total utility of 1

6
(v1 + v2) for all bid profiles. Hence, the

competitive ratio of the new mechanism with the perfect al-
location mechanism for two units (m = 2) is at least 1

6
. That

is, this new mechanism has a higher competitive ratio than
any VCG redistribution mechanism (any feasible strategy-
proof mechanism that allocates the units efficiently). So,
ironically, in some cases, the agents are happier if one unit
is burned. Motivated by this example, in the rest of the pa-
per, we study mechanisms that allocate inefficiently (and in
Section 5, we specifically study mechanisms that are based
on burning units).

4. LINEAR ALLOCATION MECHANISMS
In this section, we define a class of mechanisms that we

call linear allocation mechanisms. We then provide a general
technique for finding the optimal redistribution function for
any given linear allocation mechanism. We also show how
to simultaneously find the optimal linear allocation mech-
anism and the corresponding redistribution function, given
that the allocation mechanism is required to be one of, or a
mixture over, a finite set of specified linear allocation mech-
anisms.

Definition 1. A (strategy-proof) allocation mechanism M

is linear if the following two conditions are satisfied:

• (linearity) UM (V ) and PM (V ) are linear combinations
of the vi.

• (normalized individual rationality) M is individually
rational, and an agent’s payment is always 0 if her bid
is 0.

Example 1. The VCG mechanism is linear, for the follow-
ing reasons. In the VCG mechanism, the agents with the
highest m bids each win one unit and each pay the value of
the (m + 1)th-highest bid. That is, for any bid profile V =
(v1, v2, . . . , vn), UM (V ) =

Pm

i=1 vi and PM (V ) = mvm+1,
which are both linear.4 The normalized individual rational-
ity condition is also satisfied by the VCG mechanism. Under
4We emphasize that the linearity depends on the fact that
the bids are sorted. In fact, if we increase the (m + 1)th-
highest bid, then the revenue will increase, but only up to
the point where the bid equals the mth-highest bid; if we
increase the bid further, the revenue will not change. So in
this sense, the VCG mechanism is not linear in the bids, but
this is not the type of linearity that is used in the definition.



the VCG mechanism, the payment from an agent is always
less than or equal to her own bid, and is never negative.
When an agent’s bid is 0, her payment must be 0.

Example 2. The random allocation mechanism in which
the winners are picked uniformly at random (without re-
placement), and there are no payments, is linear, for the fol-
lowing reasons. Under this mechanism, for any bid profile
V , UM (V ) = m

n

Pn

i=1 vi, and PM (V ) = 0, which are both
linear. The normalized individual rationality condition is
also satisfied.

Claim 2. Any probability mixture over linear allocation
mechanisms is also linear.

Proof. Let M be a mixture over t linear allocation mech-
anisms M1, M2, . . . , Mt, where Mi is chosen with probabil-
ity pi. We have UM (V ) =

Pt

i=1 piUMi
(V ) and PM (V ) =

Pt

i=1 piPMi
(V ), which are both linear, because for any i,

UMi
and PMi

are linear. Normalized individual rationality
also holds: because M1, M2, . . . , Mt are all individually ra-
tional, any mixture over them is also individually rational.
If an agent’s bid is 0, then for all i, her payment under Mi

is 0. This implies that her payment under any mixture over
the Mi is also 0.

Given the number of agents n, the number of units m, and
a linear allocation mechanism M , the following optimization
model can be used to find an optimal redistribution function
R, so that the resulting mechanism (M, R) has the highest
competitive ratio. That is, we are computing the optimal
redistribution function for a fixed allocation mechanism.

Variable function: R : [0,∞)n−1 → R

Variable: α

Maximize α

Subject to:
For every bid profile V = (v1, v2, . . . , vn)
with v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
R(V∼n) ≥ 0 (individual rationality)
PM (V ) ≥

Pn

i=1 R(V∼i) (non-deficit)
UM (V ) − PM (V ) +

Pn

i=1 R(V∼i) ≥ α
Pm

i=1 vi

(competitive ratio constraint)

Because M is linear, it satisfies the normalized individ-
ual rationality condition. Hence, if the agent with the low-
est bid bids 0, her payment under M must be 0. Such an
agent’s utility is 0 when there is no redistribution, regardless
of whether she wins a unit or not. With redistribution, such
an agent’s utility is just her redistribution R(V∼n). There-
fore, for the resulting mechanism (M, R) to satisfy the indi-
vidual rationality constraint, it is necessary that R(V∼n) ≥ 0
for all V∼n. Since R(V∼n) does not depend on the value of
vn, equivalently, it is necessary that R(V∼n) ≥ 0 for all V .
Conversely, if R(V∼n) ≥ 0 for all V , then the function R is
always nonnegative, because for any x1 ≥ x2 ≥ . . . ≥ xn−1

there exists a V such that V∼n = (x1, x2, . . . , xn−1). This
implies that R(V∼n) ≥ 0 for all V is also a sufficient condi-
tion for individual rationality, because M is individually ra-
tional without redistribution and nonnegative redistribution
never decreases an agent’s utility. This is why the individual
rationality constraint can be written as R(V∼n) ≥ 0 for all
V .

