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ABSTRACT
We study a more powerful variant of false-name manipulation in In-
ternet auctions: an agent can submit multiple false-name bids, but
then, once the allocation and payments have been decided, with-
draw some of her false-name identities (have some of her false-
name identities refuse to pay). While these withdrawn identities
will not obtain the items they won, their initial presence may have
been beneficial to the agent’s other identities. We define a mecha-
nism to befalse-name-proof with withdrawal (FNPW)if the afore-
mentioned manipulation is never beneficial. FNPW is a stronger
condition than false-name-proofness (FNP).

We first give a necessary and sufficient condition on the type
space for the VCG mechanism to be FNPW. We then characterize
both the payment rules and the allocation rules of FNPW mecha-
nisms in general combinatorial auctions. Based on the characteri-
zation of the payment rules, we derive a condition that is sufficient
for a mechanism to be FNPW.

We also propose themaximum marginal value item pricing
(MMVIP) mechanism. We show that MMVIP is FNPW and exhibit
some of its desirable properties. We then propose an automated
mechanism design technique that transforms any feasible mecha-
nism into an FNPW mechanism, and prove some basic properties
about this technique. Since FNPW is stronger than FNP, the mecha-
nisms we obtain in this paper are also FNP. Finally, we prove a strict
upper bound on the worst-case efficiency ratio of FNPW mech-
anisms. In the appendix, we give a characterization of FNP(W)
social choice rules.

1. INTRODUCTION
With the rapid development of electronic commerce, Internet

auctions have become increasingly popular over the years. [9, 15,
11]. Unlike traditional auctions, typical Internet auctions pose no
geographical constraint. That is, sellers and bidders from all over
the world can participate in an Internet auction remotely over the
Internet, without having to physically attend the auction event. For
sellers, this reduces the cost of running an auction. For bidders,
this lowers the entry cost. Effectively, in an individually rational
auction mechanism (a mechanism that guarantees nonnegative util-
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ities for the agents), a bidder, at worst, loses nothing (but time)
by participating in an auction. On the one hand, this encourages
more bidders to join the auction, which potentially leads to higher
revenue for the seller, as well as a higher social welfare for the bid-
ders. On the other hand, it enables the bidders to manipulate by
submitting multiple bids via multiple fictitious identities (e.g., user
accounts linked to different e-mail addresses).

The line of research on preventing manipulation via multiple fic-
titious identities in Internet auctions was explicitly framed by the
groundbreaking work of Yokooet al. [19]. Extendingstrategy-
proofness—the concept of ensuring that it is always in a bidder’s
best interest to report her valuation function truthfully—the authors
define an auction mechanism to befalse-name-proofif the mech-
anism is not only strategy-proof, but also, under this mechanism,
an agent cannot benefit from submitting multiple bids under false
names (fictitious identities). The authors also extended the reve-
lation principle [10] to incorporate false-name-proofness. That is
(roughly stated), in settings where false-name bids are possible,
it is without loss of generality to focus only on false-name-proof
mechanisms.

Several false-name-proof mechanisms have been proposed for
general combinatorial auction settings (settings where multiple items
are for sale at the same time, and agents can express valuation func-
tions for the items that exhibit substitutability and complementar-
ity [5]). These are the Set mechanism [16], the Minimal Bundle
(MB) mechanism [16], and the Leveled Division Set (LDS) mech-
anism [18].1 Other work on false-name-proofness includes the fol-
lowing. For general combinatorial auction settings, Yokoo [16] and
Todoet al. [12] characterized the payment rules and the allocation
rules of false-name-proof mechanisms, respectively. False-name
proofness has also been studied in the context of voting mecha-
nisms [4, 14]. Finally, Conitzer [3] proposed the idea of preventing
false-name manipulation by verifying the identities of certain lim-
ited subsets of agents.

Focusing primarily on combinatorial auctions, this paper con-
tinues the line of research on false-name-proofness by consider-
ing an even more powerful variant of false-name manipulation: an
agent can submit multiple false-name bids, but then, once the al-
location and payments have been decided, withdraw some of her
false-name identities (have some of her false-name identities refuse
to pay). While these withdrawn identities will not obtain the items
they won, their initial presence may have been beneficial to the
agent’s other identities, as shown in the following example:

Example 1.There are three single-minded2 agents1, 2, 3 and
1A very recent paper [7] introduces a new mechanism called the
ARP mechanism. However, this mechanism requires the additional
restriction that agents are single-minded.
2A single-minded agent is only interested in a single, specific bun-



two itemsA, B. Agent 1 bids 4 on {A, B}. Agent 2 bids 2 on
{B}. Let us analyze the strategic options for agent3, who is single-
minded on{A}, with valuation1. (That is,∀S ⊆ {A, B}, agent
3’s valuation forS is 1 if and only if {A} ⊆ S.) The mechanism
under consideration is the VCG mechanism.

If agent3 reports truthfully, then she wins nothing and pays noth-
ing. Her resulting utility equals0.

If agent3 attempts “traditional” false-name manipulation, that
is, submitting multiple false-name bids, and honoring all of them at
the end, then her utility is still at most0: if 3 wins both items with
one identity, then she has to pay at least4 (while her valuation for
the items is only1); if 3 wins both items with two identities (one
item for each identity), then the identity winning{B} has to pay at
least2; if 3 wins only{B} or nothing, then her utility is at most
0; if 3 wins only{A} (in which case{B} has to be won by agent
2), then3’s winning identity’s payment equals the other identities’
overall valuation for{A, B} (at least4), minus2’s valuation for
{B} (which equals2). That is, in this case,3 has to pay at least2.
So, overall,3’s utility is at most0 if she honors all her bids.

However, agent3 can actually benefit from submitting multiple
false-name bids, as long as she can withdraw some of them. For
example,3 can use two identities,3a and3b. 3a bids1 on {A}.
3b bids4 on {B}. At the end,3a wins {A} for free, and3b wins
{B} for 2. If 3 can withdraw identity3b (e.g., by never checking
that e-mail account anymore), never making the payment and never
collecting{B}, then, she has obtained{A} for free, resulting in a
utility of 1.

If we wish to guard against manipulations like the above, we
need to extend the false-name-proofness condition. We refer to the
new condition asfalse-name-proofness with withdrawal (FNPW). It
requires that, regardless of what other agents do, an agent’s optimal
strategy is to report truthfully using a single identity, even if she has
the option to submit multiple false-name bids, and withdraw some
of them at the end of the auction.

To our knowledge, this stronger version of false-name-proofness
has not previously been considered. Whether it is more or less
reasonable than the original version depends on the context. For
example, in an auction, it may be possible to require each partici-
pant to place the amount of her bid in escrow, which would prevent
manipulation based on withdrawal. However, in some auction con-
texts, such an arrangement would be too unattractive to the bidders;
it also reduces the anonymity of bidding. Additionally, if we are in
a setting where the payments are not monetary, but rather are in
terms of performance of future services, then it is not possible to
put the payments in escrow.

In any case, FNPW is a useful conceptual tool for analyzing
false-name-proof mechanisms. Indeed, this paper also contributes
to the research on false-name-proofness in the traditional sense.
Since FNPW is stronger than FNP, the mechanisms we propose in
this paper, as well as the automated mechanism design technique,
should be of interest in the FNP context as well.

The paper is organized as follows. In Section 2, we formalize
the problem we study. In Section 3, we give a sufficient and nec-
essary condition on the type space for the VCG mechanism to be
FNPW. In Section 4, we characterize both the payment rules and
the allocation rules of FNPW mechanisms in general combinato-
rial auctions. We also derive a sufficient condition that can be used
to check whether a mechanism is FNPW. In Section 5, we propose
the maximum marginal value item pricing (MMVIP)mechanism,
which we prove is FNPW. In Section 6, we propose an automated
mechanism design technique that transforms any feasible mecha-

dle of items.

nism into an FNPW mechanism. This technique builds on the suf-
ficient condition in Section 4. In Section 7, we show that, under a
minor condition, the mechanism that sells all the items as a single
bundle has the highest worst-case efficiency ratio among all FNPW
mechanisms. Finally, in the appendix, we give a characterization
of FNP(W) social choice rules.

