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ABSTRACT
For allocation problems with one or more items, the well-
known Vickrey-Clarke-Groves (VCG) mechanism is efficient,
strategy-proof, individually rational, and does not incur a
deficit. However, the VCG mechanism is not (strongly)
budget balanced: generally, the agents’ payments will sum
to more than 0. If there is an auctioneer who is selling
the items, this may be desirable, because the surplus pay-
ment corresponds to revenue for the auctioneer. However, if
the items do not have an owner and the agents are merely
interested in allocating the items efficiently among them-
selves, any surplus payment is undesirable, because it will
have to flow out of the system of agents. In 2006, Cav-
allo [3] proposed a mechanism that redistributes some of
the VCG payment back to the agents, while maintaining
efficiency, strategy-proofness, individual rationality, and the
non-deficit property. In this paper, we extend this result in a
restricted setting. We study allocation settings where there
are multiple indistinguishable units of a single good, and
agents have unit demand. (For this specific setting, Cav-
allo’s mechanism coincides with a mechanism proposed by
Bailey in 1997 [2].) Here we propose a family of mechanisms
that redistribute some of the VCG payment back to the
agents. All mechanisms in the family are efficient, strategy-
proof, individually rational, and never incur a deficit. The
family includes the Bailey-Cavallo mechanism as a special
case. We then provide an optimization model for finding the
optimal mechanism—that is, the mechanism that maximizes
redistribution in the worst case—inside the family, and show
how to cast this model as a linear program. We give both
numerical and analytical solutions of this linear program,
and the (unique) resulting mechanism shows significant im-
provement over the Bailey-Cavallo mechanism (in the worst
case). Finally, we prove that the obtained mechanism is op-
timal among all anonymous deterministic mechanisms that
satisfy the above properties.
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1. INTRODUCTION
Many important problems in computer science and elec-

tronic commerce can be modeled as resource allocation prob-
lems. In such problems, we want to allocate the resources
(or items) to the agents that value them the most. Un-
fortunately, agents’ valuations are private knowledge, and
self-interested agents will lie about their valuations if this
is to their benefit. One solution is to auction off the items,
possibly in a combinatorial auction where agents can bid
on bundles of items. There exist ways of determining the
payments that the agents make in such an auction that in-
centivizes the agents to report their true valuations—that
is, the payments make the auction strategy-proof. One very
general way of doing so is to use the VCG mechanism [23,
4, 12]. (The VCG mechanism is also known as the Clarke
mechanism or, in the specific context of auctions, the Gen-
eralized Vickrey Auction.)

Besides strategy-proofness, the VCG mechanism has sev-
eral other nice properties in the context of resource alloca-
tion problems. It is efficient: the chosen allocation always
maximizes the sum of the agents’ valuations. It is also (ex-
post) individually rational: participating in the mechanism
never makes an agent worse off than not participating. Fi-
nally, it has a no-deficit property: the sum of the agents’
payments is always nonnegative.

In many settings, another property that would be desir-
able is (strong) budget balance, meaning that the payments
sum to exactly 0. Suppose the agents are trying to dis-
tribute some resources among themselves that do not have
a previous owner. For example, the agents may be trying
to allocate the right to use a shared good on a given day.
Or, the agents may be trying to allocate a resource that
they have collectively constructed, discovered, or otherwise
obtained. If the agents use an auction to allocate these re-
sources, and the sum of the agents’ payments in the auction
is positive, then this surplus payment must leave the system



of the agents (for example, the agents must give the money
to an outside party, or burn it). Näıve redistribution of the
surplus payment (e.g. each of the n agents receives 1/n of
the surplus) will generally result in a mechanism that is not
strategy-proof (e.g. in a Vickrey auction, the second-highest
bidder would want to increase her bid to obtain a larger re-
distribution payment). Unfortunately, the VCG mechanism
is not budget balanced: typically, there is surplus payment.
Unfortunately, in general settings, it is in fact impossible to
design mechanisms that satisfy budget balance in addition
to the other desirable properties [16, 11, 21].

In light of this impossibility result, several authors have
obtained budget balance by sacrificing some of the other
desirable properties [2, 6, 22, 5]. Another approach that
is perhaps preferable is to use a mechanism that is “more”
budget balanced than the VCG mechanism, and maintains
all the other desirable properties. One way of trying to de-
sign such a mechanism is to redistribute some of the VCG
payment back to the agents in a way that will not affect the
agents’ incentives (so that strategy-proofness is maintained),
and that will maintain the other properties. In 2006, Cav-
allo [3] pursued exactly this idea, and designed a mechanism
that redistributes a large amount of the total VCG payment
while maintaining all of the other desirable properties of
the VCG mechanism. For example, in a single-item auction
(where the VCG mechanism coincides with the second-price
sealed-bid auction), the amount redistributed to bidder i
by Cavallo’s mechanism is 1/n times the second-highest bid
among bids other than i’s bid. The total redistributed is at
most the second-highest bid overall, and the redistribution
to agent i does not affect i’s incentives because it does not
depend on i’s own bid.

In this paper, we restrict our attention to a limited set-
ting, and in this setting we extend Cavallo’s result. We
study allocation settings where there are multiple indistin-
guishable units of a single good, and all agents have unit
demand, i.e. they want only a single unit. For this specific
setting, Cavallo’s mechanism coincides with a mechanism
proposed by Bailey in 1997 [2]. Here we propose the family
of linear VCG redistribution mechanisms. All mechanisms
in this family are efficient, strategy-proof, individually ra-
tional, and never incur a deficit. The family includes the
Bailey-Cavallo mechanism as a special case (with the caveat
that we only study allocation settings with multiple indis-
tinguishable units of a single good and unit demand, while
Bailey’s and Cavallo’s mechanisms can be applied outside
these settings as well). We then provide an optimization
model for finding the optimal mechanism inside the family,
based on worst-case analysis. Both numerical and analyti-
cal solutions of this model are provided, and the resulting
mechanism shows significant improvement over the Bailey-
Cavallo mechanism (in the worst case). For example, for
the problem of allocating a single unit, when the number
of agents is 10, our mechanism always redistributes more
than 98% of the total VCG payment back to the agents
(whereas the Bailey-Cavallo mechanism redistributes only
80% in the worst case). Finally, we prove that our mecha-
nism is in fact optimal among all anonymous deterministic
mechanisms (even nonlinear ones) that satisfy the desirable
properties.

Around the same time, the same mechanism has been in-

dependently derived by Moulin [19].1 Moulin actually pur-
sues a different objective (also based on worst-case analysis):
whereas our objective is to maximize the percentage of VCG
payments that are redistributed, Moulin tries to minimize
the overall payments from agents as a percentage of effi-
ciency. It turns out that the resulting mechanisms are the
same. Towards the end of this paper, we consider dropping
the individual rationality requirement, and show that this
does not change the optimal mechanism for our objective.
For Moulin’s objective, dropping individual rationality does
change the optimal mechanism (but only if there are multi-
ple units).

2. PROBLEM DESCRIPTION
Let n denote the number of agents, and let m denote the

number of units. We only consider the case where m < n
(otherwise the problem becomes trivial). We also assume
that m and n are always known. (This assumption is not
harmful: in environments where anyone can join the auction,
running a redistribution mechanism is typically not a good
idea anyway, because everyone would want to join to collect
part of the redistribution.)