Now, suppose that the allocation mechanism is not fixed;
specifically, suppose that we need to choose one mechanism

M from a set of t linear allocation mechanisms {M1, . . . , Mt},
so that M , coupled with a corresponding optimal redistribu-
tion function, has the highest competitive ratio. Then the
optimization model becomes:

Variable function: R : [0,∞)n−1 → R

Variable: α

Binary variables: p1, p2, . . . , pt

Maximize α

Subject to:
For every bid profile V = (v1, v2, . . . , vn)
with v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
R(V∼n) ≥ 0 (individual rationality)
Pt

j=1 pjPMj
(V ) ≥

Pn

i=1 R(V∼i) (non-deficit)
Pt

j=1 pjUMj
(V ) −

Pt

j=1 pjPMj
(V ) +

Pn

i=1 R(V∼i)

≥ α
Pm

i=1 vi(competitive ratio constraint)
Pt

j=1 pj = 1

It might not be clear, at first glance, why we would want
to introduce the binary variables pj , rather than just solve
the original model t times. The reason is that if we change
the pj into continuous variables ranging from 0 to 1, then the
modified model optimizes for the best allocation mechanism
among mechanisms that are mixtures over {M1, M2, . . . , Mt}
(and simultaneously, it optimizes the corresponding redistri-
bution function). We call the above optimization model in
which the pj are binary the discrete model (DM), and we
call the modified optimization model the continuous model
(CM).

DM and CM both optimize over functions, not just vari-
ables. However, as it turns out, an optimal solution can be
found by means of a linear program (for CM) or a mixed in-
teger program (for DM). The linear/mixed integer program
can be solved directly, using any solver.

The constraints of DM and CM must be satisfied for any
bid profile V = (v1, v2, . . . , vn) with v1 ≥ v2 ≥ . . . ≥ vn ≥ 0.
We use z ∈ {0, . . . , n} to denote the bid profile in which
the highest z bids are 1 and the remaining bids are 0. If
we only require that the constraints be satisfied for bid pro-
files from 0 to n, then the objective value should be greater
than or equal to the original objective value. The relaxed
optimization models (UCM and UDM, for “upper bounding
continuous/discrete model”) are:

Variable function: R : [0,∞)n−1 → R

Variables: p1, p2, . . . , pt ≥ 0 (UCM only), α

Binary variables: p1, p2, . . . , pt (UDM only)
Maximize α

Subject to:
For every bid profile V from 0 to n

R(V∼n) ≥ 0 (individual rationality)
Pt

j=1 pjPMj
(V ) ≥

Pn

i=1 R(V∼i) (non-deficit)
Pt

j=1 pjUMj
(V ) −

Pt

j=1 pjPMj
(V ) +

Pn

i=1 R(V∼i)

≥ α
Pm

i=1 vi (competitive ratio constraint)
Pt

j=1 pj = 1

Effectively, UCM is a linear program and UDM is a mixed
integer program. If V = z, then V∼i (the bids other than
i’s own bid) contains z copies of 1 and n − 1 − z copies of
0 for i > z, and V∼i contains z − 1 copies of 1 and n − z

copies of 0 for i ≤ z. Let us denote R(V∼i) by Rx if V∼i

contains x copies of 1 (0 ≤ x ≤ n−1). Then, the n variables



R0, R1, . . . , Rn−1 specify everything about the redistribution
function that affects the UDM/UCM programs; thus, they
are the only variables that we need, in addition to the pj

and α. The PMj
(V ) and UMj

(V ) are constants that we
need to evaluate for V from 0 to n. The constraints and the
objective function are all linear. This results in the following
linear/mixed integer program:

Variables: p1, p2, . . . , pt ≥ 0 (UCM only)
α, R0, R1, . . . , Rn−1

Binary variables: p1, p2, . . . , pt (UDM only)
Maximize α

Subject to:
Pt

j=1 pj = 1
R0 = 0, Rx ≥ 0 for 1 ≤ x ≤ n − 1
Pt

j=1 pjPMj
(x) ≥ xRx−1 + (n − x)Rx for 1 ≤ x ≤ n

Pt

j=1 pjUMj
(x)−

Pt

j=1 pjPMj
(x)+xRx−1+(n−x)Rx

≥ α min{x, m} for 1 ≤ x ≤ n

Let α∗
C , R∗

C,0, R
∗
C,1, . . . , R

∗
C,n−1, and p∗

C,1, p
∗
C,2, . . . , p

∗
C,t

denote an optimal solution to UCM; similarly, let α∗
D,

R∗
D,0, R

∗
D,1, . . . , R

∗
D,n−1, and p∗

D,1, p
∗
D,2, . . . , p

∗
D,t denote an

optimal solution to UDM. We know that α∗
C (α∗

D) is an up-
per bound on the competitive ratio that can be obtained in
the continuous (discrete) case; we will show that, in fact,
α∗

C (α∗
D) can be obtained, so that it is the optimal competi-

tive ratio. The following theorem shows how to convert the
optimal solution to UCM (UDM) into a redistribution mech-
anism that is defined for all V and that obtains competitive
ratio α∗

C (α∗
D).