2. FORMALIZATION
We will use the following notation:

• N = {1, 2, . . . , n}: the set of agents

• G = {1, 2, . . . , m}: the set of items

• Θ: the type space of each agent

• θi ∈ Θ: agenti’s reported type (since we consider only
strategy-proof mechanisms, when there is no ambiguity, we
also useθi to denotei’s true type)

• −i: the set of agents other than agenti

• θ−i ∈ Θn−1: types reported by agents other than agenti

We study combinatorial auction settings satisfying the following
assumptions:

• Each agent has aquasi-linearutility function. That is, there
exists a functionv (determined by the setting) such that if an
agent with true typeθ ∈ Θ ends up with bundleB ⊂ G and
paymentp ∈ R, then her utility equalsv(θ, B) − p.

• ∀θ ∈ Θ, we havev(θ, ∅) = 0.

• ∀B1 ⊆ B2 ⊆ G, ∀θ ∈ Θ, we havev(θ, B1) ≤ v(θ, B2).
That is, there isfree disposal.

• An agent can have any valuation function satisfying the above
conditions. That is, we are dealing withrich domains[1]. It
should be noted that in Section 3, we study how restrictive
the type space has to be in order for the VCG mechanism to
be FNPW. That is, we do not have the rich-domain assump-
tion in Section 3, which is an exception.

A mechanism consists of an allocation ruleX : (Θ, Θn−1) →
P(G) and a payment ruleP : (Θ, Θn−1) → R. X(θi, θ−i) is the
bundle agenti receives when reportingθi (when the other agents
reportθ−i). P (θi, θ−i) is the payment agenti has to make when
reportingθi (when the other agents reportθ−i). When there is no
ambiguity about the other agents’ types, we simply useX(θi) and
P (θi) in place ofX(θi, θ−i) andP (θi, θ−i).

Throughout the paper, we only consider mechanisms satisfying
the following conditions:

• Strategy-proofness:∀θi, θ
′
i, θ−i, we havev(θi, X(θi))−P (θi)

≥ v(θi, X(θ′
i)) − P (θ′

i). That is, if an agent uses only one
identity, then truthful reporting is a dominant strategy.

• Pay-only:∀θi, θ−i, we haveP (θi) ≥ 0.

• Individual rationality:∀θi, θ−i, we havev(θi, X(θi))−P (θi)
≥ 0. That is, if an agent reports truthfully, then her utility is
guaranteed to be nonnegative. This condition also implies
that if an agent does not win any items, or has valuation0 for
all the items, then her payment must be0.



• Consumer sovereignty:∀θ−i, ∀B ⊆ G, there existsθi ∈ Θ
such thatX(θi, θ−i) ⊇ B. That is, no matter what the other
agents bid, an agent can always win any bundle (possibly at
the cost of a large payment).

• Determinism and symmetry:We only consider deterministic
mechanisms that are symmetric over both the agents and the
items (except for ties).

Yokoo [16] showed that in our setting, the mechanisms satis-
fying the above conditions coincide with the(anonymous) price-
oriented, rationing-free (PORF)mechanisms. Similar price-based
representations have also been presented by others, including [8].
The PORF mechanisms work as follows:

• The agents submit their reported types.

• The mechanism is characterized by a price functionχ : P(G)
× Θn−1 → [0,∞). For any agenti, for any multisetθ−i

of types reported by the other agents, for any set of items
S ⊆ G, χ(S, θ−i) is the price ofS offered toi by the mech-
anism. That is,i can purchaseS at a price ofχ(S, θ−i).
∀θ−i, we haveχ(∅, θ−i) = 0. That is, the price of nothing is
always zero.∀θ−i, ∀S1 ⊆ S2 ⊆ G, we haveχ(S1, θ−i) ≤
χ(S2, θ−i). That is, a larger bundle always has a higher (or
the same) price.

• The mechanism will select a bundle for agenti that is optimal
for her given the prices, that is, the bundle chosen fori is in

arg maxS⊆G{v(θi, S) − χ(S, θ−i)}.

The agent then pays the price for this bundle.

• Naturally, the mechanism must ensure that no item is allo-
cated to two different agents. This involves setting prices
carefully, as well as breaking ties.

Since allfeasiblemechanisms (mechanisms that satisfy the de-
sirable conditions in our setting) are PORF mechanisms, besides
usingX (the allocation rule) andP (the payment rule) to refer to
a mechanism, we can also use the price functionχ to refer to a
mechanism, namely, the PORF mechanism with price functionχ.3

In the remainder of this section, we formally define the tradi-
tional false-name-proofness (FNP) condition, as well as our new
false-name-proofness with withdrawal (FNPW) condition.

Definition 1. FNP.A mechanism characterized by allocation rule
X and payment ruleP is FNP if and only if it satisfies the follow-
ing:

∀θi, ∀θi1, θi2, . . . , θik, ∀θ−i, we have
v(θi, X(θi, θ−i)) − P (θi, θ−i) ≥

v(θi,
k
S

j=1

X(θij , θ−i ∪ (
S

t 6=j

θit))) −
k

P

j=1

P (θij , θ−i ∪ (
S

t 6=j

θit))

That is, truthful reporting using a single identifier is always better
than submitting multiple false-name bids.

Definition 2. FNPW. A mechanism characterized by allocation
rule X and payment ruleP is FNPW if and only if it satisfies the
following:
3Technically, there can be multiple PORF mechanisms with the
same price function due to tie-breaking, but this will generally not
be an issue.

∀θi, ∀θi1, θi2, . . . , θik, ∀θ′
i1, θ

′
i2, . . . , θ

′
iq, ∀θ−i, we have

v(θi, X(θi, θ−i)) − P (θi, θ−i) ≥

v(θi,
k
S

j=1

X(θij , θ−i ∪ (
S

t 6=j

θit) ∪ (
S

θ′
it)))

−
k

P

j=1

P (θij , θ−i ∪ (
S

t 6=j

θit) ∪ (
S

θ′
it))

That is, truthful reporting using a single identifier is always bet-
ter than submitting multiple false-name bids and then withdrawing
some of them.

Actually, FNPW is exactly equivalent to FNP plus the following
condition:

Definition 3. Others’ bids do not help (OBDNH). A mecha-
nism characterized by allocation ruleX and payment ruleP satis-
fies the OBDNH condition if and only if

∀θi, ∀θ′, ∀θ−i, we have
v(θi, X(θi, θ−i)) − P (θi, θ−i) ≥

v(θi, X(θi, θ−i ∪ θ′)) − P (θi, θ−i ∪ θ′)

That is, an agent’s utility for reporting truthfully does not in-
crease if we add another agent.

THEOREM 1. FNPW is equivalent to FNP plus OBDNH.

PROOF. We first prove that FNPW implies FNP and OBDNH.
It is straightforward that FNPW implies FNP. We only need to

prove that FNPW implies OBDNH.∀θi, ∀θ−i, ∀θ′, let k = 1,
θi1 = θi, q = 1, andθ′

i1 = θ′. With these assignments, the FNPW
condition reduces to the OBDNH condition.

We now prove that FNP and OBDNH together imply FNPW.
∀θi, ∀θ′

i1, θ
′
i2, . . . , θ

′
iq, ∀θ−i, according to OBDNH, we have

v(θi, X(θi, θ−i)) − P (θi, θ−i) ≥ v(θi, X(θi, θ−i ∪ (
S

θ′
it))) −

P (θi, θ−i ∪ (
S

θ′
it)). Then, according to FNP,∀θi1, θi2, . . . , θik,

replacingθ−i byθ−i∪(
S

θ′
it), we obtainv(θi, X(θi, θ−i∪(

S

θ′
it)))−

P (θi, θ−i∪(
S

θ′
it)) ≥ v(θi,

k
S

j=1

X(θij , θ−i∪(
S

t 6=j

θit)∪(
S

θ′
it)))−

k
P

j=1

P (θij , θ−i ∪ (
S

t 6=j

θit) ∪ (
S

θ′
it)). Combining the inequalities,

we obtain exactly the FNPW condition.

According to Theorem 1, to check whether an FNP mechanism
is FNPW, we only need to check whether it satisfies OBDNH.