Let the set of agents be {a1, a2, . . . , an}, where ai is the
agent with ith highest report value v̂i—that is, we have v̂1 ≥
v̂2 ≥ . . . ≥ v̂n ≥ 0. Let vi denote the true value of ai.
Given that the mechanism is strategy-proof, we can assume
vi = v̂i.

Under the VCG mechanism, each agent among a1, . . . , am

wins a unit, and pays v̂m+1 for this unit. Thus, the total
VCG payment equals mv̂m+1. When m = 1, this is the
second-price or Vickrey auction.

We modify the mechanism as follows. After running the
original VCG mechanism, the center returns to each agent
ai some amount zi, agent ai’s redistribution payment. We
do not allow zi to depend on v̂i; because of this, ai’s incen-
tives are unaffected by this redistribution payment, and the
mechanism remains strategy-proof.

3. LINEAR VCG REDISTRIBUTION
MECHANISMS

We are now ready to introduce the family of linear VCG
redistribution mechanisms. Such a mechanism is defined by
a vector of constants c0, c1, . . . , cn−1. The amount that the
mechanism returns to agent ai is zi = c0 + c1v̂1 + c2v̂2 +
. . . + ci−1v̂i−1 + civ̂i+1 + . . . + cn−1v̂n. That is, an agent
receives c0, plus c1 times the highest bid other than the
agent’s own bid, plus c2 times the second-highest other bid,
etc. The mechanism is strategy-proof, because for all i, zi

is independent of v̂i. Also, the mechanism is anonymous.
It is helpful to see the entire list of redistribution pay-

ments:
z1 = c0 + c1v̂2 + c2v̂3 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z2 = c0 + c1v̂1 + c2v̂3 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z3 = c0 + c1v̂1 + c2v̂2 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z4 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−1 + cn−1v̂n

. . .
zi = c0 + c1v̂1 + c2v̂2 + . . .+ ci−1v̂i−1 + civ̂i+1 + . . .+ cn−1v̂n

. . .
zn−2 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−1 + cn−1v̂n

zn−1 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n

zn = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n−1

1We thank Rakesh Vohra for pointing us to Moulin’s work-
ing paper.



Not all choices of the constants c0, . . . , cn−1 produce a
mechanism that is individually rational, and not all choices
of the constants produce a mechanism that never incurs a
deficit. Hence, to obtain these properties, we need to place
some constraints on the constants.

To satisfy the individual rationality criterion, each agent’s
utility should always be non-negative. An agent that does
not win a unit obtains a utility that is equal to the agent’s
redistribution payment. An agent that wins a unit obtains a
utility that is equal to the agent’s valuation for the unit, mi-
nus the VCG payment v̂m+1, plus the agent’s redistribution
payment.

Consider agent an, the agent with the lowest bid. Since
this agent does not win an item (m < n), her utility is just
her redistribution payment zn. Hence, for the mechanism
to be individually rational, the ci must be such that zn is
always nonnegative. If the ci have this property, then it
actually follows that zi is nonnegative for every i, for the
following reason. Suppose there exists some i < n and some
vector of bids v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0 such that zi < 0.
Then, consider the bid vector that results from replacing v̂j

by v̂j+1 for all j ≥ i, and letting v̂n = 0. If we omit v̂n

from this vector, the same vector results that results from
omitting v̂i from the original vector. Therefore, an’s redistri-
bution payment under the new vector should be the same as
ai’s redistribution payment under the old vector—but this
payment is negative.

If all redistribution payments are always nonnegative, then
the mechanism must be individually rational (because the
VCG mechanism is individually rational, and the redistribu-
tion payment only increases an agent’s utility). Therefore,
the mechanism is individually rational if and only if for any
bid vector, zn ≥ 0.

To satisfy the non-deficit criterion, the sum of the redis-
tribution payments should be less than or equal to the total
VCG payment. So for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥
0, the constants ci should make z1 + z2 + . . .+ zn ≤ mv̂m+1.

We define the family of linear VCG redistribution mech-
anisms to be the set of all redistribution mechanisms corre-
sponding to constants ci that satisfy the above constraints
(so that the mechanisms will be individually rational and
have the no-deficit property). We now give two examples of
mechanisms in this family.

Example 1 (Bailey-Cavallo mechanism): Consider the
mechanism corresponding to cm+1 = m

n
and ci = 0 for all

other i. Under this mechanism, each agent receives a redis-
tribution payment of m

n
times the (m+1)th highest bid from

another agent. Hence, a1, . . . , am+1 receive a redistribution
payment of m

n
v̂m+2, and the others receive m

n
v̂m+1. Thus,

the total redistribution payment is (m+1) m
n

v̂m+2+(n−m−
1)m

n
v̂m+1. This redistribution mechanism is individually ra-

tional, because all the redistribution payments are nonneg-
ative, and never incurs a deficit, because (m + 1) m

n
v̂m+2 +

(n−m−1)m
n

v̂m+1 ≤ nm
n

v̂m+1 = mv̂m+1. (We note that for
this mechanism to make sense, we need n ≥ m + 2.)
Example 2: Consider the mechanism corresponding to

cm+1 = m
n−m−1

, cm+2 = − m(m+1)
(n−m−1)(n−m−2)

, and ci = 0

for all other i. In this mechanism, each agent receives a
redistribution payment of m

n−m−1
times the (m + 1)th high-

est reported value from other agents, minus m(m+1)
(n−m−1)(n−m−2)

times the (m+2)th highest reported value from other agents.
Thus, the total redistribution payment is mv̂m+1 −

m(m+1)(m+2)
(n−m−1)(n−m−2)

v̂m+3. If n ≥ 2m+3 (which is equivalent to
m

n−m−1
≥ m(m+1)

(n−m−1)(n−m−2)
), then each agent always receives

a nonnegative redistribution payment, thus the mechanism
is individually rational. Also, the mechanism never incurs
a deficit, because the total VCG payment is mv̂m+1, which

is greater than the amount mv̂m+1 − m(m+1)(m+2)
(n−m−1)(n−m−2)

v̂m+3

that is redistributed.
Which of these two mechanisms is better? Is there another

mechanism that is even better? This is what we study in
the next section.

4. OPTIMAL REDISTRIBUTION
MECHANISMS

Among all linear VCG redistribution mechanisms, we would
like to be able to identify the one that redistributes the
greatest percentage of the total VCG payment.2 This is not
a well-defined notion: it may be that one mechanism re-
distributes more on some bid vectors, and another more on
other bid vectors. We emphasize that we do not assume that
a prior distribution over bidders’ valuations is available, so
we cannot compare them based on expected redistribution.
Below, we study three well-defined ways of comparing redis-
tribution mechanisms: best-case performance, dominance,
and worst-case performance.

Best-case performance. One way of evaluating a mech-
anism is by considering the highest redistribution percent-
age that it achieves. Consider the previous two examples.
For the first example, the total redistribution payment is
(m + 1)m

n
v̂m+2 + (n − m − 1)m

n
v̂m+1. When v̂m+2 = v̂m+1,

this is equal to the total VCG payment mv̂m+1. Thus, this
mechanism redistributes 100% of the total VCG payment in
the best case. For the second example, the total redistri-

bution payment is mv̂m+1 − m(m+1)(m+2)
(n−m−1)(n−m−2)

v̂m+3. When

v̂m+3 = 0, this is equal to the total VCG payment mv̂m+1.
Thus, this mechanism also redistributes 100% of the total
VCG payment in the best case.