Theorem 1. The optimal objective value for CM (DM)
equals α∗

C (α∗
D). For DM, an optimal allocation mechanism

is Mj, where j is the (only) index that satisfies p∗
D,j = 1. For

CM, an optimal allocation mechanism is the mixture over
M1, M2, . . . , Mt where Mj is chosen with probability p∗

C,j.
An optimal redistribution function RC can be obtained

from the R∗
C,x as follows: for any V and any i,

RC(V∼i) = R
∗
C,0V∼i(1) +

n−1
X

x=1

(R∗
C,x − R

∗
C,x−1)V∼i(x)

Here, V∼i(x) is the xth-highest bid among bids other than
i’s own bid. An optimal redistribution function RD is defined
similarly.

We note that when V∼i consists of z ones and n − z − 1
zeroes, we have RC(V∼i) = R∗

C,0 +
Pz

x=1(R
∗
C,x −R∗

C,x−1) =
R∗

C,z (if z = 0, RC(V∼i) = 0 = R∗
C,0). (In a sense, R is an

interpolation of these values.) Before proving the theorem,
we give the following lemma. A similar lemma appeared in
Guo and Conitzer [12].

Lemma 1. When the ci do not depend on the xi, the fol-
lowing two systems of inequalities are equivalent:

(a) c1x1 + c2x2 + . . . + csxs ≥ 0 for all x1 ≥ x2 ≥ . . . ≥
xs ≥ 0.

(b) c1x1 +c2x2 + . . .+csxs ≥ 0 for all x1 ≥ x2 ≥ . . . ≥ xs,
where each xi ∈ {0, 1}.

Proof. (a) ⇒ (b) is trivial. We now prove (b) ⇒ (a).

(b) implies that
Pj

i=1 ci ≥ 0 for all 1 ≤ j ≤ s. We have

c1x1 + c2x2 + . . . + csxs =
Ps−1

j=1(
Pj

i=1 ci)(xj − xj+1) +

(
Ps

i=1 ci)xs. For all x1 ≥ x2 ≥ . . . ≥ xs ≥ 0, each term
of the above expression is nonnegative, hence the whole ex-
pression is nonnegative. So (b) ⇒ (a).

Now we are ready to prove Theorem 1.

Proof. We only need to prove that the solution described
in the theorem is a feasible solution for CM (DM). (We em-
phasize that feasibility also entails obtaining the competitive
ratio α∗

C (α∗
D) everywhere.) Because it is feasible, it is also

optimal, because α∗
C (α∗

D) is an upper bound on CM (DM).
In the proposed solution, we have RC(V∼i) = R∗

C,0V∼i(1)+
Pn−1

x=1 (R∗
C,x − R∗

C,x−1)V∼i(x). For specific i and x, when
x < i, V∼i(x) = vx, and when x ≥ i, V∼i(x) = vx+1. (We
recall that V∼i(x) is the xth-highest bid among bids other
than i’s own bid.) Hence, RC(V∼i) is linear in v1, v2, . . . , vn,
where the coefficients are determined by the constants R∗

C,x

(we have similar results for RD). For all 1 ≤ j ≤ t, UMj

and PMj
are both linear in v1, v2, . . . , vn by the linearity as-

sumption. So for all of the constraints in CM (DM), with
the exception of the probability constraint, each side of the
inequality is a linear combination of the vi.

We need to prove that these constraints are satisfied for
all v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. By Lemma 1, we only need
them be satisfied for all v1 ≥ v2 ≥ . . . ≥ vn ≥ 0 where
the vi are binary variables. That is, we only need them
be satisfied for the bid profiles V from 0 to n. But for
these V , the constraints of CM (DM) are identical with the
constraints of UCM (UDM), because, as we already noted,
the function RC (RD) that we have defined coincides with
the R∗

C,z (R∗
D,z) on these V .

Using Theorem 1, given the number of agents n and the
number of units m, we can find the optimal allocation mech-
anism M , and simultaneously, a corresponding optimal re-
distribution function R, so that the resulting mechanism
(M, R) maximizes the competitive ratio—under the con-
straint that M must be one of, or a mixture over, a finite
set of specific linear allocation mechanisms M1, M2, . . . , Mt.

5. BURNING UNITS
In this section, we study allocation mechanisms that are

based on (sometimes) burning units. As the example in
Section 3 showed, in some cases we can achieve a higher
competitive ratio by burning units than by using the most
competitive mechanism that is feasible, strategy-proof and
efficient (the WCO mechanism).

We start by characterizing a set of mechanisms based on
the idea of burning units. First, we construct m allocation
mechanisms that are based on burning a deterministic num-
ber of units. Let Mi (i = 1 . . . m) be the allocation mecha-
nism in which m − i units are burned, and the remaining i

units are allocated efficiently according to the VCG mech-
anism. Mm is just the original VCG mechanism. We note
that it makes no sense to burn all units, hence i > 0. We call
the Mi deterministic burning allocation mechanisms. We
can also construct allocation mechanisms in which a ran-
dom number of units are burned, by randomizing over the
Mi. Let M be a mixture of the Mi, where mechanism Mi is
chosen with probability pi. That is, M is the mechanism in
which with probability pi, exactly m−i units are burned. (If
pi = 1 for some i, then M is just Mi.) We call such mixtures
over the Mi randomized burning allocation mechanisms.