CLAIM 1. The Leveled Division Set (LDS) mechanism [18] does
not satisfy OBDNH. That is, LDS is not FNPW in general.4

The general LDS mechanism is rather complicated. Instead of
describing LDS in its general form, we focus on a specific LDS
mechanism for three items, which is characterized by reserve price
1 and two levels:[{(A, B, C)}] and[{(A, B), (C)}, {(A), (B, C)}].
The mechanism works as follows. If there are at least two agents
whose valuations for{A, B, C} are at least3, then we combine
{A, B, C} into one bundle, and run the Vickrey auction. If every
agent’s valuation for{A, B, C} is less than3, then we do the fol-
lowing. We first introduce a dummy agent into the system. The
dummy agent has an additive valuation function and values every
item at1. We only allow five types of allocations: 1) The dummy
agent wins everything. 2) The dummy agent wins one of{A, B}

4We will show later that the other two known FNP mechanisms,
that is, the Set mechanism [16] and the Minimal Bundle mecha-
nism [16], are both FNPW.



and{C}, and a non-dummy agent wins the other. 3) The dummy
agent wins one of{A} and{B, C}, and a non-dummy agent wins
the other. 4) A non-dummy agent wins one of{A, B} and{C},
and another non-dummy agent wins the other. 5) A non-dummy
agent wins one of{A} and{B, C}, and another non-dummy agent
wins the other. We run the VCG mechanism on this restricted set
of possible allocations. Finally, if there is only one agent whose
valuation for{A, B, C} is at least3, then this agent is the only
winner. She has the option to purchase all the items at price3, or
to obtain the result she would have obtained if everyone (includ-
ing the dummy agent) were to join in the above maximal-in-range
mechanism.

PROOF. We only need to prove that the above specific LDS
mechanism does not satisfy OBDNH. We consider the following
scenario. There are two agents. Agent1 bids 2.2 on {A, B}.
Agent 2 is single-minded, valuing{A} at 1.1. Under the above
LDS mechanism, if2 reports truthfully, then{A, B} is allocated to
1, and{C} is allocated to the dummy agent (thrown away). That is,
if 2 reports truthfully, then her utility equals0. If, besides2’s true
identity, 2 also submits a false-name bid of2.9 on {B, C}, then
{B, C} will be allocated to2’s false-name identity (2 will with-
draw this identity, that is, refuse to pay for this bundle), and{A}
will be allocated to2’s true identity at a price of1. That is,2 now
has utility0.1. We conclude that, in general, LDS does not satisfy
OBDNH, and hence is not FNPW.

3. RESTRICTION ON THE TYPE SPACE SO
THAT VCG IS FNPW

The VCG mechanism [13, 2, 6] satisfies several nice proper-
ties, including efficiency, strategy-proofness, individual rationality,
and the non-deficit property. Unfortunately, as shown by Yokooet
al. [19], the VCG mechanism is not FNP for general type spaces.
One sufficient condition on the type space for the VCG mechanism
to be FNP is as follows:

Definition 4. Submodularity [19]. For any set of biddersY ,
whose types are drawn fromΘ, ∀S1, S2 ⊆ G, we haveU(S1, Y )+
U(S2, Y ) ≥ U(S1 ∪ S2, Y ) + U(S1 ∩ S2, Y ). Here,U(S, Y ) is
defined as the total utility of bidders inY , if we allocate items inS
to these bidders efficiently.

That is, if the type spaceΘ satisfies the above condition, then
the VCG mechanism is FNP. In this section, we aim to characterize
type spaces for which VCG is FNPW. We consider restricted type
spaces (that make the VCG mechanism FNPW) in this section. In
other sections, unless specified, we assume that the rich-domain
condition holds.

THEOREM 2. If the type space satisfies the submodularity con-
dition, then the VCG mechanism is FNPW. Conversely, if the mech-
anism is FNPW, and additionally the type space contains the ad-
ditive valuations, then the type space satisfies the submodularity
condition.

That is, submodularity does not only imply FNP, it actually im-
plies FNPW. Moreover, unlike for FNP, in the case of FNPW, the
converse also holds—if we allow the additive valuations (those val-
uations which value any set of items at the sum of the values of its
elements, with no complementarity and no substitutability).

PROOF. We first prove that if the type space satisfies submod-
ularity, then the VCG mechanism is FNPW. We consider agent
i. Let K be the set of false-name identitiesi submits and keeps

at the end. LetW be the set of false-name identitiesi submits
and withdraws. We already know that submodularity is sufficient
for the VCG mechanism to be FNP. Hence, ifK contains mul-
tiple identities, theni might as well replace all of them by one
identity that reportsi’s true type. We then show that the identi-
ties in W do not helpi (OBDNH). We useS to denote the set
of items won byi at the end. To winS, i pays the VCG price
U(G, {−i}∪W )−U(G−S, {−i}∪W ) ({−i} is the set of other
agents). We useS′ to denote the set of items won by identities in
W , when we allocate items inG−S to identities in{−i}∪W effi-
ciently. We have thatU(G, {−i}∪W )−U(G−S, {−i}∪W ) =
U(G, {−i}∪W )−U(G−S−S′, {−i})−U(S′, W ) ≥ U(G−
S′, {−i}) + U(S′, W ) − U(G − S − S′, {−i}) − U(S′, W ) =
U(G − S′, {−i}) − U(G − S − S′, {−i}). The submodularity
condition implies thatU(G−S′, {−i})−U(G−S−S′, {−i}) ≥
U(G, {−i}) − U(G − S, {−i}). But, the expression on the right-
hand side of the inequality is the pricei would be charged forS
when she uses a single identifier. That is,i does not benefit from
the false-name identities inW . Therefore, the VCG mechanism is
FNPW if the type space satisfies submodularity.

Next, we prove that if the VCG mechanism is FNPW, then the
type space must satisfy submodularity (if it contains the additive
valuations). LetS be an arbitrary set of items. Leti be an agent
that is interested inS. Since we allow additive valuations, such
i always exists (e.g., i may have a very large valuation for ev-
ery item inS). If i bids truthfully, then she can winS at a price
of U(G, {−i}) − U(G − S, {−i}). Let S′ be another arbitrary
set of items that does not intersect withS. For each itemj in
S′, we introduce a false-name identity that is only interested in
item j, with value c, wherec is set to a very large value (e.g.,
larger thanU(G, {−i})). These false-name identities are allowed
since we assume the type space contains the additive valuations.
Let W be the set of identities introduced. WithW , i can win
S at a price ofU(G, {−i} ∪ W ) − U(G − S, {−i} ∪ W ). We
have thatU(G, {−i} ∪ W ) − U(G − S, {−i} ∪ W ) = U(G −
S′, {−i}) + U(S′, W ) − U(G − S − S′, {−i}) − U(S′, W ) =
U(G− S′, {−i})−U(G− S − S′, {−i}). The new price should
never be smaller than the old price. Otherwise, there is an incen-
tive for i to submit false-name bids and withdraw them. That is, we
haveU(G, {−i})−U(G−S, {−i}) ≤ U(G−S′, {−i})−U(G−
S−S′, {−i}). LetS1 = G−S, S2 = G−S′, andY = {−i}. We
haveU(S1 ∩ S2, Y ) − U(S1, Y ) ≤ U(S2, Y ) − U(S1 ∪ S2, Y ).
SinceS1, S2, andY are arbitrary, we have submodularity.

4. CHARACTERIZATION OF FNPW MECH-
ANISMS

Yokoo [16] and Todoet al. [12] characterized the payment rules
(the price functions in the PORF representation) and the allocation
rules of FNP mechanisms, respectively. In this section, we present
similar results on the characterization of FNPW mechanisms.

4.1 Characterizing FNPW payments
We recall that in our setting, a feasible mechanism corresponds

to a PORF mechanism, characterized by a price functionχ. Yokoo [16]
gave the following sufficient and necessary condition onχ for the
mechanism characterized byχ to be FNP.

Definition 5. No superadditive price increase (NSA).LetO be
an arbitrary set of agents.5 We run mechanismχ (a PORF mech-
anism characterized by price functionχ) for the agents inO. Let

5In a slight abuse of language, we also use “a set of agents” to refer
to the types reported by this set of agents.



Y be an arbitrary subset ofO. Let Bi (i ∈ Y ) be the set of items
agenti obtains. We must have

P

i∈Y

χ(Bi, O − {i}) ≥ χ(
S

i∈Y

Bi, O − Y ).