Moreover, there are actually infinitely many mechanisms
that redistribute 100% of the total VCG payment in the best
case—for example, any convex combination of the above two
will redistribute 100% if both v̂m+2 = v̂m+1 and v̂m+3 = 0.

Dominance. Inside the family of linear VCG redistribu-
tion mechanisms, we say one mechanism dominates another
mechanism if the first one redistributes at least as much as
the other for any bid vector. For the previous two examples,
neither dominates the other, because they each redistribute
100% in different cases. It turns out that there is no mech-
anism in the family that dominates all other mechanisms in
the family. For suppose such a mechanism exists. Then,
it should dominate both examples above. Consider the re-
maining VCG payment (the VCG payment failed to be re-
distributed). The remaining VCG payment of the dominant
mechanism should be 0 whenever v̂m+2 = v̂m+1 or v̂m+3 = 0.
Now, the remaining VCG payment is a linear function of the
v̂i (linear redistribution), and therefore also a polynomial
function. The above implies that this function can be writ-
ten as (v̂m+2 − v̂m+1)(v̂m+3)P (v̂1, v̂2, . . . , v̂n), where P is a

2The percentage redistributed seems the natural criterion to
use, among other things because it is scale-invariant: if we
multiply all bids by the same positive constant (for example,
if we change the units by re-expressing the bids in euros
instead of dollars), we would not want the behavior of our
mechanism to change.



polynomial function. But since the function must be linear
(has degree at most 1), it follows that P = 0. Thus, a dom-
inant mechanism would always redistribute all of the VCG
payment, which is not possible. (If it were possible, then our
worst-case optimal redistribution mechanism would also al-
ways redistribute all of the VCG payment, and we will see
later that it does not.)

Worst-case performance. Finally, we can evaluate a
mechanism by considering the lowest redistribution percent-
age that it guarantees. For the first example, the total re-
distribution payment is (m+1) m

n
v̂m+2 +(n−m−1)m

n
v̂m+1,

which is greater than or equal to (n−m−1) m
n

v̂m+1. So in the
worst case, which is when v̂m+2 = 0, the percentage redis-
tributed is n−m−1

n
. For the second example, the total redis-

tribution payment is mv̂m+1 −
m(m+1)(m+2)

(n−m−1)(n−m−2)
v̂m+3, which

is greater than or equal to mv̂m+1(1−
(m+1)(m+2)

(n−m−1)(n−m−2)
). So

in the worst case, which is when v̂m+3 = v̂m+1, the per-

centage redistributed is 1 − (m+1)(m+2)
(n−m−1)(n−m−2)

. Since we as-

sume that the number of agents n and the number of units
m are known, we can determine which example mechanism
has better worst-case performance by comparing the two
quantities. When n = 6 and m = 1, for the first example
(Bailey-Cavallo mechanism), the percentage redistributed in
the worst case is 2

3
, and for the second example, this per-

centage is 1
2
, which implies that for this pair of n and m,

the first mechanism has better worst-case performance. On
the other hand, when n = 12 and m = 1, for the first exam-
ple, the percentage redistributed in the worst case is 5

6
, and

for the second example, this percentage is 14
15

, which implies
that this time the second mechanism has better worst-case
performance.

Thus, it seems most natural to compare mechanisms by
the percentage of total VCG payment that they redistribute
in the worst case. This percentage is undefined when the
total VCG payment is 0. To deal with this, technically, we
define the worst-case redistribution percentage as the largest
k so that the total amount redistributed is at least k times
the total VCG payment, for all bid vectors. (Hence, as long
as the total amount redistributed is at least 0 when the total
VCG payment is 0, these cases do not affect the worst-case
percentage.) This corresponds to the following optimization
problem:

Maximize k (the percentage redistributed in the
worst case)
Subject to:
For every bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0
zn ≥ 0 (individual rationality)
z1 + z2 + . . . + zn ≤ mv̂m+1 (non-deficit)
z1 + z2 + . . . + zn ≥ kmv̂m+1 (worst-case constraint)
We recall that zi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 +
civ̂i+1 + . . . + cn−1v̂n.

5. TRANSFORMATION TO LINEAR
PROGRAMMING

The optimization problem given in the previous section
can be rewritten as a linear program, based on the following
observations.

Claim 1. If c0, c1, . . . , cn−1 satisfy both the individual ra-
tionality and the non-deficit constraints, then ci = 0 for
i = 0, . . . , m.

Proof. First, let us prove that c0 = 0. Consider the
bid vector in which v̂i = 0 for all i. To obtain individual
rationality, we must have c0 ≥ 0. To satisfy the non-deficit
constraint, we must have c0 ≤ 0. Thus we know c0 = 0.
Now, if ci = 0 for all i, there is nothing to prove. Otherwise,
let j = min{i|ci 6= 0}. Assume that j ≤ m. We recall that
we can write the individual rationality constraint as follows:
zn = c0 +c1v̂1 +c2v̂2 +c3v̂3 + . . .+cn−2v̂n−2 +cn−1v̂n−1 ≥ 0
for any bid vector. Let us consider the bid vector in which
v̂i = 1 for i ≤ j and v̂i = 0 for the rest. In this case zn = cj ,
so we must have cj ≥ 0. The non-deficit constraint can
be written as follows: z1 + z2 + . . . + zn ≤ mv̂m+1 for any
bid vector. Consider the same bid vector as above. We have
zi = 0 for i ≤ j, because for these bids, the jth highest other
bid has value 0, so all the ci that are nonzero are multiplied
by 0. For i > j, we have zi = cj , because the jth highest
other bid has value 1, and all lower bids have value 0. So
the non-deficit constraint tells us that cj(n − j) ≤ mv̂m+1.
Because j ≤ m, v̂m+1 = 0, so the right hand side is 0. We
also have n− j > 0 because j ≤ m < n. So cj ≤ 0. Because
we have already established that cj ≥ 0, it follows that
cj = 0; but this is contrary to assumption. So j > m.

Incidentally, this claim also shows that if m = n − 1,
then ci = 0 for all i. Thus, we are stuck with the VCG
mechanism. From here on, we only consider the case where
m < n − 1.

Claim 2. The individual rationality constraint can be writ-
ten as follows:

Pj

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1.

Before proving this claim, we introduce the following lemma.

Lemma 1. Given a positive integer k and a set of real
constants s1, s2, . . . , sk, (s1t1 + s2t2 + . . . + sktk ≥ 0 for any

t1 ≥ t2 ≥ . . . ≥ tk ≥ 0) if and only if (
Pj

i=1 si ≥ 0 for
j = 1, 2, . . . , k).

Proof. Let di = ti− ti+1 for i = 1, 2, . . . , k−1, and dk =
tk. Then (s1t1 +s2t2 + . . .+sktk ≥ 0 for any t1 ≥ t2 ≥ . . . ≥
tk ≥ 0) is equivalent to ((

P1
i=1 si)d1 + (

P2
i=1 si)d2 + . . . +

(
Pk

i=1 si)dk ≥ 0 for any set of arbitrary non-negative dj).