The deterministic burning allocation mechanisms are
strategy-proof, because the remaining units are allocated ac-
cording to the VCG mechanism, which is strategy-proof. It
follows that the randomized burning allocation mechanisms
are also strategy-proof. Also, the deterministic burning al-
location mechanisms are linear. When there are i units re-
maining (Mi), the agents with the i highest bids each win
one unit, and each pay the value of the (i + 1)-th high-
est bid. That is, for any bid profile V = (v1, v2, . . . , vn),

UMi
(V ) =

Pi

j=1 vj and PMi
(V ) = ivi+1. Both UMi

and
PMi

are linear in the vi. The normalized individual ratio-
nality condition is also satisfied. Therefore, the determinis-
tic burning allocation mechanisms are linear. By Claim 2,
we also have that the randomized burning allocation mech-
anisms are linear.

Using Theorem 1, we can find an optimal allocation mech-
anism M , and a corresponding optimal redistribution func-
tion R, so that (M, R) maximizes the competitive ratio,
given that M is one of the deterministic burning allocation
mechanisms, or M is a randomized burning allocation mech-
anism.

In the following table, we present the results for different
numbers of agents and different numbers of units. The sec-
ond column (α∗

D) gives the optimal competitive ratio among
all feasible mechanisms (M, R) where M is one of the deter-
ministic burning allocation mechanisms. The integers in the
third column are the number of units burned in the optimal
mechanism that corresponds to α∗

D. The fourth column (α∗
C)

is the optimal competitive ratio among all feasible mecha-
nisms (M, R) where M is a randomized burning allocation
mechanism. The values in the fifth column are the proba-
bilities of having one unit burned in the optimal mechanism
that corresponds to α∗

C . (It turns out that in the optimal
mechanism, either exactly one unit is burned with a certain
probability, or nothing is burned.) Finally, as a benchmark,
the sixth column (α∗

WCO) gives the competitive ratio of the
WCO mechanism (the optimal competitive ratio among all
feasible mechanisms (M, R) where M allocates efficiently).

α∗
D burn α∗

C burn α∗
WCO

n=4,m=1 0.571 0 0.571 0 0.571
n=4,m=2 0.286 1 0.667 0.67 0.250
n=4,m=3 0.267 2 0.889 0.33 0

n=6,m=1 0.839 0 0.839 0 0.839
n=6,m=3 0.410 1 0.800 0.60 0.375
n=6,m=5 0.356 3 0.960 0.20 0

n=8,m=1 0.945 0 0.945 0 0.945
n=8,m=3 0.646 0 0.762 0.71 0.646
n=8,m=5 0.452 2 0.914 0.43 0.276
n=8,m=7 0.422 4 0.980 0.14 0

For the case of n = 10, m = 1, . . . , 9, we compare the
values of α∗

WCO, α∗
D and α∗

C in Figure 1. When m is small,
the three values are the same. As m gets large, the value of
α∗

WCO decreases all the way to 0; the value of α∗
D also de-

creases but it gets stable when its value goes down to around
0.5; the value of α∗

C first decreases, but then increases, at
the end almost reaches 1.

Of course, α∗
WCO ≤ α∗

D ≤ α∗
C ; it turns out that all of these

inequalities are sometimes strict. Therefore, in general we
need to burn a random number of units to get the most
competitive redistribution mechanism.

While we can use Theorem 1 in this way to solve for the
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Figure 1: A comparison of α∗
D, α∗

C and α∗
WCO.

most competitive redistribution mechanism in this class of
mechanisms for any given n and m, it would be nice to have
a general analytical characterization of the most competi-
tive redistribution mechanism. The following claim speci-
fies a burning-based redistribution mechanism for each m, n

pair, and gives the competitive ratio for these mechanisms.
We conjecture that these mechanisms are in fact the most
competitive in this class of mechanism (including the ran-
domized mechanisms), but have not been able to prove it.
(However, using the linear programming methodology from
Theorem 1, we have verified that this conjecture is true for
all n ≤ 10.)

Claim 3. Given n and m, using a redistribution mech-
anism (M, R) where M is a randomized burning allocation
mechanism, we can achieve the following competitive ratio:

max{1 −

`

n−1
m

´

Pn−1
j=m

`

n−1
j

´ ,
mn − n

mn − m
}

If the first expression is greater (or equal), then the mech-
anism achieving the above ratio is the worst-case optimal
VCG redistribution mechanism (nothing is burned).

If the second expression is greater, then the mechanism
achieving the above ratio is the following:

• Burn (throw away) one unit with probability n−m
n−1

.

• The remaining units are allocated according to the VCG
mechanism.

• After the VCG payments, every agent receives a redis-
tribution payment of m−1

n−1
times the m-th highest bid

among bids other than this agent’s own bid. (Unlike
the VCG payments, the redistribution does not depend
on whether a unit was burned.)

Proof. We already know that the WCO mechanism is
strategy-proof, feasible, and has competitive ratio

1−
(n−1

m )
Pn−1

j=m (n−1

j )
. Hence, we only need to show that the other

mechanism proposed in the claim is strategy-proof, feasible,
and has competitive ratio mn−n

mn−m
, for the values of m, n for

which this mechanism outperforms the WCO mechanism.