By modifying the NSA condition, we get the following sufficient
and necessary condition onχ for mechanismχ to be FNPW.

Definition 6. No superadditive price increase with withdrawal
(NSAW). Let O be an arbitrary set of agents. We run mechanismχ
for the agents inO. Let Y andZ be two arbitrary nonintersecting
subsets ofO. Let Bi (i ∈ Y ) be the set of items agenti obtains.
We must have

P

i∈Y

χ(Bi, O − {i}) ≥ χ(
S

i∈Y

Bi, O − Y − Z).

NSAW is equivalent to NSA plus the following condition.

Definition 7. Prices increase with agents (PIA).Let O be an
arbitrary set of agents. Leta be another agent not inO. ∀S ⊆ G,
we must have

χ(S, O ∪ {a}) ≥ χ(S, O).

That is, from the perspective of agenti, if another agent joins in,
then the pricei faces for any set of items must (weakly) increase.

CLAIM 2. NSAW is equivalent to NSA plus PIA.

PROOF. We first prove that NSAW implies NSA and PIA. It is
straightforward that NSAW implies NSA, so we only need to show
that NSAW implies PIA. LetR be an arbitrary set of agents. Let
a be another agent not inR. ∀S ⊆ G, we can construct an agent
(denoted byy) that winsS if we runχ on the agents inR ∪ {a} ∪
{y} (e.g., lety be single-minded onS, with a very large value). Let
Y = {y}, Z = {a}, andO = R ∪ Y ∪ Z. NSAW implies that
χ(S, R∪Z) = χ(S, R∪{a}) ≥ χ(S, R). That is, NSAW implies
PIA.

We now prove that NSA and PIA imply NSAW. PIA implies that
χ(

S

i∈Y

Bi, O − Y − Z) ≤ χ(
S

i∈Y

Bi, O − Y ). NSA implies that
P

i∈Y

χ(Bi, O − {i}) ≥ χ(
S

i∈Y

Bi, O − Y ). Combining the two

inequalities, we obtain the NSAW condition.

THEOREM 3. Mechanismχ is FNPW if and only ifχ satisfies
the NSAW condition.

PROOF. We first prove that ifχ satisfies NSAW, then the mech-
anism is FNPW. Let us consider a specific agentx. LetO−Y −Z
be the set of agents other than herself. LetY be the set of false-
name identitiesx submits and keeps at the end. LetZ be the set of
false-name identitiesx submits but withdraws at the end. So,O is
the set of all the identities. The set of itemsx receives at the end is
S

i∈Y

Bi, whereBi is the bundle won by identityi. The total pricex

pays is
P

i∈Y

χ(Bi, O − {i}). According to NSAW, this price is at

leastχ(
S

i∈Y

Bi, O−Y −Z). That is,x would not be any worse off

if she just used a single identity to buy
S

i∈Y

Bi. Whenx uses only

one identity, her optimal strategy is to report truthfully. Therefore,
if NSAW is satisfied, mechanismχ is FNPW.

Next, we prove that if mechanismχ is FNPW, thenχ must
satisfy NSAW. Suppose not, that is, suppose there exists someχ
that corresponds to an FNPW mechanism, and there exist three

nonintersecting sets of agentsY , Z, andO − Y − Z, such that
P

i∈Y

χ(Bi, O − {i}) < χ(
S

i∈Y

Bi, O − Y − Z), whereBi is the

bundle agenti obtains (when we apply mechanismχ to the agents
in O). Let us consider a single-minded agentx, who values

S

i∈Y

Bi

at exactlyχ(
S

i∈Y

Bi, O−Y −Z). If the set of other agents faced by

x is O−Y −Z, thenx has utility0 if she reports truthfully using a
single identifier. However, ifx instead submits multiple false-name
identitiesY + Z, keeps those inY and withdraws those inZ, then
she will obtain her desired items at a lower price and end up with
positive utility, contradicting the assumption thatχ is FNPW. That
is, if NSAW is not satisfied, thenχ is not FNPW.

4.2 A sufficient condition for FNPW
The NSAW condition in Section 4.1 leads to the following suffi-

cient condition for mechanismχ to be FNPW.

Definition 8. Sufficient condition for no superadditive price
increase with withdrawal (S-NSAW).Let O be an arbitrary set of
agents. S-NSAW holds if we have both of the following conditions:

• Discounts for larger bundles (DLB). ∀S1, S2 ⊆ G with
S1 ∩ S2 = ∅, χ(S1, O) + χ(S2, O) ≥ χ(S1 ∪ S2, O). That
is, the sum of the prices of two disjoint sets of items must be
at least the price of the joint set.

• Prices increase with agents (PIA).6 ∀S ⊆ G, for any agent
a that is not inO, χ(S, O ∪ {a}) ≥ χ(S, O).

CLAIM 3. Mechanismχ is FNPW ifχ satisfies S-NSAW.

PROOF. We only need to show that S-NSAW is stronger than
NSAW (by Theorem 3, NSAW is sufficient (and necessary) forχ
to be FNPW). Letχ satisfy S-NSAW. LetO be an arbitrary set of
agents. We run mechanismχ on the agents inO. We divideO into
three subgroups,Y , Z, andO − Y − Z. For i ∈ Y , let Bi be the
bundle agenti obtains. By PIA, we have

P

i∈Y
χ(Bi, O −{i}) ≥

P

i∈Y χ(Bi, O − Y − Z). By DLB, we have
P

i∈Y χ(Bi, O −
Y − Z) ≥ χ(

S

i∈Y

Bi, O − Y − Z). Combining these inequalities,

we can conclude that S-NSAW implies NSAW.

S-NSAW is a cleaner, but more restrictive condition than NSAW.
(To see why, note that even if DLB does not hold, NSA may still
hold: even ifχ(S1, O)+χ(S2, O) < χ(S1∪S2, O), it may be the
case that by putting separate bids onS1 andS2, each of these bids
makes the price for the other bundle go up, so that the result is still
more expensive than buyingS1 ∪S2 as a single bundle.) We find it
easier to use S-NSAW to prove that a mechanism is FNPW (rather
than using the more complex NSAW condition).7 Let us recall the
three existing FNP mechanisms (for general combinatorial auction
settings): the Set mechanism, the MB Mechanism, and the LDS
mechanism. We have already shown that LDS is not FNPW. With
the help of S-NSAW, we can prove that both Set and MB are FNPW.

CLAIM 4. Both the Set mechanism and the MB mechanism sat-
isfy the S-NSAW condition. Hence, they are FNPW.

The Set mechanism simply combines all the items into a grand
bundle. The grand bundle is then sold in a Vickrey auction. The
MB (Minimal Bundle) mechanism builds on the concept of mini-
mal bundles. A set of itemsS (∅ ( S ⊂ G) is called aminimal
6This is the same PIA condition as the one in Section 4.1.
7However, S-NSAW cannot be used to prove that a mechanism is
notFNPW, because it is a more restrictive condition.



bundlefor agenti if and only if ∀S′ ( S, v(i, S) > v(i, S′). Un-
der the MB mechanism, the price of a bundleS an agent faces is
equal to the highest valuation value of a bundle, which is minimal
and conflicting withS. Generally, MB coincides with Set, because
usually the grand bundle is a minimal bundle for every agent (any
smaller bundle usually gives at least slightly lower utility).

PROOF. The proof of the above claim is straightforward; we
omit the details due to space constraint.

We will also use S-NSAW to prove that the MMVIP mechanism
that we propose (Section 5) is FNPW. The automated mechanism
design technique for generating FNPW mechanisms (Section 6) is
also based on S-NSAW.

4.3 Characterizing FNPW allocations
Todoet al.[12] gave the following characterization of the alloca-

tion rules of FNP mechanisms. We recall thatX(θi, θ−i) is the set
of items that agenti wins if her reported type isθi and the reported
types of the other agents areθ−i. To simplify notation, we use
X(θi) in place ofX(θi, θ−i) when there is no risk of ambiguity.

Definition 9. Weak-monotonicity [1]. X is weakly monotone
if ∀θi, θ

′
i, θ−i, we have

v(θi, X(θi)) − v(θi, X(θ′
i)) ≥ v(θ′

i, X(θi)) − v(θ′
i, X(θ′

i)).

