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Abstract. A potential downside of prediction markets is that they may
incentivize agents to take undesirable actions in the real world. For
example, a prediction market for whether a terrorist attack will hap-
pen may incentivize terrorism, and an in-house prediction market for
whether a product will be successfully released may incentivize sabo-
tage. In this paper, we study principal-aligned prediction mechanisms–
mechanisms that do not incentivize undesirable actions. We characterize
all principal-aligned proper scoring rules, and we show an “overpayment”
result, which roughly states that with n agents, any prediction mecha-
nism that is principal-aligned will, in the worst case, require the principal
to pay Θ(n) times as much as a mechanism that is not. We extend our
model to allow uncertainties about the principal’s utility and restric-
tions on agents’ actions, showing a richer characterization and a similar
“overpayment” result.
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1 Introduction

Prediction markets reward agents for accurately assessing the probability of a
future event.1 Typically, agents buy or sell securities according to their beliefs,
and they are rewarded based on the outcome that materializes. Empirical stud-
ies suggest that prediction markets make very accurate predictions, sometimes
beating the best experts and polls [1, 15]. Currently, online markets such as
NewsFutures and Intrade elicit public predictions about a wide variety of topics,
and many technology companies, including HP [12], Google, Microsoft, and Ya-
hoo!, use in-house prediction markets to elicit employees’ predictions on future
products.2

? This work is supported by NSF IIS-0812113, the Sloan Foundation, and a Yahoo! Fac-
ulty Research Grant. We thank the anonymous reviewers for helpful comments.

1 For literature reviews on prediction markets, see [11, 14, 15].
2 NewsFutures and InklingMarkets both provide services to help companies run in-

house prediction markets, thus making running these markets accessible to non-
technology-based companies.
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A potential downside of prediction markets is that they may incentivize
agents to take undesirable actions in the real world, if those actions affect the
probability of the event. For example, the idea of organizing markets to predict
terrorist activity, which was once seriously considered by the U.S. Department
of Defense, has been dismissed in part based on the consideration that terrorists
may stand to profit from such markets.3 As another example, consider a software
company that runs an in-house prediction market to assess whether a product
will be released on time. The company may be concerned that the market pro-
vides an incentive to an employee to sabotage a timely release, if the employee
predicts a late release.

On the other hand, not all real-world actions are necessarily undesirable. A
terrorism prediction market may also incentivize an agent to prevent a terrorist
attack, if she is predicting that no such attack will take place. Similarly, the soft-
ware company’s in-house prediction market may incentivize an employee to work
extra hard to finish her component of the product in time, if she is predicting
that the product will be released on time.

The question that we study in this paper is the following: is it possible to
design prediction mechanisms that do not incentivize undesirable actions? Here,
an action is undesirable if it reduces the expected utility of the principal (center,
organizer) of the prediction mechanism (e.g., the Department of Defense or the
software company in the above examples). We call such mechanisms principal-
aligned since they align the agents’ incentives with those of the principal.4

The rest of this paper is organized as follows. In Section 2, we study proper
scoring rules, which incentivize a single agent to truthfully report her subjective
probabilities about an event. After reviewing proper scoring rules and a known
characterization theorem, we give a complete characterization of principal-aligned
proper scoring rules. In Section 3, we consider settings with n agents. We show a
negative “overpayment” result that indicates (roughly stated) that a principal-

3 In July 2003, reports surfaced about a DARPA project to use prediction markets
to guide policy decisions, and a possible topic was terrorist attacks. This ignited
a political uproar and the proposal was quickly dropped. The arguments against
it include creating incentives for a person to perform a violent act, as well as the
distasteful thought of any person benefiting from such an attack. A survey of the
proposal, the debate, and the aftermath can be found in [9].

4 We note that it is possible for the prediction mechanisms in this paper to incentivize
desirable actions. However, in this paper we will not have an explicit model for the
agent’s costs for taking desirable actions (such as putting in extra effort so that
a product is released in time), and as a result we will not be able to solve for the
agent’s optimal action. All we can say is that the agent’s optimal action will be no less
desirable than it would have been without the existence of the prediction mechanism.
Moreover, whatever action the agent decides to take, she will be incentivized to report
the true distribution conditional on that action.