If m = 1, then mn−n
mn−m

= 0, which can not be greater
than the competitive ratio of the WCO mechanism. So we
only need to consider m > 1. We have already proved that
any randomized burning allocation mechanism is strategy-
proof. After introducing redistribution, the mechanism re-
mains strategy-proof, because the redistribution does not
depend on the agent’s own bid. Individual rationality is sat-
isfied because the randomized burning allocation mechanism
is individually rational, and the redistribution is always non-
negative. For any bid profile V , the VCG revenue is mvm+1

when nothing is burned, and the VCG revenue is (m−1)vm

when one unit is burned. Together, the expected5 VCG rev-
enue is n−m

n−1
(m−1)vm +(1− n−m

n−1
)mvm+1 = m−1

n−1
(mvm+1 +

(n − m)vm). For the agents bidding v1, . . . , vm, the redis-
tribution received is m−1

n−1
vm+1. For the other agents, the

redistribution received is m−1
n−1

vm. Therefore, the total redis-
tribution equals the total VCG payment, so the non-deficit
criterion is satisfied. We conclude that the mechanism is
feasible.

Now we show that the mechanism has competitive ra-
tio mn−n

mn−m
. With probability n−m

n−1
, the total efficiency is

Pm−1
i=1 vi (one unit is burned). When nothing is burned,

the total efficiency is
Pm

i=1 vi. In expectation, the total effi-

ciency is n−m
n−1

Pm−1
i=1 vi +(1− n−m

n−1
)

Pm

i=1 vi. This is greater

than or equal to n−m
n−1

m−1
m

Pm

i=1 vi + (1 − n−m
n−1

)
Pm

i=1 vi =
mn−n
mn−m

Pm

i=1 vi (we have equality when all vi are equal).
Since the total payment equals the total redistribution, ef-
ficiency is equal to welfare, so we conclude that we obtain
the competitive ratio mn−n

mn−m
.

Conjecture 1. The competitive ratio in Claim 3 is opti-
mal for mechanisms (M, R) where M is a randomized burn-
ing allocation mechanism. That is, if M is required to be
a randomized burning allocation mechanism, then there is
an optimal mechanism that either never burns anything (so
that it coincides with the WCO mechanism), or burns ex-
actly one unit with some probability, so that all the revenue
can be redistributed.

6. PARTITIONING UNITS AND AGENTS
In this section, we study allocation mechanisms that are

based on partitioning the units and the agents into groups.
This is an idea that has previously been proven effective
in mechanism design [3, 8]. Based on this idea, we first
characterize a class of strongly budget balanced allocation
mechanisms (in the setting of multi-unit auctions with unit
demand). Some of the mechanisms in this class have been

5The mechanism satisfies the non-deficit criterion only in
expectation over the choice of whether to burn a unit. Alter-
natively, we can charge each agent her expected VCG pay-
ment, in which case there will certainly be no deficit. One
may worry that this will result in individual rationality only
holding in expectation. However, interestingly, individual
rationality continues to hold unconditionally if we charge
the expected VCG payment: the only agent that faces any
randomness is the mth agent, and she pays (1− n−m

n−1
)vm+1,

but then receives a redistribution of m−1
n−1

vm+1, for a to-
tal payment of 0, so that she is not unhappy even if the
unit is thrown away. However, in this case, she would pre-
fer to place a bid of 0 instead—so the resulting mechanism
is strategy-proof only in expectation over the mechanism’s
random choice. (In contrast, the mechanism in Claim 3 is
unconditionally strategy-proof and individually rational.)

proposed previously [6, 17]. We focus on finding the most
competitive mechanism in this class. Because all of the
mechanisms in this class are strongly budget balanced, there
will be no redistributions.

We start with two example mechanisms. They are both
based on excluding one individual agent from the set of all
agents. The first one is due to Moulin [17], and the second
one is due to Faltings [6].

Example Mechanism 1

• Exclude one agent from the auction, uniformly at ran-
dom.

• Assign one unit to the excluded agent at no charge.

• The remaining units are allocated to the remaining
agents according to the VCG mechanism.

• Transfer all the VCG revenue to the excluded agent.

Example Mechanism 2

• Exclude one agent from the auction, uniformly at ran-
dom.

• Units are allocated to the remaining agents according
to the VCG mechanism.

• Transfer all the VCG revenue to the excluded agent.

Both example mechanisms are strategy-proof, individu-
ally rational and strongly budget balanced. In the first
mechanism, one agent is excluded and assigned one unit. In
the second mechanism, one agent is excluded and assigned
zero units.

We now introduce our class of mechanisms that is based
on partitioning the agents; this class generalizes both of the
previous two mechanisms.

Definition 2. Given n and m, for n1 ∈ {1, . . . , ⌊n
2
⌋}, m1 ∈

{0, . . . , min{n1, m}}, we define the following mechanism:

• Pick n1 agents to form one group, uniformly at ran-
dom. The other n− n1 agents form the second group.

• Allocate m1 units among the first group, according to
the VCG mechanism.

• Allocate the remaining m−m1 units among the second
group, according to the VCG mechanism.

• Transfer the VCG revenue from the first group to the
second group, in any predetermined way.