When
Pj

i=1 si ≥ 0 for j = 1, 2, . . . , k, the above inequality

is obviously true. If for some j,
Pj

i=1 si < 0, if we set dj > 0
and di = 0 for all i 6= j, then the above inequality becomes
false. So

Pj

i=1 si ≥ 0 for j = 1, 2, . . . , k is both necessary
and sufficient.

We are now ready to present the proof of Claim 2.

Proof. The individual rationality constraint can be writ-
ten as zn = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 +
cn−1v̂n−1 ≥ 0 for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n−1 ≥
v̂n ≥ 0. We have already shown that ci = 0 for i ≤ m.
Thus, the above can be simplified to zn = cm+1v̂m+1 +
cm+2v̂m+2+. . .+cn−2v̂n−2+cn−1v̂n−1 ≥ 0 for any bid vector.
By the above lemma, this is equivalent to

Pj

i=m+1 ci ≥ 0
for j = m + 1, . . . , n − 1.

Claim 3. The non-deficit constraint and the worst-case
constraint can also be written as linear inequalities involving
only the ci and k.

Proof. The non-deficit constraint requires that for any
bid vector, z1+z2+. . .+zn ≤ mv̂m+1, where zi = c0+c1v̂1+



c2v̂2+. . .+ci−1v̂i−1+civ̂i+1+. . .+cn−1v̂n for i = 1, 2, . . . , n.
Because ci = 0 for i ≤ m, we can simplify this inequality to

qm+1v̂m+1 + qm+2v̂m+2 + . . . + qnv̂n ≥ 0
qm+1 = m − (n − m − 1)cm+1

qi = −(i−1)ci−1−(n−i)ci, for i = m+2, . . . , n−1 (when
m + 2 > n − 1, this set of equalities is empty)

qn = −(n − 1)cn−1

By the above lemma, this is equivalent to
Pj

i=m+1 qi ≥ 0
for j = m + 1, . . . , n. So, we can simplify further as follows:

qm+1 ≥ 0 ⇐⇒ (n − m − 1)cm+1 ≤ m

qm+1 + . . . + qm+i ≥ 0 ⇐⇒ n
Pj=m+i−1

j=m+1 cj + (n − m −

i)cm+i ≤ m for i = 2, . . . , n − m − 1

qm+1 + . . . + qn ≥ 0 ⇐⇒ n
Pj=n−1

j=m+1 cj ≤ m

So, the non-deficit constraint can be written as a set of
linear inequalities involving only the ci.

The worst-case constraint can be also written as a set of
linear inequalities, by the following reasoning. The worst-
case constraint requires that for any bid input z1 +z2 + . . .+
zn ≥ kmv̂m+1, where zi = c0 +c1v̂1 +c2v̂2 + . . .+ci−1v̂i−1 +
civ̂i+1 + . . . + cn−1v̂n for i = 1, 2, . . . , n. Because ci = 0 for
i ≤ m, we can simplify this inequality to

Qm+1v̂m+1 + Qm+2v̂m+2 + . . . + Qnv̂n ≥ 0
Qm+1 = (n − m − 1)cm+1 − km
Qi = (i − 1)ci−1 + (n − i)ci, for i = m + 2, . . . , n − 1
Qn = (n − 1)cn−1

By the above lemma, this is equivalent to
Pj

i=m+1 Qi ≥ 0
for j = m + 1, . . . , n. So, we can simplify further as follows:

Qm+1 ≥ 0 ⇐⇒ (n − m − 1)cm+1 ≥ km

Qm+1 + . . . + Qm+i ≥ 0 ⇐⇒ n
Pj=m+i−1

j=m+1 cj + (n−m−

i)cm+i ≥ km for i = 2, . . . , n − m − 1

Qm+1 + . . . + Qn ≥ 0 ⇐⇒ n
Pj=n−1

j=m+1 cj ≥ km

So, the worst-case constraint can also be written as a set
of linear inequalities involving only the ci and k.

Combining all the claims, we see that the original op-
timization problem can be transformed into the following
linear program.

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the percentage redistributed in the
worst case)
Subject to:
Pj

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
km ≤ (n − m − 1)cm+1 ≤ m

km ≤ n
Pj=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for
i = 2, . . . , n − m − 1
km ≤ n

Pj=n−1
j=m+1 cj ≤ m

6. NUMERICAL RESULTS
For selected values of n and m, we solved the linear pro-

gram using Glpk (GNU Linear Programming Kit). In the
table below, we present the results for a single unit (m = 1).
We present 1−k (the percentage of the total VCG payment
that is not redistributed by the worst-case optimal mecha-
nism in the worst case) instead of k in the second column
because writing k would require too many significant digits.
Correspondingly, the third column displays the percentage
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Figure 1: A comparison of the worst-case optimal
mechanism (WO) and the Bailey-Cavallo mechanism
(BC).

of the total VCG payment that is not redistributed by the
Bailey-Cavallo mechanism in the worst case (which is equal
to 2

n
).

n 1 − k Bailey − Cavallo Mechanism
3 66.7% 66.7%
4 42.9% 50.0%
5 26.7% 40.0%
6 16.1% 33.3%
7 9.52% 28.6%
8 5.51% 25.0%
9 3.14% 22.2%
10 1.76% 20.0%
20 3.62e − 5 10.0%
30 5.40e − 8 6.67e − 2
40 7.09e − 11 5.00e − 2

The worst-case optimal mechanism significantly outper-
forms the Bailey-Cavallo mechanism in the worst case. Per-
haps more surprisingly, the worst-case optimal mechanism
sometimes does better in the worst case than the Bailey-
Cavallo mechanism does on average, as the following exam-
ple shows.

Recall that the total redistribution payment of the Bailey-
Cavallo mechanism is (m + 1) m

n
v̂m+2 + (n−m− 1)m

n
v̂m+1.

For the single-unit case, this simplifies to 2
n
v̂3 + n−2

n
v̂2.

Hence the percentage of the total VCG payment that is

not redistributed is
v̂2−

2
n

v̂3−
n−2

n
v̂2

v̂2
= 2

n
− 2

n

v̂3

v̂2
, which has

an expected value of E( 2
n

− 2
n

v̂3

v̂2
) = 2

n
− 2

n
E v̂3

v̂2
. Sup-

pose the bid values are drawn from a uniform distribution
over [0, 1]. The theory of order statistics tells us that the



joint probability density function of v̂2 and v̂3 is f(v̂3, v̂2) =
n(n − 1)(n − 2)v̂n−3

3 (1 − v̂2) for v̂2 ≥ v̂3. Now, E v̂3

v̂2
=

R 1

0

R v̂2

0
v̂3

v̂2
f(v̂3, v̂2)dv̂3dv̂2 = n−2

n−1
. So, the expected value of

the remaining percentage is 2
n
− 2

n
n−2
n−1

= 2
n(n−1)

. For n = 20,

this is 5.26e − 3, whereas the remaining percentage for the
worst-case optimal mechanism is 3.62e−5 in the worst case.

Let us present the optimal solution for the case n = 5 in
detail. By solving the above linear program, we find that the
optimal values for the ci are c2 = 11

45
, c3 = − 1

9
, and c4 = 1

15
.

That is, the redistribution payment received by each agent
is: 11

45
times the second highest bid among the other agents,

minus 1
9

times the third highest bid among the other agents,

plus 1
15

times the fourth highest bid among the other agents.