We also assume that the prediction itself does not have secondary effects on the
agent’s utility (an example of this would be the case where the agent’s manager
observes the prediction of an early release date, and as a result will punish the agent
if the product is not released early).
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aligned prediction mechanism will, in the worst case, require the principal to pay
n times as much as a mechanism that is not principal-aligned.

In Section 4, we extend our model to allow uncertainties about the principal’s
utility, as well as restrictions on how agents’ actions can affect the underlying
probabilities. We only want to disincentivize actions that are plausible under
these restrictions and are definitely undesirable. We show how this provides
richer structure to the class of principal-aligned proper scoring rules, and show
that given sufficient uncertainty, any proper scoring rule can be transformed into
a principal-aligned proper scoring rule by adding constant bonuses. We also show
a similar overpayment result under the extended model. All omitted proofs can
be found in the full version of this paper.5

2 Principal-Aligned Proper Scoring Rules

2.1 Review of Proper Scoring Rules

Let Ω = {1, 2, . . . ,m} be the outcome space, with m possible outcomes. Let
P = {p ∈ Rm : 0 < pi < 1,

∑m
i=1 pi = 1} be the set of probability distributions

over the outcomes.6 We define the standard basis Oi (i = 1, 2, . . . ,m) as follows:
Oi is the vector in which the i-th element equals 1 and all other elements equal
0. Note that while Oi is not in P, all vectors in P are in the span of the Oi’s.

Definition 1 A scoring rule is a function S : P × Ω → R. For each report
r ∈ P (on the underlying distribution) and each outcome i ∈ Ω, it specifies a
payment S(r, i). The expected payment S̃ under the scoring rule S depends on
both the report r and the true probability distribution p over the outcomes. S̃
can be written as S̃(r,p) =

∑m
i=1 S(r, i)pi.

Definition 2 A scoring rule S : P × Ω → R is (weakly) proper if ∀p, r ∈ P,
S̃(p,p) ≥ S̃(r,p). It is strictly proper if equality occurs if and only if r = p.

Definition 3 Given convex function G : P → R, a subgradient7 is a vector
function G∗ : P → Rm such that ∀x,y ∈ P,G(y) ≥ G(x) + G∗(x) · (y − x).
Given convex function G : P→ R, a subtangent hyperplane at x ∈ P is a linear
function Hx : P→ R such that Hx(x) = G(x), and ∀y ∈ P, Hx(y) ≤ G(y).

The following characterization of proper scoring rules was discovered first by
Savage [13], but the version shown here is due to Gneiting and Rafetery [5]. The
intuition behind the characterization is illustrated in Figure 1.

5 This is available at http://www.cs.duke.edu/~pengshi/papers/

2009-07-society-aligned.pdf.
6 We assume that the probability of any outcome is positive. This assumption helps us

handle peculiar cases with discontinuities at the boundary, and makes the ensuing
math more elegant. We can handle the edge cases by taking limits.

7 G∗ always exists. If G is differentiable at x ∈ P, then the subgradient at x is the
gradient: G∗(x) = (∇G)(x). Otherwise, there may be many choices of G∗(x).
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Theorem 1 (Gneiting & Rafetery). Given a convex function G : P → R
and a subgradient G∗, setting Hr(p) = G(r) +G∗(r) · (p−r) defines a family of
subtangent hyperplanes such that Hr is subtangent at r. Setting S(r, i) = Hr(Oi)
defines a proper scoring rule. i.e.,

S(r, i) = G(r)−G∗(r) · r +G∗(r) ·Oi = G(r)−G∗(r) · r +G∗i (r)

Conversely, any proper scoring rule can be written in terms of a subgradient
of some convex function G in the above fashion. We call G the cost function for
the rule.

Any proper scoring rule S corresponds to a unique convex cost function G
where G(p) = S̃(p,p) is the maximum expected payment the agent can obtain
if the true probability is p. Conversely, any convex function corresponds to some
proper scoring rule.8

Currently, the cost function G is defined only in the open set P; we define G
on the boundary of P by taking limits. Since G is already continuous in P,9 this
makes G continuous everywhere.