• Transfer the VCG revenue from the second group to
the first group, in any predetermined way.

We call this mechanism the (n1, m1)-partition mechanism.

We note that Example Mechanisms 1 and 2 are the (1, 1)-
partition mechanism and the (1, 0)-partition mechanism, re-
spectively.

Claim 4. The partition mechanisms are strategy-proof,
individually rational, and strongly budget balanced.



Proof. Without transferring the VCG revenue, every
agent is participating in a VCG mechanism, which must
be strategy-proof. For each agent, the transfer payment she
receives depends only on the bids from the other group of
agents, hence it does not affect her incentives. Therefore,
the mechanisms are strategy-proof. Similarly, without trans-
ferring the VCG revenue, every agent is participating in a
VCG mechanism, which must be individually rational. With
transferring, the agents’ utilities become higher or stay the
same. Therefore, the mechanisms are individually rational.
Finally, the strong budget balance property follows from the
fact that the entire VCG revenue is transferred.

Since the partition mechanisms are strongly budget bal-
anced, welfare must equal efficiency. Hence, for our objec-
tive of finding the most competitive partition mechanism, we
can completely ignore the VCG payments and the revenue
transferring process. That is, for the analysis that follows,
we pretend that there are no payments of any kind; when we
use the mechanism, we add the VCG payments and trans-
fers back to achieve strategy-proofness. We now show that
by ignoring the payments and transfers, the partition mech-
anisms become linear mechanisms (albeit linear mechanisms
that are not strategy-proof, but this does not matter). Given
n and m, let Mn1,m1

be the (n1, m1)-partition mechanism.
For any bid profile V = (v1, v2, . . . , vn), under Mn1,m1

, there
is only a finite number of ways of dividing the vi into two
groups of size n1 and n − n1 (and each of these ways re-
ceives equal probability). For any specific way of dividing,
the agents’ total efficiency is linear in the vi. Since each way
of dividing happens with equal probability, the expected to-
tal efficiency is also linear in the vi. That is, UMn1,m1

(V )
is linear in the vi. We also have PMn1,m1

= 0. Hence, the
partition mechanisms satisfy the linearity condition. The
normalized individual rationality condition is also satisfied
(after ignoring the VCG payments and the revenue trans-
ferring process). Thus, we can use the general technique
in Theorem 1 to solve for the optimal partition mechanism.
However, we now present a simpler solution technique based
on the special structure of the class of partition mechanisms.

The following claim characterizes the competitive ratio of
a given partition mechanism.

Claim 5. Given n and m, the competitive ratio of the
(n1, m1)-partition mechanism equals

UMn1,m1
(m)

m

Here, UMn1,m1
(m) is the expected efficiency (welfare) under

the (n1, m1)-partition mechanism when m agents bid 1 and
the remaining agents bid 0. This competitive ratio is equal
to

P

x∈X

`

n1

x

´`

n−n1

m−x

´

(min{x, m1} + min{m − x, m − m1})

m
`

n

m

´

Here, X = {x|0 ≤ x ≤ n1, 0 ≤ m − x ≤ n − n1}. We will
call this competitive ratio α∗

n1,m1
.

Proof. For bid profile m (where m agents bid 1 and the
remaining agents bid 0), the perfect (omnipotent) mecha-

nism would achieve an efficiency of m. Hence,
UMn1,m1

(m)

m

is an upper bound on α∗
n1,m1

.

We now show that
UMn1,m1

(m)

m
is equal to the second

expression in the claim; then, we will show that Mn1,m1

does in fact attain this competitive ratio. In the (n1, m1)-
partition mechanism, n1 agents are randomly picked to form
one group, and the remaining n − n1 agents form a second
group. If m agents bid 1 and the remaining agents bid 0,
then the probability of having x agents that bid 1 in the

group of size n1 is
(n1

x )(n−n1
m−x )

(n
m)

. The corresponding total wel-

fare is (min{x, m1} + min{m − x, m − m1}). The set of
possible values of x is X. It follows that UMn1,m1

(m) is

equal to
P

x∈X (n1
x )(n−n1

m−x )(min{x,m1}+min{m−x,m−m1})

(n
m)

.

All that is left to show is that Mn1,m1
does in fact at-

tain this competitive ratio. Let us consider the following
allocation mechanism, which is never better than Mn1,m1

:

• Pick n1 agents to form one group, uniformly at ran-
dom. The other n− n1 agents form the second group.

• Remove the agents with the lowest n − m bids.

• For the first group, if there are more than m1 agents
left, allocate m1 units uniformly at random among the
remaining agents in group one. Otherwise, allocate
one unit to every remaining agent in group one.

• For the second group, if there are more than m − m1

agents left, allocate m−m1 units uniformly at random
among the remaining agents in group two. Otherwise,
allocate one unit to every remaining agent in group
two.

For any bid profile, the above mechanism results in (weakly)
lower efficiency than the (n1, m1)-partition mechanism, be-
cause in the partition mechanism, the units are assigned ef-
ficiently within each group, and in the modified mechanism
they are not because of agent removal and random assign-
ment.