Definition 10. Sub-additivity [12]. ∀θi, ∀θ′
i, ∀θi1, θi2, . . . , θik,

∀θ′
i1, θ

′
i2, . . . , θ

′
ik, ∀θ−i, we have the following:

X(θi) =
k
S

l=1

X+Ik

−l

(θil)

v(θ′
i, X(θ′

i)) = 0
X+Ik

−l

(θ′
il) ⊇ X+Ik

−l

(θil)

v(θ′
il, X+Ik

−l

(θ′
il)) = v(θ′

il, X+Ik

−l

(θil))

⇓

v(θ′
i, X(θi)) ≤

k
P

l=1

v(θ′
il, X+Ik

−l

(θil)).

(Here,X+Ik

−l

(θil) is short forX(θil, θ−i ∪ (
S

1≤t≤k,t6=l

θit)).)

X is said to beFNP-implementableif there exists a payment rule
P so thatX combined withP constitutes a feasible FNP mecha-
nism. Todoet al. [12] showed thatX is FNP-implementable if and
only X satisfies both weak-monotonicity and sub-additivity.

We define allocation ruleX to beFNPW-implementableif there
exists a payment ruleP so thatX combined withP constitutes a
feasible FNPW mechanism. We introduce a third condition called
withdrawal-monotonicity. We prove thatX is FNPW-implementable
if and onlyX satisfies weak-monotonicity, sub-additivity, and
withdrawal-monotonicity.

Definition 11. Withdrawal-monotonicity. ∀θi, ∀θ−i, ∀θa, ∀θL
i ,

∀θU
i , the following holds:

v(θL
i , X(θL

i , θ−i)) = 0
X(θU

i , θ−i ∪ θa) = X(θi, θ−i)
⇓

v(θL
i , X(θi, θ−i)) ≤ v(θU

i , X(θi, θ−i))

THEOREM 4. An allocation ruleX is FNPW-implementable if
and onlyX satisfies weak-monotonicity, sub-additivity, and
withdrawal-monotonicity.

PROOF. We first prove that ifX is FNPW-implementable, then
X satisfies weak-monotonicity, sub-additivity, and
withdrawal-monotonicity. IfX is FNPW-implementable, thenX is
also FNP-implementable. Hence,X satisfies both weak-monotonicity
and sub-additivity [12]; only withdrawal-monotonicity remains to
be shown. Letχ be the (PORF) price function corresponding to
an FNPW mechanism that allocates according toX. We denote
X(θi, θ−i) byS. Sincev(θL

i , X(θL
i , θ−i)) = 0, we havev(θL

i , S) ≤
χ(S, θ−i) (otherwise, an agent with true typeθL

i would be better
off purchasingS). SinceX(θU

i , θ−i ∪ θa) = X(θi, θ−i) = S, we
havev(θU

i , S) ≥ χ(S, θ−i ∪ θa) (because an agent with true type
θU

i is best off buyingS when the other agents’ types areθ−i ∪ θa).
χ is FNPW, hence it satisfies the PIA condition, by Theorem 3 and
Claim 2. So, we haveχ(S, θ−i ∪ θa) ≥ χ(S, θ−i). Combining all
the inequalities, we getv(θU

i , X(θi, θ−i)) ≥ v(θL
i , X(θi, θ−i)).

That is, withdrawal-monotonicity is satisfied.
Next, we prove that ifX satisfies weak-monotonicity,

sub-additivity, and withdrawal-monotonicity, thenX is
FNPW-implementable. SinceX satisfies both weak-monotonicity
and sub-additivity,X is FNP-implementable [12]. Letχ be a (PORF)
price function that characterizes an FNP mechanism that allocates
according toX. We prove thatχ must also be FNPW. We only need
to prove thatχ satisfies PIA (because, according to Claim 2 and
Theorem 3, if an FNP mechanism satisfies PIA, then it is FNPW).
Supposeχ does not satisfy PIA. Then, there exists a set of agents
O, an agenta not in O (wherea’s type is denoted byθa), and
someS ⊆ G, such thatχ(S, O) > χ(S, O ∪ {a}). Let χ(S, O)−
χ(S, O∪{a}) = β > 0. Letθ−i be the reported types of the agents
in O. Let i be an agent that is single-minded onS, with a very large
valuation, so thatX(θi, θ−i) = S (we denote agenti’s type byθi).
We also construct an agent that is single-minded onS, with valua-
tion χ(S, O)− β

3
. We denote the type of this agent byθL

i . We have
X(θL

i , θ−i) = ∅ (she is not willing to payχ(S, O) to purchase
S). Hence,v(θL

i , X(θL
i , θ−i)) = 0. We construct another agent

that is also single-minded onS, with valuationχ(S, O∪{a})+ β

3
.

We denote the type of this agent byθU
i . We haveX(θU

i , θ−i ∪
θa) = S = X(θi, θ−i). By withdrawal-monotonicity, we must
havev(θL

i , X(θi, θ−i)) ≤ v(θU
i , X(θi, θ−i)). However, on the

other hand,v(θL
i , X(θi, θ−i)) = χ(S, O)− β

3
= χ(S, O∪{a})+

2β

3
> χ(S, O∪{a})+ β

3
= v(θU

i , X(θi, θ−i)). We have reached a
contradiction. We conclude thatχ has to satisfy PIA, which implies
thatχ is FNPW. Hence,X is FNPW-implementable.

5. MAXIMUM MARGINAL VALUE ITEM
PRICING MECHANISM

In this section, we introduce a new FNPW mechanism.

Definition 12. Maximum marginal value item pricing mech-
anism (MMVIP). Let O be an arbitrary set of agents. MMVIP is
characterized by the following price functionχ.

• ∀S ⊆ G, χ(S, O) =
P

s∈S
χ({s}, O). That is,χ usesitem

pricing.

• ∀s ∈ G, χ(s, O) = max
j∈O

max
S⊆G−{s}

{v(j, S∪{s})−v(j, S)}.8

That is, the price an agent faces for an item is the maximum
possible marginal value that any other agent could have for
that item, where the maximum is taken over all possible al-
locations.

8In this notation, we assume that the maximum over an empty set
is 0 (for presentation purpose). Such notation will also appear later
in the paper.



CLAIM 5. MMVIP is feasible and FNPW.

PROOF. We first prove that MMVIP is feasible. We need to
show that, with appropriate tie-breaking, MMVIP will never allo-
cate the same item to multiple agents. Let us suppose that under
MMVIP there is a scenario in which two agents,i andj, both win
item s. Let Si andSj be the sets of other items (items other than
s) that i and j win at the end, respectively. Letvi = v(i, Si ∪
{s}) − v(i, Si). That is,vi is i’s marginal value fors. Let vj =
v(j, Sj ∪ {s}) − v(j, Sj). That is,vj is j’s marginal value fors.
If vi > vj , thenj has to pay at leastvi to win s, which is too high
for her; j is better off not winnings. Similarly, if vi < vj , theni
is better off not winnings. If vi = vj , theni andj both have to
pay at least their marginal value fors to win s. That is, they are
either indifferent between winnings or not, or prefer not to win.
The only case that does not lead to a contradiction is where they
are both indifferent; any tie-breaking rule can resolve this conflict.

We then show that MMVIP is FNPW. By Claim 3, we only need
to prove that the price functionχ that characterizes MMVIP sat-
isfies S-NSAW. LetO be an arbitrary set of agents.∀S1, S2 ⊆ G
with S1∩S2 = ∅, we haveχ(S1, O)+χ(S2, O) = χ(S1∪S2, O),
because MMVIP uses item pricing. Hence, DLB is satisfied.∀S ⊆
G, for any agenta that is not inO, χ(S, O ∪ {a}) =

P

s∈S

χ(s, O ∪

{a}) =
P

s∈S

max
j∈O∪{a}

max
S′⊆G−{s}

{v(j, S′ ∪ {s}) − v(j, S′)} ≥
P

s∈S

max
j∈O

max
S′⊆G−{s}

{v(j, S′ ∪ {s}) − v(j, S′)} =
P

s∈S

χ(s, O) =

χ(S, O). That is, PIA is also satisfied.

Next, we prove two properties of the MMVIP mechanism.