Fig. 1. Geometric Intuition: Every proper
scoring rule corresponds to a convex cost
function G. Suppose an agent reports r;
then, the rule’s payment for each outcome
is the corresponding intercept of the sub-
tangent hyperplane at r. Hence, for a given
report, her possible expected payments are
represented by the corresponding subtan-
gent hyperplane, which is always below the
upper envelope G. When the agent reports
the true distribution p, she attains the up-
per envelope G.

Fig. 2. Intuition behind Lemma 1. Con-
sider the hyperplane normal to u through
x. On one side of this hyperplane is Px, and
for any y in the region Px, G(x) ≥ G(y).
By continuity of G, G(x) must be constant
along the hyperplane (the boundary of Px).

2.2 Principal-Aligned Proper Scoring Rules

We now develop the concept of “principal-aligned” proper scoring rules. Suppose
that agents can take actions in the real world to change the underlying distri-
8 If G is not differentiable, then many families of subtangent hyperplanes can be

specified, each of which corresponds to a proper scoring rule.
9 A well-known fact about convex functions is that they are everywhere continuous in

the interior of their domain.
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bution of the actual outcome. A principal-aligned rule disincentivizes any action
that harms the principal in expectation.

Formally, let u ∈ Rm be a vector whose ith component is the principal’s
utility for outcome i. Note that given the true distribution p ∈ P, the principal’s
expected utility is p · u.

Definition 4 A proper scoring rule S is aligned with vector u if the cost func-
tion G satisfies: ∀p1,p2 ∈ P, if (p2 − p1) ·u > 0, then G(p2) ≥ G(p1). We call
S strictly aligned if the inequality is always strict.

Since we have S̃(p2,p2) = G(p2) and S̃(r,p1) ≤ G(p1), this definition
says that if the true probability is p2, then the agent prefers reporting p2 over
changing the true probability to p1 and reporting some r.

We call u uniform if u = α1 for some α. Note that because 1 ⊥ (p2 − p1)
∀p1,p2 ∈ P, the above definition does not say anything when u is uniform (that
is, when the principal is indifferent among all outcomes).

Definition 5 A convex function G : P → R is non-decreasing with respect to
direction u ∈ Rm if ∀x1,x2 ∈ P, (x2 − x1) · u > 0 implies G(x2) ≥ G(x1). It
is strictly increasing if the above inequality is strict.

Lemma 1. If convex function G : P → R is non-decreasing with respect to
non-uniform direction u, then G(x) = g(x · u) for some single-variable non-
decreasing convex function g. The statement remains true when non-decreasing
is replaced by strictly increasing.

Proof. For each x ∈ P, define the set Px = {y|y ∈ P, (x − y) · u > 0). Px is
non-empty because u is not uniform.10 Moreover, Px is open because it is the
intersection of open sets P and {y|(x− y) · u > 0}.

Since G is non-decreasing with respect to u, G(x) ≥ supy∈Px
G(y). But x

lies in the closure P̄x, so by continuity of G, G(x) ≤ supy∈Px
G(y). This means

that for all x ∈ P, G(x) = supy∈Px
G(y).

Note now that ∀x1,x2 ∈ P, whenever x1 · u = x2 · u, we have Px1 ≡ Px2 ,
which implies that G(x1) = G(x2). Hence, G(x) = g(x · u) for some single-
variable function g. Moreover, g must be convex because G is convex, and g
must be non-decreasing because G is non-decreasing w.r.t. u. The above proof
still holds if non-decreasing is replaced by strictly increasing. Figure 2 illustrates
the intuition behind this lemma.

Combining Definition 4 and Lemma 1, we get the following characterization
of principal-aligned proper scoring rules.

Theorem 2. Given any non-uniform principal utility vector u ∈ Rm , every
proper scoring rule S aligned with u corresponds to a cost function of the form
G(p) = g(p · u), where g is a single-variable non-decreasing convex function.
10 This is because ∃y ∈ P such that (x− y) · u 6= 0, in which case either y or −y is in

Px.
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(By Theorem 1, this implies S(r, i) = G(r) −G∗(r) · r + G∗i (r),11 where G∗ is
a subgradient of G.) Conversely, all such rules are aligned with u.

