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Abstract

For the problem of allocating one or more items among a group of com-
peting agents, the Vickrey-Clarke-Groves (VCG) mechanism is strategy-
proof and efficient. However, the VCG mechanism is not strongly budget
balanced: in general, value flows out of the system of agents in the form of
VCG payments, which reduces the agents’ utilities. In many settings, the
objective is to maximize the sum of the agents’ utilities (taking payments
into account). For this purpose, several VCG redistribution mechanisms
have been proposed that redistribute a large fraction of the VCG payments
back to the agents, in a way that maintains strategy-proofness and the
non-deficit property. Unfortunately, sometimes even the best VCG redis-
tribution mechanism fails to redistribute a substantial fraction of the VCG
payments. This results in a low total utility for the agents, even though
the items are allocated efficiently. In this paper, we study strategy-proof
allocation mechanisms that do not always allocate the items efficiently.
It turns out that by allocating inefficiently, more payment can sometimes
be redistributed, so that the net effect is an increase in the sum of the
agents’ utilities.

Our objective is to design mechanisms that are competitive against
the first-best mechanism in terms of the agents’ total utility. We first
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study multi-unit auctions with unit demand. We characterize the family
of linear allocation mechanisms. We propose an optimization technique
for simultaneously finding a linear allocation mechanism and a payment
redistribution rule, which together are optimal. With the help of this tech-
nique, we also analytically characterize several competitive mechanisms,
which are based on burning units and partitioning the agents into groups.
Finally, we extend the definition of linear allocation mechanisms and the
optimization technique to general multi-unit auctions.

1 Introduction

Many problems in multiagent systems involve resource allocation. This paper
studies the fundamental problem of using economic mechanisms to allocate re-
sources among autonomous agents, with the aim of maximizing the agents’ total
utility. We focus on settings where the resource consists of multiple indistin-
guishable units. Example real-life scenarios include the allocation of cluster
nodes to supercomputing clients, where the cluster nodes are identical. Mech-
anisms proposed in this paper can be applied to scenarios where each agent
requires only one unit of the resource (e.g., the client application contains a sin-
gle thread, thus requiring only one node) or each agent’s marginal valuations for
the units are nonincreasing (e.g., the client application runs faster with more
nodes, but the marginal benefit is nonincreasing). Besides proposing mecha-
nisms that address a fundamental problem in multiagent systems, our results
also demonstrate the effectiveness of using computing techniques to deliver new
results in economic theory.

For the problem of allocating one or more items among a group of compet-
ing agents, the well-known Vickrey-Clarke-Groves (VCG) mechanism [30, 5, 12]
is strategy-proof and efficient.1 That is, under the VCG mechanism, it is a
dominant strategy for the agents to report their true valuations for the items,
and the mechanism allocates the items in a way that maximizes the sum of
the agents’ valuations. In the context of resource allocation, the VCG mecha-
nism also satisfies the non-deficit property: the sum of the agents’ payments
is nonnegative. However, the VCG mechanism is not strongly budget bal-
anced, that is, the agents’ payments do not sum to 0. Hence, in general, value
flows out of the system of agents in the form of VCG payments, which reduces
the agents’ utilities. Actually, for sufficiently general settings, no mechanism
satisfies strategy-proofness, efficiency, and strong budget balance at the same
time [22, 11, 10, 24].2

In many cases, the objective of the allocation process is to maximize the
welfare of the agents, that is, the sum of the agents’ utilities, taking payments
into account. For this purpose, several VCG redistribution mechanisms have
been proposed. These mechanisms first allocate the items efficiently and charge
the VCG payments. Then, a large fraction of the VCG revenue is redistributed

1As is often done, we use “the VCG mechanism” to refer to the Clarke mechanism, and
not to any other Groves mechanism.

2By sacrificing one of these properties, the others can be achieved [2, 8, 28, 7].
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back to the agents, in a way that maintains the desirable properties of the
original VCG mechanism, including strategy-proofness, the non-deficit property,
and (sometimes) individual rationality [4, 16, 23, 18, 17, 14, 13, 15, 19, 25].3

However, in some cases, even the best redistribution mechanism fails to
redistribute a substantial amount of the VCG revenue. That is, even though
the VCG redistribution mechanisms maximize efficiency (the sum of the agents’
valuations), the total welfare (the sum of the agents’ utilities, taking payments
into account) can be very low (in fact, zero), as a result of poor redistribution.
Still, the previously proposed VCG redistribution mechanisms are optimal in
various senses—but only under the constraint that allocation is efficient.