The total amount redistributed is 11
15

v̂2 + 4
15

v̂3 − 4
15

v̂4 +
4
15

v̂5; in the worst case, 11
15

v̂2 is redistributed. Hence, the
percentage of the total VCG payment that is not redis-
tributed is never more than 4

15
= 26.7%.

Finally, we compare the worst-case optimal mechanism to
the Bailey-Cavallo mechanism for m = 1, 2, 3, 4, n = m +
2, . . . , 30. These results are in Figure 1.

We see that for any m, when n = m + 2, the worst-case
optimal mechanism has the same worst-case performance as
the Bailey-Cavallo mechanism (actually, in this case, the
worst-case optimal mechanism is identical to the Bailey-
Cavallo mechanism). When n > m + 2, the worst-case opti-
mal mechanism outperforms the Bailey-Cavallo mechanism
(in the worst case).

7. ANALYTICAL CHARACTERIZATION
OF THE WORST-CASE OPTIMAL
MECHANISM

We recall that our linear program has the following form:

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the percentage redistributed in the
worst case)
Subject to:
Pj

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
km ≤ (n − m − 1)cm+1 ≤ m

km ≤ n
Pj=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for
i = 2, . . . , n − m − 1
km ≤ n

Pj=n−1
j=m+1 cj ≤ m

A linear program has no solution if and only if either the
objective is unbounded, or the constraints are contradictory
(there is no feasible solution). It is easy to see that k is
bounded above by 1 (redistributing more than 100% vio-
lates the non-deficit constraint). Also, a feasible solution
always exists, for example, k = 0 and ci = 0 for all i. So an
optimal solution always exists. Observe that the linear pro-
gram model depends only on the number of agents n and the
number of units m. Hence the optimal solution is a function
of n and m. It turns out that this optimal solution can be
analytically characterized as follows.

Theorem 1. For any m and n with n ≥ m+2, the worst-
case optimal mechanism (among linear VCG redistribution
mechanisms) is unique. For this mechanism, the percentage
redistributed in the worst case is

k∗ = 1 −

`

n−1
m

´

Pn−1
j=m

`

n−1
j

´

The worst-case optimal mechanism is characterized by the
following values for the ci:

c∗i =
(−1)i+m−1(n − m)

`

n−1
m−1

´

i
Pn−1

j=m

`

n−1
j

´

1
`

n−1
i

´

n−1
X

j=i

 

n − 1

j

!

for i = m + 1, . . . , n − 1.

It should be noted that we have proved ci = 0 for i ≤ m in
Claim 1.

Proof. We first rewrite the linear program as follows.
We introduce new variables xm+1, xm+2, . . . , xn−1, defined
by xj =

Pj

i=m+1 ci for j = m + 1, . . . , n − 1. The linear
program then becomes:

Variables: xm+1, xm+2, . . . , xn−1, k
Maximize k
Subject to:
km ≤ (n − m − 1)xm+1 ≤ m
km ≤ (m + i)xm+i−1 + (n − m − i)xm+i ≤ m for
i = 2, . . . , n − m − 1
km ≤ nxn−1 ≤ m
xi ≥ 0 for i = m + 1, m + 2, . . . , n − 1

We will prove that for any optimal solution to this linear
program, k = k∗. Moreover, we will prove that when k = k∗,
xj =

Pj

i=m+1 c∗i for j = m + 1, . . . , n − 1. This will prove
the theorem.

We first make the following observations:
(n − m − 1)c∗m+1

= (n − m − 1)
(n−m)(n−1

m−1)
(m+1)

Pn−1

j=m (n−1

j )
1

(n−1

m+1)

Pn−1
j=m+1

`

n−1
j

´

= (n−m− 1)
(n−m)(n−1

m−1)
(m+1)

Pn−1

j=m (n−1

j )
1

(n−1

m+1)
(
Pn−1

j=m

`

n−1
j

´

−
`

n−1
m

´

)

= (n − m − 1) m
n−m−1

− (n − m − 1)
m(n−1

m )
(n−m−1)

Pn−1

j=m (n−1

j )
= m − (1 − k∗)m = k∗m

For i = m + 1, . . . , n − 2,
ic∗i + (n − i − 1)c∗i+1

= i
(−1)i+m−1(n−m)(n−1

m−1)
i

Pn−1

j=m (n−1

j )
1

(n−1

i )

Pn−1
j=i

`

n−1
j

´

+

(n − i − 1)
(−1)i+m(n−m)(n−1

m−1)
(i+1)

Pn−1

j=m (n−1

j )
1

(n−1

i+1)

Pn−1
j=i+1

`

n−1
j

´

=
(−1)i+m−1(n−m)(n−1

m−1)
Pn−1

j=m (n−1

j )
1

(n−1

i )

Pn−1
j=i

`

n−1
j

´

−

(n − i − 1)
(−1)i+m−1(n−m)(n−1

m−1)
(i+1)

Pn−1

j=m (n−1

j )
i+1

(n−1

i )(n−i−1)

Pn−1
j=i+1

`

n−1
j

´

=
(−1)i+m−1(n−m)(n−1

m−1)
Pn−1

j=m (n−1

j )

= (−1)i+m−1m(1 − k∗)

Finally,
(n − 1)c∗n−1

= (n − 1)
(−1)n+m(n−m)(n−1

m−1)
(n−1)

Pn−1

j=m (n−1

j )
1

(n−1

n−1)

Pn−1
j=n−1

`

n−1
j

´

= (−1)m+nm(1 − k∗)

Summarizing the above, we have:
(n − m − 1)c∗m+1 = k∗m
(m + 1)c∗m+1 + (n − m − 2)c∗m+2 = m(1 − k∗)
(m + 2)c∗m+2 + (n − m − 3)c∗m+3 = −m(1 − k∗)
(m + 3)c∗m+3 + (n − m − 4)c∗m+4 = m(1 − k∗)
...



(n − 3)c∗n−3 + 2c∗n−2 = (−1)m+n−2m(1 − k∗)
(n − 2)c∗n−2 + c∗n−1 = (−1)m+n−1m(1 − k∗)
(n − 1)c∗n−1 = (−1)m+nm(1 − k∗)

Let x∗

j =
Pj

i=m+1 c∗i for j = m + 1, m + 2, . . . , n − 1, the
first equation in the above tells us that
(n − m − 1)x∗

m+1 = k∗m.

By adding the first two equations, we get
(m + 2)x∗

m+1 + (n − m − 2)x∗

m+2 = m
By adding the first three equations, we get

(m + 3)x∗

m+2 + (n − m − 3)x∗

m+3 = k∗m
By adding the first i equations, where i = 2, . . . , n−m−1,

we get
(m + i)x∗

m+i−1 + (n − m − i)x∗

m+i = m if i is even
(m + i)x∗

m+i−1 + (n − m − i)x∗

m+i = k∗m if i is odd
Finally by adding all the equations, we get

nx∗

n−1 = m if n − m is even;
nx∗

n−1 = k∗m if n − m is odd.

Thus, for all of the constraints other than the nonnega-
tivity constraints, we have shown that they are satisfied by
setting xj = x∗

j =
Pj

i=m+1 c∗i and k = k∗. We next show
that the nonnegativity constraints are satisfied by these set-
tings as well.