The above statement remains true when aligned is replaced by strictly aligned,
and non-decreasing is replaced by strictly increasing.

Note that p ·u is the principal’s expected utility. The above theorem implies
that for a fixed report, the agent’s expected reward is a non-decreasing func-
tion of the principal’s expected utility. Hence the interests of the agent and the
principal are aligned.

3 Principal-Aligned Prediction Mechanisms

Now, suppose that we want to elicit predictions from n agents in a principal-
aligned way. One possible method is to use a principal-aligned proper scoring
rule for each agent, and allow agents to see previous agents’ reports. However,
to incentivize agents to respond thoughtfully, each proper scoring rule requires
some subsidy to implement, and hence this method requires Θ(n) subsidy. On
the other hand, if we do not require principal-alignment, we can use a market
scoring rule and implement this with Θ(1) subsidy.12 In fact, we will show that
this Θ(n) gap always exists between the “cheapest” principal-aligned prediction
mechanism and the “cheapest” non-principal-aligned mechanism. We formalize
this in the next section.

3.1 One-round Prediction Mechanism

We first make a technical note: As shown in [2, 4], in all current implementations
of prediction markets, agents may try to deceive others by giving false signals,
to their own later profit. This makes analyzing incentives in a prediction market
difficult without strong assumptions such as myopic agents.13 Since our aim is
to show a negative result about the minimum subsidy required in principal-
aligned mechanisms, rather than to resolve such strategic issues, we focus on a
one-round model in which agents can participate at most once, hence ruling out
such strategic play. A negative result in this restricted model will carry over to
general multi-agent prediction mechanisms.14

11 When g is differentiable, S(r, i) = g(r · u) + (ui − r · u)g′(r · u).
12 Under a market scoring rule, each agent is paid according to a proper scoring rule,

but must pay the proper-scoring rule payment of the previous agent (i.e. the ith
agent’s expected payment is S̃(ri,p)− S̃(ri−1,p)). As a result, from the perspective
of the principal, almost all the payments cancel out, and the total amount that the
principal must pay (

P
i S̃(ri,p)− S̃(ri−1,p) = S̃(rn,p)− S̃(r0,p)) depends only on

the last prediction and not on the number of agents. See [6] for further explanations
of market scoring rules.

13 [3] studies creating prediction markets that are fully incentive-compatible, without
assuming myopic agents. However, no general, practically-implementable design is
proposed.

14 This is because in any general prediction mechanism the agents may choose to act
sequentially in a one-round fashion. Hence, relaxing the one-round requirement may
only increase the subsidy required. The notions of “one-round” and “subsidy re-
quired” are made precise later.
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Definition 6 We define a one-round prediction mechanism as follows. There
is an event with a finite set of disjoint outcomes Ω, and n agents are asked to
give a probability for each outcome. There is some rule which decides the order
in which agents report their predictions. Define Ej as the set of agents whose
reports agent j cannot influence. When agent j reports prediction rj and event
i ∈ Ω occurs, she receives a payment of fj({rk|k ∈ Ej}, rj , i).

Definition 7 A one-round prediction mechanism is truthful if regardless of oth-
ers’ reports, an agent’s expected utility is maximized when she reports her true
subjective probability vector p. The mechanism satisfies voluntary participation
if reporting the true p always yields non-negative expected payment. The mech-
anism is feasible if it is both truthful and satisfies voluntary participation.

Almost all current prediction mechanisms, when we add the restriction that
each agent participates at most once, fit into this framework.15

Lemma 2. A one-round prediction mechanism is feasible if and only if for each
agent j, the payment function fj, holding fixed the reports r−j = {rk|k 6= j},
is a proper scoring rule S with a non-negative cost function. We call S the
corresponding proper scoring rule in this situation.

Definition 8 A one-round prediction mechanism is aligned with principal util-
ity vector u if for every agent j and every combination of other agents’ reports
(r−j = {rk|k 6= j}), the corresponding proper scoring rule is aligned with u.