In this paper, we consider the natural next step of allowing for inefficient al-
location. It turns out that even though inefficient allocation reduces efficiency, it
sometimes allows for greater redistributions, so that the net effect is an increase
in the sum of the agents’ utilities. Moulin [23] already provided an example
where inefficient allocation can lead to better results, but left a more thorough
investigation for future research. As we will see, the example mechanism that he
proposed will turn out to be useful for us. In work subsequent to the conference
version of our paper, de Clippel et al. [6] also study the problem of allocating in-
efficiently in order to increase the amount that is redistributed. We will discuss
their work in more detail below.

In Section 2, we cover the preliminaries. In Section 3, we briefly review the
worst-case optimal (WCO) VCG redistribution mechanism [16, 23]. For our
setting and objective, the WCO mechanism is optimal among all strategy-proof
mechanisms that are based on efficient allocation. We give an example where
the WCO mechanism performs poorly, and its performance actually improves
when we burn (throw away) one item.4 This shows that inefficient allocation
can indeed (sometimes) lead to better results. In Section 4, we characterize
the linear allocation mechanisms for multi-unit auctions with unit demand, and
propose an optimization technique for simultaneously finding a linear allocation
mechanism and a payment redistribution rule, which together are optimal. With
the help of the technique developed in Section 4, in Section 5, we analytically
characterize several mechanisms that are guaranteed to perform well for all
type profiles, which are based on burning units and partitioning the agents into
groups. In Section 6, we compare the performances of the obtained mechanisms.
Finally, in Section 7, we extend the definition of linear allocation mechanisms
and the optimization technique to general multi-unit auctions.

3Recently, Tsuruta et al. [29] also studied how to redistribute while maintaining the false-
name-proofness of the original VCG mechanism in single-item auctions. A mechanism is said
to be false-name-proof if no agent can benefit by using multiple fake identities to participate
in the mechanism. This paper does not consider false-name manipulation. This requirement
restricts the space of redistribution mechanisms significantly, ruling out the standard strategy-
proof redistribution mechanisms.

4We assume free disposal in this paper. That is, it is free to burn (throw away, or allocate
to an external agent – but only to one about whose welfare the participating agents do not
care one way or another) items. In some markets, payments are needed in order to get rid
of extra resources. For such markets, mechanisms involving burning items perform worse or
become infeasible.
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2 Preliminaries

From this section to Section 6, we restrict our attention to multi-unit auctions
with unit demand. In such auctions, multiple indistinguishable units are for
sale at the same time, and each agent is interested in obtaining one and only
one unit. In Section 7, we drop the unit demand restriction. To simplify the
presentation, we defer everything beyond the unit demand setting to Section 7.

Let the number of units be m. Let the number of agents be n. We consider
only cases where n > m; otherwise, it is clearly optimal to give every agent a
unit and charge nothing. (This reasoning is not valid without the unit demand
assumption, so in Section 7 we also consider cases where m ≥ n.)

In the unit demand setting, an agent’s type can be denoted by a single
nonnegative value, which represents her valuation for winning (one unit). For
the i-th agent, we denote her type by vi. We focus on strategy-proof mechanisms
in this paper. Therefore, we do not differentiate between “true types” and
“reported types.” Without losing generality, we assume that v1 ≥ v2 ≥ . . . ≥
vn ≥ 0. Vector (v1, v2, . . . , vn) is called the type profile.

An allocation mechanism determines how we allocate the units, and how
much each agent pays (or receives). We allow for randomized allocation mecha-
nisms. In this paper, we assume that the agents are maximizing their expected
(quasilinear) utilities, and random bits are not chosen adversarially. Please re-

fer to Section 8 for more discussion on random bits. We use aM,V
i to denote

agent i’s probability of winning (one unit) under allocation mechanism M and
for type profile V . When M and V are clear from the context, we simply use ai
to denote agent i’s probability of winning. We denote the overall allocation by
(a1, a2, . . . , an). Since there are only m units, we must have