Under the modified mechanism, only the agents bidding
v1, . . . , vm possibly win any units, and the probability of
winning is the same for each of them. For the bid profile
in which m agents bid 1 and the remaining agents bid 0,
the modified mechanism results in the same efficiency as
the partition mechanism. Therefore, because in this case,
a winning agent’s utility is 1, the expected number of win-
ners under the modified mechanism is UMn1,m1

(m). But
this probability must be the same for all bid profiles. So,
using the fact that each of the top m bidders is equally
likely to win, for a general bid profile, the expected efficiency

under the modified mechanism is
UMn1,m1

(m)

m

Pm

i=1 vi; and
we know that this is (weakly) lower than the expected effi-
ciency under the (n1, m1)-partition mechanism. Hence, the
(n1, m1)-partition mechanism has a competitive ratio of at

least
UMn1,m1

(m)

m
. We have already proved that

UMn1,m1
(m)

m

is an upper bound of α∗
n1,m1

, so this expression must be ex-
actly equal to the competitive ratio.

So far, we have not considered mixtures over partition
mechanisms. It could be that, by taking such mixtures,
we can obtain more competitive mechanism. However, the
following claim rules out the possibility of obtaining more
competitive mechanisms by taking mixtures over partition
mechanisms.

Claim 6. If M is a mixture over M1, M2, . . . , Mt, where
the Mi are partition mechanisms for different values of n1, m1,



and Mi is chosen with probability pi, then there exists 1 ≤
j ≤ t so that Mj attains at least the competitive ratio of M .

Proof. By the same argument as in Claim 5, the compet-

itive ratio of M is at most UM (m)
m

. We have that UM (m)
m

=
Pt

i=1 piUMi
(m)

m
≤ maxj

UMj
(m)

m
. But

UMj
(m)

m
(where j ∈

arg maxj

UMj
(m)

m
) is the competitive ratio for Mj by Claim 5.

Hence, Mj is as competitive as M .

By Claim 5, for given n and m, by maximizing
P

x∈X

`

n1

x

´`

n−n1

m−x

´

(min{x, m1} + min{m − x, m − m1})

m
`

n

m

´

over n1 and m1, we obtain the optimal (n1, m1)-partition
mechanism. This mechanism is also optimal among all mix-
tures of partition mechanisms by Claim 6. It would be nice
to have a general analytical characterization of the optimal
n1 and m1. The following conjecture specifies three parti-
tion mechanisms, and gives the corresponding competitive
ratios. The conjecture states that for any n and m, the
optimal partition mechanism must be one of these three.
Experimentally, we have verified that this conjecture is true
for all n ≤ 10.

Conjecture 2. For any n and m, the optimal partition
mechanism is one of the following three:
(1, 0)-partition mechanism, with competitive ratio n−1

n
;

(1, 1)-partition mechanism, with competitive ratio nm+m−n
nm

;
(2, 1)-partition mechanism, with competitive ratio

P

x∈X′ (2

x)(
n−2

m−x)(min{x,1}+min{m−x,m−1})

m(n
m)

,

where X ′ = {x|0 ≤ x ≤ 2, 0 ≤ m − x ≤ n − 2}.

In the following table, we present the results for various
numbers of agents and units. The second column (α∗

n1,m1
)

gives the optimal competitive ratio among all partition mech-
anisms. The third column gives the values of n1 and m1,
where the (n1, m1)-partition mechanism achieves the opti-
mal competitive ratio.

α∗
n1,m1

(n1, m1)
n = 4, m = 1 0.750 (1, 0)
n = 4, m = 2 0.833 (2, 1)
n = 4, m = 3 0.917 (1, 1)

n = 6, m = 1 0.833 (1, 0)
n = 6, m = 3 0.867 (2, 1)
n = 6, m = 5 0.967 (1, 1)

n = 8, m = 1 0.875 (1, 0)
n = 8, m = 3 0.875 (1, 0)
n = 8, m = 5 0.925 (1, 1)
n = 8, m = 7 0.982 (1, 1)

7. GENERALIZED PARTITION
MECHANISMS

Finally, we slightly generalize the definition of partition
mechanisms by allowing for empty groups of agents in the
partition, as well as burning units.

Definition 3. Given n and m, for nonnegative integers
n1, n2, m1, m2 with n1 + n2 = n, m1 + m2 ≤ m, we de-
fine the following mechanism:

• Pick n1 agents to form one group, uniformly at ran-
dom. The other n− n1 agents form the second group.
(One group can be empty.)

• Allocate m1 units among the first group, according to
the VCG mechanism.

• Allocate m2 units among the second group, according
to the VCG mechanism.

We call this mechanism the (n1, m1, m2)-generalized parti-
tion mechanism.

We removed the transferring of VCG revenue from the
definition, because when one group is empty, it is not pos-
sible to transfer to that group. However, we still allow for
redistribution, so if both groups are nonempty (or, more
generally, if we randomize only over generalized partition
mechanisms in which both groups are nonempty) we will in
fact redistribute all the VCG revenue.

The set of generalized partition mechanisms contains all
the burning allocation mechanisms: the (0, 0, m2)-generalized
partition mechanism is the mechanism in which m−m2 units
are burned, and the remaining units are allocated efficiently
among all agents.

Claim 7. All generalized partition mechanisms are strategy-
proof and linear.