3.2 Minimum Subsidy for Principal-Aligned Prediction Mechanisms

We now formalize the notion that any principal-aligned prediction mechanism
requires Θ(n) subsidy to implement. Here, the subsidy is the minimum amount
the principal must have to be solvent in expectation, no matter what the true
probability and agents’ reports are.

Definition 9 A one-round prediction mechanism requires subsidy M if ∀ε > 0,
for some true probability p and some reports r = {rj}, the total expected payment∑

i,j

pifj({rk|k ∈ Ej}, rj , i) ≥M − ε

Before deriving our minimum subsidy result, we introduce a notion of mini-
mum incentives. In order to elicit useful predictions, we cannot simply offer the
trivial scoring rule S ≡ 0. We assume that each agent will give a thoughtful
report only if she can gain c > 0 by reporting accurately. More precisely, to be
meaningful, a prediction mechanism cannot allow agents to always obtain within
c of the optimal expected payment by giving a constant report.
15 Models that fit this framework include market scoring rules, Hanson’s Market

Maker [7, 6], Pennock’s Dynamic Parimutuel Market [11, 10], and the weighted-score
mechanism in [8].
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Definition 10 We say a proper scoring rule provides incentive c if the differ-
ence between the greatest attainable expected payment and the greatest expected
payment the agent can guarantee with some constant report r is at least c.16 A
one-round prediction mechanism guarantees incentive c if for each agent j and
each combination of others’ reports r−j, the corresponding proper scoring rule
provides incentive c.

Lemma 3. Given a non-uniform principal utility vector u, let Omax correspond
to the principal’s best outcome (i.e., it maximizes Oi ·u among all i). If a proper
scoring rule aligned with u provides incentive c, and its cost function G(p) is
non-negative, then G(Omax) ≥ c.

Proof. Suppose on the contrary that G(Omax) < c. Let Omin correspond to
the principal’s worst outcome (i.e., it minimizes Oi · u among all i), and let
d = ‖Omax − Omin‖. Since u is not uniform, d > 0. For 0 < ε < d, define
r = ε

dOmax + d−ε
d Omin. Let G∗ be the subgradient of G corresponding to S (in

the sense of Theorem 1).
First note that S̃(r,Omax) ≥ 0. This is because by the definition of subgradi-

ents and by u·(Omin−r) < 0, we have G∗(r)·(Omin−r) ≤ G(Omin)−G(r) ≤
0. Using Theorem 1 and the fact that (Omin− r) is collinear with (r−Omax),
we have S̃(r, r) − S̃(r,Omax) = G∗(r) · (r − Omax) ≤ 0, which implies that
S̃(r,Omax) ≥ G(r) ≥ 0.

Because the scoring rule provides incentive c and because of convexity, either
G(Omax)− S̃(r,Omax) ≥ c or G(Omin)− S̃(r,Omin) ≥ c.

However, the first inequality cannot hold, because G(Omax) < c by assump-
tion and S̃(r,Omax) ≥ 0.

Moreover, the second inequality cannot hold for sufficiently small ε. This is
because c−0 > G(Omax)−G(r) ≥ G∗(r)·(Omax−r) = G∗(r)·(r−Omin)(d−εε ).
So as ε → 0, we need G∗(r) · (r − Omin) → 0. This along with the identity
S̃(r,Omin)− S̃(r, r) = G∗(r) ·(Omin−r) implies that as ε→ 0, S̃(r,Omin)→
G(r). Because G is continuous and bounded below by 0, we have that as ε→ 0,
G(r)→ G(Omin) ≥ 0, so S̃(r,Omin)→ G(Omin). Hence, or sufficiently small
ε, the second inequality also fails. Contradiction.

Therefore, G(Omax) ≥ c.

Theorem 3. Let u be a non-uniform principal utility vector and let n be the
number of agents. Any feasible one-round prediction mechanism that guarantees
incentive c and is aligned with u requires subsidy cn.