CLAIM 6. Suppose we restrict the domain to additive valua-
tions. Then, MMVIP coincides with the VCG mechanism, so that
MMVIP=VCG is FNPW and efficient. Moreover, no efficient, strategy-
proof, and individually rational mechanism achieves strictly higher
revenue than MMVIP=VCG on any additive profile.

PROOF. When the agents’ valuations are additive, we have that
MMVIP’s item price function satisfiesχ(s, O) =
max
j∈O

max
S⊆G−{s}

{v(j, S ∪ {s}) − v(j, S)} = max
j∈O

v(j, {s}). Thus,

MMVIP is equivalent tom separate Vickrey auctions (one Vickrey
auction for each item), and hence to VCG (which also corresponds
to m separate Vickrey auctions when the valuations are additive).

Now, for the sake of contradiction, let us assume that there exists
an efficient, strategy-proof, and individually rational mechanism
M that achieves higher revenue than MMVIP=VCG on at least one
additive profile. Letχ′ be the price function ofM . Let χ be the
price function of MMVIP. Ifχ′(S, O) ≤ χ(S, O) for every set of
itemsS and every set of additive agentsO, then MMVIP’s rev-
enue is at least that ofM on every additive profile, because due
to the efficiency of both mechanisms, we can assume without loss
of generality that the winners and the bundles won by the winners
are the same under both mechanisms. Hence, it must be the case
that there exists a set of itemsS and a set of additive agentsO,
so thatχ′(S, O) > χ(S, O). Let xs = maxj∈O v(j, {s}). If an
additive agent’s valuation fors is xs + ǫ for all s ∈ S, then her
valuation forS is χ(S, O) + |S|ǫ. Hence, for sufficiently smallǫ,
χ(S, O)+ |S|ǫ < χ′(S, O), so this agent will not winS againstO
underM . But this contradicts the assumed efficiency ofM . Hence,
the claim holds.

The above claim essentially says that, when the agents’ valua-
tions are additive, MMVIP “does the right thing.” MMVIP is the
only known FNP/FNPW mechanism with the above property for
general combinatorial auctions.

Before moving on to the other property that we prove about
MMVIP, we first experimentally compare the revenue and alloca-
tive efficiency of the MMVIP mechanism and the Set mechanism,
under the assumption that the agents’ valuations are additive.9 We
assume that there are100 items and100 agents. An agent’s valu-
ation for an item is drawn i.i.d. fromU(0, 1) (the uniform distri-
bution from0 to 1). The results are presented below (the numbers
shown are average over10000 instances):

MMVIP Set
Revenue 98.02 56.19

Efficiency 99.01 57.22

Finally, we have the following claim about MMVIP.

CLAIM 7. Among all FNPW mechanisms that use item pricing,
MMVIP has minimal payments. That is, letχ be the price function
of MMVIP. Letχ′ be a different price function corresponding to a
different FNPW mechanismM that also uses item pricing. We have
that there always exists a set of itemsS and a set of agentsO, so
thatχ′(S, O) > χ(S, O).

PROOF. For the sake of contradiction, let us assume that the
claim is false. That is, we assume that for every set of itemsS
and every set of agentsO, we haveχ′(S, O) ≤ χ(S, O). Since
χ 6= χ′, we have that there exists at least one set of itemsS
and one set of agentsO such thatχ′(S, O) < χ(S, O). Since
χ′(S, O) =

P

s∈S χ′(s, O) and χ(S, O) =
P

s∈S χ(s, O), it
follows that there existss ∈ S such thatχ′(s, O) < χ(s, O).
By the definition of MMVIP,χ(s, O) corresponds to the maximal
marginal value of some agentj ∈ O. That is, there existsS′ ⊂ G
with s /∈ S′ such thatχ(s, O) = v(j, S′ ∪ {s}) − v(j, S′). We
construct an agentx, whose valuation function is additive. Letx’s
valuations of items not inS′ ∪ {s} be extremely high, so thatx
wins all these items under both mechanismsχ andχ′. (We recall
that we assume consumer sovereignty for FNPW mechanisms, so
thatχ, χ′ < ∞ everywhere.) Letx’s valuation ons beχ(s, O)− ǫ
(whereǫ is small enough so thatχ(s, O) − ǫ > χ′(s, O)). Let
x’s valuation of items inS′ be 0. When the set of agents con-
sists ofx and the agents inO, we have thatx wins all the items
except for those inS′ underM . SinceM is FNPW, we have
χ′(s, O) ≥ χ′(s, {j}) (PIA). That is, when the set of agents con-
sists of onlyx and j, x also wins all the items except for those
in S′ underM . Also, underM , j wins all of S′, because for
any s′ ∈ S′, we haveχ′(s′, {x}) ≤ χ(s′, {x}) = 0. However,
we then have thatχ′(s, {x}) ≤ χ(s, {x}) = χ(s, O) − ǫ =
v(j, S′ ∪ {s})− v(j, S′)− ǫ, so thatj would choose to also wins
when facingx underM . That is, underM , when the set of agents
consists of onlyx andj, s is won by both agents, contradicting the
assumption thatM is feasible. Thus, assuming that the claim is
false leads to a contradiction.

6. AUTOMATED FNPW MECHANISM
DESIGN

In this section, we propose an automated mechanism design
(AMD) technique that transforms any feasible mechanism into an
FNPW mechanism. In our setting, a feasible mechanism is charac-
terized by a price functionχ. We start with anyχ that corresponds

9Under this assumption, the VCG mechanism coincides with the
MMVIP mechanism. We also have that the MB mechanism and
the Set mechanism coincide. (In our experimental setup, the grand
bundle is always a minimal bundle for every agent.)



to a feasible mechanism (e.g., the price function of the VCG mecha-
nism). Our technique modifiesχ so that it satisfies S-NSAW, while
maintaining feasibility.

We recall that for general combinatorial auction settings, there
are three known FNPW mechanisms (Set, MB, and MMVIP), and
four known FNP mechanisms (the aforementioned three mecha-
nisms, plus LDS). Though computationally expensive (like many
other AMD techniques in other contexts), this technique has the
potential to enlarge the set of known FNPW (FNP) mechanisms.
By designing tiny instances of FNPW mechanisms via automated
mechanism design, we may get a better understanding of the struc-
ture of FNPW mechanisms, from which we can then conjecture
FNPW mechanisms in analytical form. Later in this section, we
show that in a specific setting, by starting with the VCG mech-
anism, the AMD technique produces exactly the MMVIP mech-
anism. That is, had we not known the MMVIP mechanism, the
AMD technique could have helped us find it (though it just so hap-
pened that we discovered MMVIP before the AMD technique). It
remains an open question of whether new, general FNPW mecha-
nisms can be found in this way.

6.1 Technique description
Let H : Θk → [0,∞) be a function that maps any set of agents

O (more precisely, their reported types) to a nonnegative number
H(O). For any feasible mechanismχ, we defineχH as follows:

• For any set of agentsO, ∀∅ ( S ⊆ G, χH(S, O) = χ(S, O)
+ H(O).

• For any set of agentsO, χH(∅, O) = χ(∅, O) = 0.

That is, moving fromχ to χH , if we fix the reported types of the
other agentsO, then we are essentially increasing the price of every
nonempty set of items by the same amount, while keeping the price
of ∅ at0.

LEMMA 1. [17] ∀ feasibleχ, ∀H, χH is feasible.

This lemma was first proved in [17].10 An agent is allocated
her favorite set of items (the set that maximizes valuation minus
payment) in (PORF) mechanismχ. From the perspective of agent
i, the set of types reported by the other agentsθ−i is fixed. That
is, for i, underχH , the price of every nonempty set of items is
increased by the same amountH(θ−i). Hence, agenti’s favorite
set of items is either unchanged, or has become∅ (if H(θ−i) is too
large). It is thus easy to see that ifχ never allocates the same item
to more than one agent, then neither doesχH . That is, feasibility is
not affected.11

THEOREM 5. ∀ feasibleχ, we define the followingH. For any
set of agentsO, H(O) equals the maximum of the following two
values:

10The GM-SMA mechanism [17] relies on this property. However,
it has been shown that GM-SMA isnotFNP in [12].