For m + 1 ≤ i, i + 1 ≤ n − 1, we have

1
i

Pn−1

j=i (n−1

j )
(n−1

i )
= 1

i

Pn−1
j=i

i!(n−1−i)!
j!(n−1−j)!

≥ 1
i+1

Pn−2
j=i

i!(n−1−i)!
j!(n−1−j)!

≥

1
i+1

Pn−2
j=i

(i+1)!(n−1−i−1)!
(j+1)!(n−1−j−1)!

= 1
i+1

Pn−1

j=i+1 (n−1

j )
(n−1

i+1)
This implies that the absolute value of c∗i is decreasing

as i increases (if the c∗ contains more than one number).
We further observe that the sign of c∗i alternates, with the
first element c∗m+1 positive. So x∗

j =
Pj

i=m+1 c∗i ≥ 0 for
all j. Thus, we have shown that these xi = x∗

i together
with k = k∗ form a feasible solution of the linear program.
We proceed to show that it is in fact the unique optimal
solution.

First we prove the following claim:

Claim 4. If k̂, x̂i, i = m + 1, m + 2, . . . , n − 1 satisfy the
following inequalities:

k̂m ≤ (n − m − 1)x̂m+1 ≤ m

k̂m ≤ (m + i)x̂m+i−1 + (n − m − i)x̂m+i ≤ m for
i = 2, . . . , n − m − 1

k̂m ≤ nx̂n−1 ≤ m

k̂ ≥ k∗

Then we must have that x̂i = x̂∗

i and k̂ = k∗.

Proof of claim. Consider the first inequality. We know
that (n− m− 1)x∗

m+1 = k∗m, so (n− m− 1)x̂m+1 ≥ k̂m ≥
k∗m = (n − m − 1)x∗

m+1. It follows that x̂m+1 ≥ x∗

m+1

(n − m − 1 6= 0).
Now, consider the next inequality for i = 2. We know

that (m + 2)x∗

m+1 + (n − m − 2)x∗

m+2 = m. It follows that
(n−m−2)x̂m+2 ≤ m− (m+2)x̂m+1 ≤ m− (m+2)x∗

m+1 =
(n − m − 2)x∗

m+2, so x̂m+2 ≤ x∗

m+2 (i = 2 ≤ n − m − 1 ⇒
n − m − 2 6= 0).

Now consider the next inequality for i = 3. We know
that (m + 3)x∗

m+2 + (n − m − 3)x∗

m+3 = m. It follows that

(n−m−3)x̂m+3 ≥ k̂m−(m+3)x̂m+2 ≥ k∗m−(m+3)x∗

m+2 =
(n − m − 3)x∗

m+3, so x̂m+3 ≥ x∗

m+3 (i = 3 ≤ n − m − 1 ⇒
n − m − 3 6= 0).

Proceeding like this all the way up to i = n−m−1, we get
that x̂m+i ≥ x∗

m+i if i is odd and x̂m+i ≤ x∗

m+i if i is even.
Moreover, if one inequality is strict, then all subsequent in-
equalities are strict. Now, if we can prove x̂n−1 = x∗

n−1,
it would follow that the x∗

i are equal to the x̂i (which also

implies that k̂ = k∗). We consider two cases:
Case 1: n−m is even. We have: n−m even ⇒ n−m−1

odd ⇒ x̂n−1 ≥ x∗

n−1. We also have: n−m even ⇒ nx∗

n−1 =
m. Combining these two, we get m = nx∗

n−1 ≤ nx̂n−1 ≤
m ⇒ x̂n−1 = x∗

n−1.
Case 2: n−m is odd. In this case, we have x̂n−1 ≤ x∗

n−1,

and nx∗

n−1 = k∗m. Then, we have: k∗m ≤ k̂m ≤ nx̂n−1 ≤
nx∗

n−1 = k∗m ⇒ x̂n−1 = x∗

n−1.
This completes the proof of the claim.

It follows that if k̂, x̂i, i = m + 1, m + 2, . . . , n − 1 is a
feasible solution and k̂ ≥ k∗, then since all the inequalities
in Claim 4 are satisfied, we must have x̂i = x∗

i and k̂ =
k∗. Hence no other feasible solution is as good as the one
described in the theorem.

Knowing the analytical characterization of the worst-case
optimal mechanism provides us with at least two major ben-
efits. First, using these formulas is computationally more
efficient than solving the linear program using a general-
purpose solver. Second, we can derive the following corol-
lary.

Corollary 1. If the number of units m is fixed, then as
the number of agents n increases, the worst-case percentage
redistributed linearly converges to 1, with a rate of conver-

gence 1
2
. (That is, limn→∞

1−k∗

n+1

1−k∗

n
= 1

2
. That is, in the

limit, the percentage that is not redistributed halves for ev-
ery additional agent.)

We note that this is consistent with the experimental data
for the single-unit case, where the worst-case remaining per-
centage roughly halves each time we add another agent.
The worst-case percentage that is redistributed under the
Bailey-Cavallo mechanism also converges to 1 as the num-
ber of agents goes to infinity, but the convergence is much
slower—it does not converge linearly (that is, letting kC

n be
the percentage redistributed by the Bailey-Cavallo mech-

anism in the worst case for n agents, limn→∞

1−kC
n+1

1−kC
n

=

limn→∞

n
n+1

= 1). We now present the proof of the corol-
lary.

Proof. When the number of agents is n, the worst-case

percentage redistributed is k∗

n = 1−
(n−1

m )
Pn−1

j=m (n−1

j )
. When the

number of agents is n + 1, the percentage becomes k∗

n+1 =

1 −
(n

m)
P

n
j=m (n

j)
. For n sufficiently large, we will have 2n −

mnm−1 > 0, and hence
1−k∗

n+1

1−k∗

n
=

(n
m)

Pn−1

j=m (n−1

j )
(n−1

m )
P

n
j=m (n

j)
=

n
n−m

2n−1
−

Pm−1

j=0 (n−1

j )
2n

−

Pm−1

j=0 (n
j)

, and n
n−m

2n−1
−m(n−1)m−1

2n ≤
1−k∗

n+1

1−k∗

n

≤ n
n−m

2n−1

2n
−mnm−1 (because

`

n

j

´

≤ ni if j ≤ i).
Since we have

limn→∞

n
n−m

2n−1
−m(n−1)m−1

2n = 1
2
, and

limn→∞

n
n−m

2n−1

2n
−mnm−1 = 1

2
,

it follows that limn→∞

1−k∗

n+1

1−k∗

n
= 1

2
.



8. WORST-CASE OPTIMALITY OUTSIDE
THE FAMILY

In this section, we prove that the worst-case optimal re-
distribution mechanism among linear VCG redistribution
mechanisms is in fact optimal (in the worst case) among
all redistribution mechanisms that are deterministic, anony-
mous, strategy-proof, efficient and satisfy the non-deficit
constraint. Thus, restricting our attention to linear VCG
redistribution mechanisms did not come at a loss.

To prove this theorem, we need the following lemma. This
lemma is not new: it was informally stated by Cavallo [3].
For completeness, we present it here with a detailed proof.

Lemma 2. A VCG redistribution mechanism is determin-
istic, anonymous and strategy-proof if and only if there exists
a function f : Rn−1 → R, so that the redistribution payment
zi received by ai satisfies

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)

for all i and all bid vectors.