Proof. For each agent j and each combination of others’ reports, the correspond-
ing proper scoring rule must have a non-negative cost function, must be aligned
with u, and must provide incentive c. By Lemma 3, G(Omax) ≥ c. Hence, if all
agents report some r that is arbitrarily close to Omax, we get, by the continuity
of convex function G, that the total expected payment can be arbitrarily close
to nG(Omax) ≥ cn

16 In mathematical language, this states that supq S̃(q, q)− supr

“
infp S̃(r,p)

”
≥ c.
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Remark 1. Suppose we sacrifice principal-alignment; then, we can implement the
market scoring rule, based on, say, the quadratic scoring rule with cost function
G(p) = c m

m−1 (
∑
i p

2
i − 1

m ). This is a one-round prediction mechanism guarantee-
ing incentive c and requiring only subsidy c, which is the minimum possible.17

This yields the following implication of Theorem 3: Suppose we want a prediction
mechanism that guarantees incentive c; the cheapest principal-aligned mechanism
requires n times as much subsidy as the cheapest non-principal-aligned mecha-
nism.

4 Extensions: Uncertain Utilities and Restricted Actions
In practice, there may be uncertainties about the principal’s utility vector u,
and there may be restrictions on the change in underlying probabilities that
the agents’ actions can bring about. In this section, we show that adding these
features to our model provides a richer characterization. Moreover, if the agents
can perform actions that are certainly undesirable, then principal-aligned pre-
diction mechanisms still require Θ(n) subsidy. We formalize these concepts via
the following definitions.

Definition 11 An action model is a function A : P→ 2P such that ∀p ∈ P, A(p)
is a convex set satisfying p ∈ A(p).18 Intuitively, if p is the initial underlying
probability vector, then for any p′ ∈ A(p), there is some action that the agent
can perform to change the probability vector to p′ (and the agent is not able to
change it to any other probability vector).

Definition 12 Let T be a set of possible utility vectors for the principal and
let A be an action model. A proper scoring rule is aligned with T under A if
∀r ∈ P and ∀r′ ∈ A(r) such that u · r′ < u · r ∀u ∈ T ,19 the cost function
G(r) ≥ G(r′). A one-round prediction mechanism is aligned with T under A if
the corresponding proper scoring rule is always aligned with T . In all following
references to T , we assume that T is not always uniform: T\{α1} 6= ∅. (The
principal is not definitely indifferent among all outcomes.)

Definition 13 Given a set T of possible utilities for the principal and an action
model A for the agents, the corresponding bad direction function is B : P→ 2Rm

,

B(p) = {p′ − p|p′ ∈ A(p)}
⋂(⋂

u∈T
{x|x · u < 0}

)
17 By definition, guaranteeing incentive c requires subsidy c.
18 We require p ∈ A(p) because the agent can always choose to do nothing. Moreover,
A(p) is convex because if by committing action a, the agent can change the under-
lying probability to q ∈ A(p), and by committing a′, the agent can change it to q′,
then by committing a with probability λ and a′ with probability (1− λ), the agent
can change the underlying probability to λq + (1− λ)q′.

19 Here, we only guard against actions that harm the principal’s expected utility for all
possible vectors u ∈ T . Alternatively we might have guarded against actions that are
bad in any setting of u, but this case is not interesting because the proof of Lemma 1
implies that the only proper scoring rule aligned with two linearly independent utility
vectors is the trivial rule with G ≡ 0.
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We say that B is contained in a strict cone if ∃ε > 0 and ∃y such that ∀p ∈ P
and ∀x ∈ B(p), y · x ≥ ε‖x‖‖y‖.

Define the magnitude of the worst action as d = sup{‖x‖|x ∈ B(p),p ∈ P}.
Note that d = 0 implies that agents cannot perform any action that is certainly
bad.

4.1 Principal-Aligned Proper Scoring Rules in the Extended Model

The following characterization follows immediately from Definition 13.

Theorem 4. Given a set T of possible utility vectors and an action model A, let
the corresponding bad direction function be B. A proper scoring rule is aligned
with T under A if and only if its cost function G satisfies ∀p ∈ P, and ∀p′ with
p′ − p ∈ B(p), G(p′) ≤ G(p).

Definition 14 A proper scoring rule is bounded if S(r, i) is bounded: ∃M s.t.
|S(r, i)| ≤ M ∀r ∈ P, i ∈ Ω. Equivalently (by Theorem 1), a proper scoring
rule is bounded if and only if both the cost function G(p) and the corresponding
subgradient G∗(p) are bounded.