11If the agents are single-minded, then in a PORF mechanism, as
long as the prices of larger sets of items are more expensive, an
agent’s favorite set of items is either the set on which she is single-
minded, or the empty set. Thus, we do not need to increase the
price of every set by the same amount. As long as we are increas-
ing the prices, an agent’s favorite set either remains unchanged,
or becomes empty (if the price increase on the set on which she
is single-minded is too high). That is, for single-minded agents,
we have more flexibility in the process of transforming a feasible
mechanism into an FNPW mechanism. Due to space constraint, we
do not pursue this further here.

• max
S1,S2⊆G,S1∩S2=∅

{χ(S1 ∪ S2, O)− χ(S1, O)− χ(S2, O)}

• max
∅(S⊆G,j∈O

{χ(S, O − {j}) + H(O − {j}) − χ(S, O)}

We have thatχH is FNPW.

It should be noted that, for anyO, the first expression in the
theorem is at least0 (settingS1 = S2 = ∅). That is,H never takes
negative values.χH is feasible by Lemma 1.

PROOF. We prove thatχH satisfies S-NSAW. By Claim 3, this
suffices to show thatχH is FNPW.

Proof of DLB:Let O be an arbitrary set of agents.∀S1, S2 ⊆ G
with S1 ∩ S2 = ∅, we prove thatχH(S1, O) + χH(S2, O) ≥
χH(S1∪S2, O). If at least one ofS1 andS2 is empty, then w.l.o.g.,
we assumeS1 = ∅. In this case,χH(S1, O) + χH(S2, O) =
χH(S2, O) = χH(S1∪S2, O). If neitherS1 norS2 is empty, then
we haveχH(S1, O) + χH(S2, O)− χH(S1 ∪ S2, O) = H(O) +
χ(S1, O)+χ(S2, O)−χ(S1∪S2, O) ≥ H(O)− max

S′

1
∩S′

2
=∅

{χ(S′
1∪

S′
2, O) − χ(S′

1, O) − χ(S′
2, O)} ≥ 0.

Proof of PIA: Let O be an arbitrary set of agents. Leta be an
agent that is not inO. If S is empty, then we haveχH(S, O ∪
{a}) = χH(S, O) = 0. ∀∅ ( S ⊆ G, χH(S, O ∪ {a}) =
H(O∪{a})+χ(S, O∪{a}) ≥ (χ(S, O)+H(S, O)−χ(S, O∪
{a})) + χ(S, O ∪ {a}) = χH(S, O).

This still leaves the question of how to compute theH described
in the theorem; we address this next. Givenχ, for any agenti and
any set of other typesθ−i, we computeH(θ−i) using the following
dynamic programming algorithm.

For t = 0, 1, . . . , |θ−i|

For anyT ⊆ θ−i with |T | = t

h1 = max
S1,S2⊆G,S1∩S2=∅

{χ(S1 ∪ S2, T ) − χ(S1, T ) −

χ(S2, T )}.

h2 = max
∅(S⊆G,j∈T

{H(T − {j}) + χ(S, T − {j}) −

χ(S, T )}.

H(T ) = max{h1, h2}.

CLAIM 8. If we apply the AMD technique to a mechanism that
already satisfies S-NSAW, the mechanism remains unchanged.

We use the phrase “the AMD mechanism” to denote the mecha-
nism generated by the AMD technique starting from VCG (though
the AMD technique is not restricted to starting from VCG). Next,
we prove a claim that is similar to Claim 6.

CLAIM 9. When we restrict the preference domain to additive
valuations, the MMVIP, the VCG, and the AMD mechanism all co-
incide.

PROOF. Claim 6 already shows that MMVIP and VCG coin-
cide. All that remains to show is that VCG already satisfies S-
NSAW, so that by Claim 8, AMD is also the same. When the
agents’ valuations are additive, the VCG mechanism’s price func-
tion χ is defined as follows: for any set of itemsS ⊂ G and any set
of additive agentsO, χ(S, O) =

P

s∈S xs, wherexs is the highest
valuation for items among the agents inO. It is easy to see thatχ
satisfies S-NSAW.



Moreover, the next claim shows that in settings with exactly two
substitutable items, the AMD mechanism coincides with MMVIP
(but not with VCG).

CLAIM 10. In settings with exactly two substitutable items, the
AMD mechanism coincides with MMVIP.

PROOF. The proof is by induction on the number of agents.
When there is only one agent, this agent faces price0 for every bun-
dle under the VCG mechanism. This already satisfies S-NSAW, so
by Claim 8, we do not need to increase any price in the AMD pro-
cess. Therefore, whenn = 1, the AMD mechanism allocates all
the items to the only agent for free. The MMVIP mechanism does
the same. Hence, whenn = 1, the AMD mechanism coincides
with MMVIP. For the induction step, we assume that the two mech-
anisms coincide whenn ≤ k. Whenn = k + 1, the price function
of the VCG mechanism is defined as:χ({A}, O) = v∗

AB − v∗
B ,

χ({B}, O) = v∗
AB − v∗

A, andχ({AB}, O) = v∗
AB . Here,A and

B are the two items.v∗
A is the highest valuation forA by the agents

in O. v∗
B is the highest valuation forB by the agents inO. v∗

AB

is the highest combined valuation for{A, B} by the agents inO
(which may be obtained by splitting the items across two different
agents, or giving both to the same agent). Since the items are substi-
tutable,v∗

AB ≤ v∗
A+v∗

B . Equivalently,χ({A}, O)+χ({B}, O) ≤
χ({AB}, O). Therefore, in the AMD technique, the price of every
bundle has to increase by at leastχ({A, B}, 0) − χ({A}, O) −
χ({B}, O). That is, under the AMD mechanism, the price ofA is
at leastv∗

A, the price ofB is at leastv∗
B , and the price of{A, B}

is at leastv∗
A + v∗

B . These prices are high enough to guarantee
the PIA condition, because by the induction assumption, the AMD
mechanism coincides with MMVIP forn ≤ k; so, it follows that
the AMD technique results in exactly these prices. They coincide
with the prices under the MMVIP mechanism. Therefore, by induc-
tion, the AMD mechanism coincides with the MMVIP mechanism
for any number of agents, when there are exactly two substitutable
items.

It remains an open question whether there are more general set-
tings in which the AMD mechanism and the MMVIP mechanism
coincide.

Finally, we compare the revenue and allocative efficiency of the
VCG mechanism, the Set mechanism12, the MMVIP mechanism,
and the AMD mechanism. It should be noted that the VCG mech-
anism is not FNPW in general. We use it as a benchmark.

We consider a combinatorial auction with two items{A, B} and
five agents{1, 2, . . . , 5}.13 We denote agenti’s valuation for set
S ⊆ {A, B} by vS

i . We consider two scenarios, one with valua-
tions displaying substitutability, and the other with valuations dis-
playing complementarity. We randomly generate1000 instances
for each scenario.

Valuations with substitutability:Thev
{A}
i and thev{B}

i are drawn
independently fromU(0, 1) (the uniform distribution from0 to 1).
For alli, v{A,B}

i is drawn independently fromU(max{v
{A}
i , v

{B}
i },

v
{A}
i + v

{B}
i ). In this scenario, AMD and MMVIP coincide. They

perform better than the Set mechanism, both in terms of revenue
and allocative efficiency.

12The MB mechanism and the Set mechanism coincide in our exper-
imental setup (the whole bundle is every agent’s minimal bundle).

13We only focused on these tiny auctions because the AMD tech-
nique is computationally quite expensive. Nevertheless, even the
solutions to tiny auctions can be helpful in conjecturing more gen-
eral mechanisms.

VCG Set AMD MMVIP
Revenue 1.285 1.002 1.221 1.221

Efficiency 1.668 1.236 1.550 1.550

Valuations with complementarity:The v
{A}
i and thev

{B}
i are

still drawn independently fromU(0, 1). For all i, v
{A,B}
i is set to

be(v
{A}
i + v

{B}
i )(1 + xi), where thexi are also drawn indepen-

dently fromU(0, 1). It turns out that, in this scenario, Set performs
better than AMD and MMVIP, both in terms of revenue and alloca-
tive efficiency. (MMVIP performs especially poorly when valua-
tions exhibit complementarity, because every item can potentially
have a very large marginal value to another agent, leading to prices
that are too high.)