Proof. First, let us prove the “only if” direction, that is,
if a VCG redistribution mechanism is deterministic, anony-
mous and strategy-proof then there exists a deterministic
function f : Rn−1 → R, which makes

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)

for all i and all bid vectors.
If a VCG redistribution mechanism is deterministic and

anonymous, then for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n, the
mechanism outputs a unique redistribution payment list:
z1, z2, . . . , zn. Let G : Rn → Rn be the function that
maps v̂1, v̂2, . . . , v̂n to z1, z2, . . . , zn for all bid vectors. Let
H(i, x1, x2, . . . , xn) be the ith element of G(x1, x2, . . . , xn),
so that zi = H(i, v̂1, v̂2, . . . , v̂n) for all bid vectors and all
1 ≤ i ≤ n. Because the mechanism is anonymous, two
agents should receive the same redistribution payment if
their bids are the same. So, if v̂i = v̂j , H(i, v̂1, v̂2, . . . , v̂n) =
H(j, v̂1, v̂2, . . . , v̂n). Hence, if we let j = min{t|v̂t = v̂i},
then H(i, v̂1, v̂2, . . . , v̂n) = H(j, v̂1, v̂2, . . . , v̂n).

Let us define K : Rn → N × Rn as follows: K(y, x1, x2,
. . . , xn−1) = [j, w1, w2, . . . , wn], where w1, w2, . . . , wn are
y, x1, x2, . . . , xn−1 sorted in descending order, and
j = min{t|wt = y}. ({t|wt = y} 6= ∅ because y ∈ {w1, w2,
. . . , wn}). Also let us define F : Rn → R by
F (v̂i, v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)
= H ◦ K(v̂i, v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)
= H(min{t|v̂t = v̂i}, v̂1, v̂2, . . . , v̂n)
= H(i, v̂1, v̂2, . . . , v̂n) = zi.
That is, F is the redistribution payment to an agent that
bids v̂i when the other bids are v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n.

Since our mechanism is required to be strategy-proof, and
the space of valuations is unrestricted, zi should be indepen-
dent of v̂i by Lemma 1 in Cavallo [3]. Hence, we can simply
ignore the first variable input to F ; let f(x1, x2, . . . , xn−1) =
F (0, x1, x2, . . . , xn−1). So, we have for all bid vectors and
i, zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n). This completes the
proof for the “only if” direction.

For the “if” direction, if the redistribution payment re-
ceived by ai satisfies zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for
all bid vectors and i, then this is clearly a deterministic and
anonymous mechanism. To prove strategy-proofness, we ob-
serve that because an agent’s redistribution payment is not

affected by her own bid, her incentives are the same as in
the VCG mechanism, which is strategy-proof.

Now we are ready to introduce the next theorem:

Theorem 2. For any m and n with n ≥ m+2, the worst-
case optimal mechanism among the family of linear VCG
redistribution mechanisms is worst-case optimal among all
mechanisms that are deterministic, anonymous, strategy-proof,
efficient and satisfy the non-deficit constraint.

While we needed individual rationality earlier in the pa-
per, this theorem does not mention it, that is, we can not
find a mechanism with better worst-case performance even if
we sacrifice individual rationality. (The worst-case optimal
linear VCG redistribution mechanism is of course individu-
ally rational.)

Proof. Suppose there is a redistribution mechanism (when
the number of units is m and the number of agents is n) that
satisfies all of the above properties and has a better worst-
case performance than the worst-case optimal linear VCG
redistribution mechanism, that is, its worst-case redistribu-
tion percentage k̂ is strictly greater than k∗.

By Lemma 2, for this mechanism, there is a function f :
Rn−1 → R so that zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for
all i and all bid vectors. We first prove that f has the
following properties.

Claim 5. f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of
1s is less than or equal to m.

Proof of claim. We assumed that for this mechanism,
the worst-case redistribution percentage satisfies k̂ > k∗ ≥
0. If the total VCG payment is x, the total redistribution
payment should be in [k̂x, x] (non-deficit criterion). Con-
sider the case where all agents bid 0, so that the total VCG
payment is also 0. Hence, the total redistribution payment
should be in [k̂ · 0, 0]—that is, it should be 0. Hence every
agent’s redistribution payment f(0, 0, . . . , 0) must be 0.

Now, let ti = f(1, 1, . . . , 1, 0, 0, . . . , 0) where the number
of 1s equals i. We proved t0 = 0. If tn−1 = 0, consider the
bid vector where everyone bids 1. The total VCG payment is
m and the total redistribution payment is nf(1, 1, . . . , 1) =
ntn−1 = 0. This corresponds to 0% redistribution, which is
contrary to our assumption that k̂ > k∗ ≥ 0. Now, consider
j = min{i|ti 6= 0} (which is well-defined because tn−1 6= 0).
If j > m, the property is satisfied. If j ≤ m, consider
the bid vector where v̂i = 1 for i ≤ j and v̂i = 0 for all
other i. Under this bid vector, the first j agents each get
redistribution payment tj−1 = 0, and the remaining n − j
agents each get tj . Thus, the total redistribution payment
is (n − j)tj . Because the total VCG payment for this bid
vector is 0, we must have (n − j)tj = 0. So tj = 0 (j ≤
m < n). But this is contrary to the definition of j. Hence
f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of 1s is less than
or equal to m.

Claim 6. f satisfies the following inequalities:

k̂m ≤ (n − m − 1)tm+1 ≤ m

k̂m ≤ (m + i)tm+i−1 + (n − m − i)tm+i ≤ m for
i = 2, 3, . . . , n − m − 1

k̂m ≤ ntn−1 ≤ m

Here ti is defined as in the proof of Claim 5.



Proof of claim. For j = m + 1, . . . , n, consider the bid
vectors where v̂i = 1 for i ≤ j and v̂i = 0 for all other i.
These bid vectors together with the non-deficit constraint
and worst-case constraint produce the above set of inequal-
ities: for example, when j = m + 1, we consider the bid
vector v̂i = 1 for i ≤ m + 1 and v̂i = 0 for all other i.
The first m+1 agents each receive a redistribution payment
of tm = 0, and all other agents each receive tm+1. Thus,
the total VCG redistribution is (n − m − 1)tm+1. The non-
deficit constraint gives (n − m − 1)tm+1 ≤ m (because the
total VCG payment is m). The worst-case constraint gives

(n − m − 1)tm+1 ≥ k̂m. Combining these two, we get the
first inequality. The other inequalities can be obtained in
the same way.

We now observe that the inequalities in Claim 6, together
with k̂ ≥ k∗, are the same as those in Claim 4 (where the ti

are replaced by the x̂i). Thus, we can conclude that k̂ = k∗,

which is contrary to our assumption k̂ > k∗. Hence no mech-
anism satisfying all the listed properties has a redistribution
percentage greater than k∗ in the worst case.

So far we have only talked about the case where n ≥ m+2.
For the purpose of completeness, we provide the following
claim for the n = m + 1 case.

Claim 7. For any m and n with n = m + 1, the original
VCG mechanism (that is, redistributing nothing) is (uniquely)
worst-case optimal among all redistribution mechanisms that
are deterministic, anonymous, strategy-proof, efficient and
satisfy the non-deficit constraint.

We recall that when n = m+1, Claim 1 tells us that the only
mechanism inside the family of linear redistribution mecha-
nisms is the original VCG mechanism, so that this mecha-
nism is automatically worst-case optimal inside this family.
However, to prove the above claim, we need to show that it
is worst-case optimal among all redistribution mechanisms
that have the desired properties.