Proof. Every agent is participating in a VCG mecha-
nism, which must be strategy-proof and individually ratio-
nal. We also have that if an agent’s bid is 0, then her pay-
ment is 0. Let M be a generalized partition mechanism,
UM and PM are the average of the efficiency and VCG rev-
enue over all random partitions of the agents into groups of
sizes n1 and n − n1. Given a specific way of partitioning,
both the efficiency and the VCG revenue are linear in the vi.
Therefore, both UM and PM are linear in the vi as well.

We can now directly apply Theorem 1 to find the mecha-
nism (M, R) with the highest competitive ratio, given that
M is a mixture of the generalized partition mechanisms. In
the following table, we present the results for various num-
bers of agents and units. The second column (α∗) gives
the optimal competitive ratio among all (M, R), under the
constraint that M is a mixture of the generalized partition
mechanisms. The third column describes a mixture of gen-
eralized partition mechanisms that attains the optimal com-
petitive ratio in each case (the meaning of (n1, m1, m2), p is
that with probability p, we use the (n1, m1, m2)-generalized
partition mechanism). (We do not present the redistribu-
tion function because we do not know how to conveniently
describe it in a table.)

α∗ allocation mechanism
n = 4, m = 1 0.842 (0, 0, 1), 0.37

(1, 0, 1), 0.63
n = 4, m = 2 0.864 (0, 0, 2), 0.18

(2, 1, 1), 0.82
n = 4, m = 3 0.923 (0, 0, 3), 0.08

(1, 1, 2), 0.92

n = 8, m = 1 0.962 (0, 0, 1), 0.69
(1, 0, 1), 0.31

n = 8, m = 3 0.908 (0, 0, 3), 0.26
(1, 0, 3), 0.74

n = 8, m = 5 0.928 (0, 0, 5), 0.04
(1, 1, 4), 0.96

n = 8, m = 7 0.982 (0, 0, 7), 0.02
(1, 1, 6), 0.98



8. CONCLUSION
The VCG mechanism is not strongly budget balanced: in

general, value flows out of the system of agents in the form of
VCG payments, which reduces the agents’ utilities. In many
settings, the objective is to maximize the sum of the agents’
utilities (taking payments into account). For this purpose,
several VCG redistribution mechanisms have been proposed
that redistribute a large fraction of the VCG payments back
to the agents, in a way that maintains strategy-proofness
and the non-deficit property. Unfortunately, sometimes even
the best VCG redistribution mechanism fails to redistribute
a substantial fraction of the VCG payments. This results
in a low welfare for the agents, even though the items are
allocated efficiently. In this paper, we studied strategy-proof
allocation mechanisms that do not always allocate the items
efficiently. It turns out that by allocating inefficiently, more
payment can sometimes be redistributed, so that the net
effect is an increase in the sum of the agents’ utilities.

The objective that we pursued is to design mechanisms
that are competitive in terms of welfare with the omnipotent
perfect allocation. We defined linear allocation mechanisms.
We proposed an optimization model for simultaneously find-
ing an allocation mechanism and a payment redistribution
rule which together are optimal, given that the allocation
mechanism is required to be either one of, or a mixture of, a
finite set of specified linear allocation mechanisms. Finally,
we proposed several specific (linear) mechanisms that are
based on burning units, excluding agents, and (most gen-
erally) partitioning the units and agents into groups. We
showed or conjectured that these mechanisms are optimal
among various classes of mechanisms.

We have assumed in this paper that random bits are not
chosen adversarially, that is, the worst-case adversary con-
trols the bidders’ valuations but not our random choices. If
the adversary also controls our random choices (which would
correspond to a different notion of worst-case optimality),
then it never hurts to use a deterministic mechanism. To il-
lustrate how this affects our results, let us consider Example
Mechanism 2 of Section 6, in which we (uniformly) randomly
choose one agent to be excluded from the auction and assign
this agent zero units. This mechanism is competitive in the
sense of this paper. (An agent is excluded with probabil-
ity 1

n
, hence the competitive ratio is n−1

n
.) However, if we

use the alternative notion of worst-case optimality, then the
bidder with the highest valuation will always be excluded,
so that the mechanism is not competitive. Under this alter-
native notion, among all maximal-in-range allocation mech-
anisms, either Example Mechanism 1 of Section 6 or the
worst-case optimal mechanism is an optimal mechanism, for
the following reasons. If, in an optimal maximal-in-range
mechanism, there is some subset of m agents that cannot
all win at the same time, then the competitive ratio is at
most m−1

m
, and we can achieve this competitive ratio using

Example Mechanism 1. On the other hand, if any subset
of m agents can win at the same time, then the mechanism
must be efficient, and it can do no better than the worst-case
optimal mechanism.

Future research on maximizing agents’ welfare under the
constraint of strategy-proofness can take a number of direc-
tions. First of all, we have left several open questions. Other
questions include the following. Are there other families of
inefficient mechanisms that result in a high welfare for the
agents? Among what more general classes of mechanisms

are the mechanisms proposed in this paper optimal? Can
we generalize some of these results to wider settings, for ex-
ample, settings without unit demand, or even combinatorial
auctions? What happens if we change the objective, for ex-
ample, if we have a prior distribution over bid profiles and
we wish to maximize expected welfare?
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