The following theorem shows that under sufficient uncertainty, any proper
scoring rule can be modified to be principal-aligned by adding constant bonuses.

Theorem 5. Suppose that the bad direction function B is contained in a strict
cone; then, any bounded20 proper scoring rule S can be modified to be principal-
aligned by adding constants {ki} so that S′(r, i) = S(r, i) +ki. Moreover, ‖k‖ =
M
ε , where M is an upper bound21 on the norm of the subgradient ‖G∗(p)‖, and
ε is as in Definition 13.

4.2 Principal-Aligned Prediction Mechanisms in the Extended
Model

We now generalize the minimum subsidy result in Section 3.2 in the context of
uncertain utilities and restricted actions. First, we note that the overpayment
result does not hold if we allow the proper scoring rule to not be strict: as in
the example shown in Figure 3, sometimes we can treat all reports for which we
have relative preferences22 to be the same, and implement a market scoring rule
on the collapsed classes. In this case, the agents can obtain optimal payments
while ignoring the directions for which the principal has preferences.

In practice it seems desirable to always strictly incentivize the agent to report
as close to the true probability as possible. One way to formalize this is the notion
of uniform incentivization.
20 In practice, we can make any unbounded proper scoring rule bounded by restricting

reports away from the boundary.
21 M exists by the assumption that the scoring rule S is bounded. See Definition 14.
22 By “relative preference” between reports r′ and r, we mean that either r′−r ∈ B(r)

or r − r′ ∈ B(r′)
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Fig. 3. Suppose that there are 3 outcomes and no restrictions on actions. T is such
that the only bad direction is b. Consider a market scoring rule on the relative proba-
bility of outcomes 1 and 2, guaranteeing incentive c. For every probability distribution
r ∈ P we follow the contour lines in the diagram and treat this as some r′ on the seg-
ment connecting O1 and O2. This makes the cost function G (for the corresponding
proper scoring rule) in every situation constant along the contour lines. The resultant
mechanism is principal-aligned but requires only O(c) subsidy.

Definition 15 Suppose that f : [0,∞)→ R is convex,23 with f(0) = 0, f(x) > 0
∀x > 0. A proper scoring rule provides uniform incentives according to f if
∀r,p ∈ P, S̃(p,p) − S̃(r,p) ≥ f(‖p − r‖). A one-round prediction mechanism
guarantees uniform incentives according to f if for every agent j and every
combination of others’ reports, the corresponding proper scoring rule provides
uniform incentives according to f .

Intuitively, f can be thought of as a measure of incentivization locally at
p ∈ P, and providing uniform incentives according to f guarantees a certain
level of incentivization at all p ∈ P. For a one-round prediction mechanism,
guaranteeing uniform incentives according to some f corresponds to maintaining
a minimal standard of incentivization for all agents in all situations. Conventional
scoring rules such as the quadratic, the logarithmic, and the spherical scoring
rules all guarantee uniform incentives according to some f .

Theorem 6. Suppose that a feasible one-round prediction mechanism with n
agents is principal-aligned with set T of possible utility vectors, under action
model A (assume that the magnitude of the worst action d > 024); and guarantees
uniform incentives according to some f . Then, the mechanism requires subsidy
f(d2 )n (which is Θ(n)).

In other words, even when the principal’s utilities are uncertain and when
agents’ actions might be limited, suppose that some surely undesirable action
exists, then under the requirements of feasibility and uniform incentivization,
the cheapest principal-aligned mechanism requires Θ(n) times as much subsidy
as the cheapest non-principal-aligned mechanism.

One practical implication of our Θ(n) subsidy result is that to run a useful
prediction market without incentivizing undesirable actions, it may be imprac-
tical to let agents join freely. This is because agents may join just to get the

23 The requirement that f is convex is natural since cost function G is convex.
24 That is, it is possible for agents to perform a certainly undesirable action.
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subsidy, without providing any useful additional information. However, it may
be practical for an organization to run a principal-aligned in-house prediction
market, because in this context the number of agents is naturally limited.
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