∑n
i=1 ai ≤ m. The

set of all feasible allocations is {(a1, a2, . . . , an)|0 ≤ a1, a2, . . . , an ≤ 1,
∑n

i=1 ai ≤
m}.5 Similarly, we use tM,V

i to denote agent i’s payment (expected payment if
the allocation mechanism is randomized) under allocation mechanism M and
for type profile V . When M and V are clear from the context, we simply use
ti to denote agent i’s payment. For example, under the VCG mechanism, for a
given type profile (v1, v2, . . . , vn), if i ≤ m, then ai = 1 and ti = vm+1, and if
i > m, then ai = 0 and ti = 0. (Under the VCG mechanism, the agents with
the m highest types each win one unit and each pay the value of the (m+ 1)-th
highest type.) As a second example, under the mechanism in which the win-

5The reader may be concerned that the resulting mechanism may nevertheless not be
feasible, because all the constraint implies is that the expected number of allocated items
does not exceed m. In this footnote, we show that if

∑n
i=1 ai ≤ m, then (a1, a2, . . . , an) is

feasible (able to be achieved using a randomized mechanism that allocates at most m units
under any random realization). We first consider the case where

∑n
i=1 ai = m. In this case,

(a1, a2, . . . , an) is a convex combination of binary allocations, where a binary allocation is an
allocation with m coordinates equal to 1 and the rest equal to 0. Every binary allocation
is feasible. Therefore, any convex combination (a1, a2, . . . , an) is also feasible because it is a
distribution of feasible allocations. If

∑n
i=1 ai < m, then there exist (a′1, a

′
2, . . . , a

′
n) where

ai ≤ a′i ≤ 1 and
∑n

i=1 a
′
i = m. By the preceding, we know that (a′1, a

′
2, . . . , a

′
n) is feasible.

We use (a′1, a
′
2, . . . , a

′
n), and we remove an agent from the allocation (not allowing her to win)

with probability 1− a1
a′1

. As a result, (a1, a2, . . . , an) is achieved, and therefore it is feasible.
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ners are picked uniformly at random (without payments), for all i, ai = m
n and

ti = 0. We assume that an agent wishes to maximize her expected utility. That
is, agent i wishes to maximize aivi − ti.

Given a strategy-proof allocation mechanism, we can use the following ap-
proach to attempt to increase the agents’ utilities while maintaining strategy-
proofness: redistribute (pay) to each agent an amount that is independent of her
own type. When an agent’s redistribution is independent of her own type, no
matter what she reports, she receives the same amount of redistribution. This
implies that the redistribution is irrelevant to the agent from the perspective
of strategic reporting; and hence, if the allocation mechanism without redistri-
bution is strategy-proof, then so is the mechanism with redistribution. In this
paper, we use “allocation mechanism” to refer to the mechanism before redistri-
bution – for example, in a VCG redistribution mechanism, the VCG mechanism
is the allocation mechanism, whereas the complete mechanism also includes the
redistributions. We use the function R to denote the redistribution rule. R(v−i)
is the amount of redistribution received by agent i, where v−i are the types of the
agents other than i.6 Not all redistribution rules are feasible. We require that
the complete mechanism (after redistribution) satisfies two properties. First,
we require that the complete mechanism satisfies the non-deficit property: the
total redistribution should never exceed the total payment collected by the al-
location mechanism (

∑n
i=1R(v−i) ≤

∑n
i=1 ti). Otherwise, we need an external

subsidy to run the mechanism. We also require that the complete mechanism
is individually rational: every agent’s expected utility after redistribution must
be nonnegative (aivi − ti +R(v−i) ≥ 0).

With redistribution, the agents’ welfare is
∑n

i=1 aivi−
∑n

i=1 ti+
∑n

i=1R(v−i).
Our goal is to find a complete mechanism (a strategy-proof allocation mecha-
nism M and a feasible redistribution function R) that maximizes this expression.
However, because the value of the above expression depends on the type profile,
it could be that one complete mechanism (M,R) maximizes the expression for
some type profiles, while another complete mechanism (M,R) maximizes the
expression for some other type profiles. In this paper, we pursue a worst-case
analysis approach. Such approaches have been commonly used in the litera-
ture on redistribution mechanisms [16, 23, 13, 14, 15, 19, 25]7 as well as the
literature on digital goods auctions [1, 9, 20]. Specifically, consider the first-
best mechanism that always correctly identifies the agents with the m highest
true valuations, without asking for their types, and allocates the units to these
agents at no charge. Clearly this mechanism obtains the largest welfare that
we could hope for without external subsidy. Of course, the first-best mecha-

6Since the agents’ type spaces are identical, and we allow for randomized mechanisms, for
our worst-case objective, it is without loss of generality to consider only anonymous mecha-
nisms: given a nonanonymous mechanism, we can always modify it by permuting the roles
of the agents, and then run each permuted mechanism with equal probability. That is, it is
without loss of generality to only consider redistribution rules under which all agents share
the same redistribution function.