VCG Set AMD MMVIP
Revenue 1.864 1.849 1.288 0.594

Efficiency 2.372 2.365 1.565 0.721

Thus, when there are two items and five agents, among these
FNPW mechanisms, it seems that Set is most desirable if it likely
that there is significant complementarity, and AMD is most desir-
able if it is likely that there is substitutability. (We cannot use the
VCG mechanism unless we are certain that the type space makes
VCG FNPW.)

7. WORST-CASE EFFICIENCY RATIO OF
FNPW MECHANISMS

Yokoo et al. [19] proved that in general combinatorial auction
settings, there exists no efficient FNP mechanisms. [7] further
showed that, under a minor condition called IIG (described below),
the worst-case efficiency ratio of any feasible FNP mechanism is at
most 2

m+1
.14

Definition 13. Independence of irrelevant good (IIG) [7].Sup-
pose agenti is winning all the items. If we add an additional item
that is only wanted byi, theni still wins all the items.

Given the agents’ reported types, the efficiency ratio of a mech-
anism is defined as the ratio between the achieved allocative effi-
ciency and the optimal allocative efficiency (payments are not taken
into consideration). The worst-case efficiency ratio of this mecha-
nism is the minimal such ratio over all possible type profiles.

Example 2. The worst-case efficiency ratio of the Set mechanism
is at least 1

m
[7]. Let v be the winning agent’s valuation for the

grand bundle. The allocative efficiency of the Set mechanism isv.
The optimal allocative efficiency is at mostmv, since there are at
mostm winners in the optimal allocation, and a winner’s valuation
(for the items she won) is at mostv.

Our next theorem is that1
m

is a strict upper bound on the effi-
ciency ratios of feasible FNPW mechanisms. That is, the Set mech-
anism is worst-case optimal in terms of efficiency ratio. Of course,
this is only a worst-case analysis, which does not preclude FNPW
mechanisms from performing well most of the time.

THEOREM 6. The worst-case efficiency ratio of any feasible
FNPW mechanism is at most1

m
, if IIG holds, even with single-

minded bidders.
14[7] also introduced the ARP mechanism, whose worst-case effi-
ciency ratio is exactly 2

m+1
. However, the ARP mechanism is only

FNP for single-minded agents. Our next result implies that ARP is
not FNPW, even with single-minded bidders.



PROOF. Letχ be the price function that corresponds to an FNPW
mechanism with optimal worst-case ratio. Since the Set mechanism
is FNPW,χ’s worst-case efficiency ratio is at least1

m
. We denote

item i by si. We consider the following types:
θa: the type of an agent that is single-minded on the grand bun-

dle, with value1.
θi (i = 1, 2, . . . , m): the type of an agent that is single-minded

onsi, with value1 − ǫ. Here,ǫ is a small positive number.
Scenario 1:There are two agents. Agenta has typeθa. Agent1

has typeθ1.
Scenario 2:There are two agents. Both agents have typeθ1.
Scenario 3:There arem+1 agents. Agenta has typeθa. Agent

i has typeθi for i = 1, 2, . . . , m.
We first prove that in scenario 1, agenta wins. We start with

the special case ofm = 1. If χ({s1}, {θ1}) > 1 − ǫ, then we
consider scenario 2. In scenario 2, both agents can not afford the
only item. That is, the efficiency ratio is0. Hence, we must have
χ({s1}, {θ1}) ≤ 1−ǫ. That is, in scenario 1, in the case ofm = 1,
agenta must win. The IIG condition implies that this is also true
for cases withm > 1.

Since agenta is the only winner in scenario 1, we haveχ({s1},
{θa}) ≥ 1 − ǫ (otherwise, agent1 would win in scenario1). ǫ can
be made arbitrarily close to0; hence,χ({s1}, {θa}) ≥ 1.

Finally, we consider scenario 3. The price agent1 faces fors1

is χ({s1}, {θa} ∪ (
S

j 6=1

{θj})). According to PIA, this price is at

leastχ({s1}, {θa}) = 1. That is, agent1 does not win in scenario
3. By symmetry over the items, agenti does not win for alli =
1, 2, . . . , m. The efficiency ratio in this scenario is then at most

1
m(1−ǫ)

, which goes to1
m

asǫ goes to0.

8. CONCLUSION
We studied a more powerful variant of false-name manipulation:

an agent can submit multiple false-name bids, but then, once the
allocation and payments have been decided, withdraw some of her
false-name identities. Since FNPW is stronger than FNP, this pa-
per also contributes to the research on false-name-proofness in the
traditional sense.
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APPENDIX

Characterizing FNP(W) in Social Choice
Settings
Throughout the paper, we have only discussed combinatorial auc-
tions. In this section, we focus on FNP(W)15 in social choice set-
tings (without payments). Specifically, we present a characteriza-

15In these settings, it does not matter whether withdrawal is allowed
or not.



tion of FNP(W) social choice functions (without payments). A so-
cial choice functionf is defined asf : {∅} ∪ Θ ∪ Θ2 ∪ . . . →
Ω, whereΘ is the space of all possible types of an agent, and
{∅} ∪ Θ ∪ Θ2 ∪ . . . is the space of all possible profiles (since we
do not know how many agents there are).Ω is the outcome space.
Let agenti’s type beθi. Let the types of agents other thani beθ−i.
i’s valuation for outcomeω ∈ Ω is denoted byvi(θi, ω).

First, we present the following straightforward characterization
of strategy-proof social choice functions.

CLAIM 11. A social choice functionf is strategy-proof if and
only if it satisfies the following condition:∀i, θi, θ−i, we have
f(θi, θ−i) ∈ arg maxθ′

i
vi(θi, f(θ′

i, θ−i)).

PROOF. If the above condition is satisfied, then∀i, θi, θ
′
i, θ−i,

we havevi(θi, f(θi, θ−i)) ≥ vi(θi, f(θ′
i, θ−i)). That is, reporting

truthfully is a dominant strategy.
If reporting truthfully is a dominant strategy, then∀i, θi, θ

′
i, θ−i,

we havevi(θi, f(θi, θ−i)) ≥ vi(θi, f(θ′
i, θ−i)). That is,∀i, θi, θ−i,

we havevi(θi, f(θi, θ−i)) ≥ maxθ′

i
vi(θi, f(θ′

i, θ−i)), which is
equivalent tof(θi, θ−i) ∈ arg maxθ′

i
vi(θi, f(θ′

i, θ−i)).

That is, an agent always receives her most-preferred choice among
outcomes that she can attain with some type report. We are now
ready to present the characterization of FNP(W) social choice func-
tions.

CLAIM 12. Suppose that for every outcomeo ∈ Ω, there exists
some typeθi ∈ Θ such that{o} = arg maxo′∈O uθi

(o′) (each
o is the unique most-preferred outcome for some type). Then, a
strategy-proof and individually rational social choice functionf is
FNP(W) if and only if it satisfies the following condition:∀i, θ−i, θ0,
we have{f(θi, θ−i)|θi ∈ Θ} ⊇ {f(θi, θ−i∪{θ0})|θi ∈ Θ}. That
is, with an additional other agent, the set of outcomes that an agent
can choose decreases or stays the same.

PROOF. We first show that iff is FNP(W), then the condition
must be satisfied. Suppose not, that is, for somei, θ−i, θ0, there
exists someo ∈ {f(θi, θ−i ∪ {θ0})|θi ∈ Θ} \ {f(θi, θ−i)|θi ∈
Θ}. Then, by assumption, there exists someθi ∈ Θ such that
{o} = arg maxo′∈O uθi

(o′). It follows that an agent facing type
profile θ−i cannot obtaino with a single report, but can obtain it
by reporting bothθ0 and some other type (such as, by strategy-
proofness,θi). Becauseo is her unique most-preferred outcome,
she prefers to engage in this manipulation, contradicting FNP(W).

Conversely, we show that if the condition is satisfied, thenf is
FNP(W). By assumption,f is strategy-proof and individually ratio-
nal, so we only need to check that an agent has no incentive to use
multiple identifiers. Suppose thato is an outcome thati can obtain
when facingθ−i by submitting multiple identities. Because the set
of choices is nonincreasing in the number of identifiers used ac-
cording to the condition, it must be thato ∈ {f(θi, θ−i)|θi ∈ Θ}.
Hence, there is no reason for her to use more than one identity.