Proof. Suppose a redistribution mechanism exists that
satisfies all of the above properties and has a worst-case
performance as good as the original VCG mechanism, that
is, its worst-case redistribution percentage is greater than
or equal to 0. This implies that the total redistribution
payment of this mechanism is always nonnegative.

By Lemma 2, for this mechanism, there is a function f :
Rn−1 → R so that zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for
all i and all bid vectors. We will prove that f(x1, x2, . . . , xn−1)
= 0 for all x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0.

First, consider the bid vector where v̂i = 0 for all i. Here,
each agent receives a redistribution payment f(0, 0, . . . , 0).
The total redistribution payment is then nf(0, 0, . . . , 0), which
should be both greater than or equal to 0 (by the above
observation) as well less than or equal to 0 (using the non-
deficit criterion and the fact that the total VCG payment is
0). It follows that f(0, 0, . . . , 0) = 0. Now, let us consider
the bid vector where v̂1 = x1 ≥ 0 and v̂i = 0 for all other i.
For this bid vector, the agent with the highest bid receives
a redistribution payment of f(0, 0, . . . , 0) = 0, and the other
n − 1 agents each receive f(x1, 0, . . . , 0). By the same rea-
soning as above, the total redistribution payment should be
both greater than or equal to 0 and less than or equal to 0,
hence f(x1, 0, . . . , 0) = 0 for all x1 ≥ 0.

Proceeding by induction, let us assume f(x1, x2, . . . , xk,
0, . . . , 0) = 0 for all x1 ≥ x2 ≥ . . . ≥ xk ≥ 0, for some

k < n − 1. Consider the bid vector where v̂i = xi for
i ≤ k + 1, and v̂i = 0 for all other i, where the xi are arbi-
trary numbers satisfying x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0.
For the agents with the highest k + 1 bids, their redistri-
bution payment is specified by f acting on an input with
only k non-zero variables. Hence they all receive 0 by in-
duction assumption. The other n − k − 1 agents each re-
ceive f(x1, x2, . . . , xk, xk+1, 0, . . . , 0). The total redistribu-
tion payment is then (n−k−1)f(x1, x2, . . . , xk, xk+1, 0, . . . , 0),
which should be both greater than or equal to 0, and less
than or equal to the total VCG payment. Now, in this bid
vector, the lowest bid is 0 because k + 1 < n. But since
n = m + 1, the total VCG payment is mv̂n = 0. So
we have f(x1, x2, . . . , xk, xk+1, 0, . . . , 0) = 0 for all x1 ≥
x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. By induction, this state-
ment holds for all k < n − 1; when k + 1 = n − 1, we
have f(x1, x2, . . . , xn−2, xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥
xn−2 ≥ xn−1 ≥ 0. Hence, in this mechanism, the redistri-
bution payment is always 0; that is, the mechanism is just
the original VCG mechanism.

Incidentally, we obtain the following corollary:

Corollary 2. No VCG redistribution mechanism satis-
fies all of the following: determinism, anonymity, strategy-
proofness, efficiency, and (strong) budget balance. This holds
for any n ≥ m + 1.

Proof. For the case n ≥ m + 2: If such a mechanism
exists, its worst-case performance would be better than that
of the worst-case optimal linear VCG redistribution mecha-
nism, which by Theorem 1 obtains a redistribution percent-
age strictly less than 1. But Theorem 2 shows that it is
impossible to outperform this mechanism in the worst case.

For the case n = m + 1: If such a mechanism exists,
it would perform as well as the original VCG mechanism
in the worst case, which implies that it is identical to the
VCG mechanism by Claim 7. But the VCG mechanism is
not (strongly) budget balanced.

9. CONCLUSIONS
For allocation problems with one or more items, the well-

known Vickrey-Clarke-Groves (VCG) mechanism is efficient,
strategy-proof, individually rational, and does not incur a
deficit. However, the VCG mechanism is not (strongly)
budget balanced: generally, the agents’ payments will sum
to more than 0. If there is an auctioneer who is selling
the items, this may be desirable, because the surplus pay-
ment corresponds to revenue for the auctioneer. However, if
the items do not have an owner and the agents are merely
interested in allocating the items efficiently among them-
selves, any surplus payment is undesirable, because it will
have to flow out of the system of agents. In 2006, Cav-
allo [3] proposed a mechanism that redistributes some of
the VCG payment back to the agents, while maintaining ef-
ficiency, strategy-proofness, individual rationality, and the
non-deficit property. In this paper, we extended this re-
sult in a restricted setting. We studied allocation settings
where there are multiple indistinguishable units of a sin-
gle good, and agents have unit demand. (For this specific
setting, Cavallo’s mechanism coincides with a mechanism
proposed by Bailey in 1997 [2].) Here we proposed a family
of mechanisms that redistribute some of the VCG payment



back to the agents. All mechanisms in the family are effi-
cient, strategy-proof, individually rational, and never incur
a deficit. The family includes the Bailey-Cavallo mechanism
as a special case. We then provided an optimization model
for finding the optimal mechanism—that is, the mechanism
that maximizes redistribution in the worst case—inside the
family, and showed how to cast this model as a linear pro-
gram. We gave both numerical and analytical solutions
of this linear program, and the (unique) resulting mecha-
nism shows significant improvement over the Bailey-Cavallo
mechanism (in the worst case). Finally, we proved that the
obtained mechanism is optimal among all anonymous deter-
ministic mechanisms that satisfy the above properties.

One important direction for future research is to try to
extend these results beyond multi-unit auctions with unit
demand. However, it turns out that in sufficiently general
settings, the worst-case optimal redistribution percentage
is 0. In such settings, the worst-case criterion provides no
guidance in determining a good redistribution mechanism
(even redistributing nothing achieves the optimal worst-case
percentage), so it becomes necessary to pursue other criteria.
Alternatively, one can try to identify other special settings
in which positive redistribution in the worst case is possible.

Another direction for future research is to consider whether
this mechanism has applications to collusion. For example,
in a typical collusive scheme, there is a bidding ring con-
sisting of a number of colluders, who submit only a single
bid [10, 17]. If this bid wins, the colluders must allocate the
item amongst themselves, perhaps using payments—but of
course they do not want payments to flow out of the ring.

This work is part of a growing literature on designing
mechanisms that obtain good results in the worst case. Tra-
ditionally, economists have mostly focused either on design-
ing mechanisms that always obtain certain properties (such
as the VCG mechanism), or on designing mechanisms that
are optimal with respect to some prior distribution over the
agents’ preferences (such as the Myerson auction [20] and the
Maskin-Riley auction [18] for maximizing expected revenue).
Some more recent papers have focused on designing mecha-
nisms for profit maximization using worst-case competitive
analysis (e.g. [9, 1, 15, 8]). There has also been growing
interest in the design of online mechanisms [7] where the
agents arrive over time and decisions must be taken before
all the agents have arrived. Such work often also takes a
worst-case competitive analysis approach [14, 13]. It does
not appear that there are direct connections between our
work and these other works that focus on designing mech-
anisms that perform well in the worst case. Nevertheless,
it seems likely that future research will continue to investi-
gate mechanism design for the worst case, and hopefully a
coherent framework will emerge.
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