7However, other objectives have been pursued as well, for example, maximizing the ex-
pected redistribution with respect to a prior [17], or making sure that there is no feasible
mechanism that always redistributes at least as much and sometimes more [18].
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nism is not strategy-proof, so we only use it as a benchmark. Our objective is
to design strategy-proof mechanisms that are competitive against the first-best
mechanism. We say a complete mechanism (M,R) is α-competitive against the
first-best mechanism if the agents’ welfare under (M,R) is at least α

∑m
i=1 vi,

for all type profiles. (
∑m

i=1 vi is the agents’ welfare under the first-best mecha-
nism.) Our objective is to find the complete mechanism (M,R) that is the most
competitive, that is, that maximizes α, under the constraints that (M,R) must
satisfy strategy-proofness, individual rationality, and the non-deficit property.8

3 VCG redistribution mechanisms

In this section, we first review the worst-case optimal (WCO) VCG redistribu-
tion mechanism. For our setting and objective, the WCO mechanism is opti-
mal among all strategy-proof mechanisms that are based on efficient allocation.
Then, to motivate the rest of the paper, we construct an example mechanism
that allocates inefficiently and is more competitive than the WCO mechanism.
This shows that inefficient allocation can indeed (sometimes) lead to higher
competitive ratios.

In previous work [16], we characterized the worst-case optimal VCG redis-
tribution mechanism, which maximizes the fraction of VCG payment that is
redistributed in the worst case, among all VCG redistribution mechanisms that
are individually rational and satisfy the non-deficit property. The WCO mech-
anism is defined for all multi-unit auctions where each agent has nonincreasing
marginal values for units.9 In the more restricted unit demand setting, the
WCO mechanism uses the following redistribution function:

R(v−j) =
∑n−1

i=m+1 civ−j,i

ci =
(−1)i+m−1(n−m)(n−1

m−1)
i
∑n−1

j=m (n−1
j )

1

(n−1
i )

∑n−1
j=i

(
n−1
j

)
for i = m+ 1, . . . , n− 1

Here, v−j,i is the i-th highest type among v−j .
Around the same time, Moulin [23] independently characterized the same

mechanism based on a different objective.10 In fact, Moulin’s characterization

8It should be noted that this paper allows randomized mechanisms. A randomized mech-
anism is α-competitive if the agents’ welfare under the mechanism is at least α times the
agents’ welfare under the first-best mechanism in expectation over the random choices made
by the mechanism (but for any valuation profile). Similarly, for randomized mechanisms,
strategy-proofness and individual rationality also only need to be satisfied in expectation over
the random choices made by the mechanism (but for any valuation profile).

9WCO was later generalized to heterogeneous-item auctions with unit demand [13, 15].
The generalized version was proven to be still optimal.

10Moulin’s mechanism is defined only for the unit demand setting. Moulin tries to minimize
the worst-case ratio between the VCG payment that fails to be redistributed and the total
efficiency, also among all VCG redistribution mechanisms that are individually rational and
satisfy the non-deficit property. Moulin’s objective and WCO’s objective result in the same
mechanism only if individual rationality is required. If individual rationality is not required,
then WCO’s objective still results in the WCO mechanism, but Moulin’s does not.
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of WCO implies that the WCO mechanism has the highest competitive ratio
(in the sense of this paper) among all VCG redistribution mechanisms with the
required properties.

Claim 1. [23]: The WCO mechanism has the highest competitive ratio against
the first-best mechanism, among all VCG redistribution mechanisms that are
individually rational and satisfy the non-deficit property.

It should be noted that, by the result of Holmstrom [21], in multi-unit
auctions with unit demand, all efficient and strategy-proof mechanisms are
VCG redistribution mechanisms. That is, the above claim essentially says that
WCO has the highest competitive ratio among all efficient mechanisms that are
strategy-proof, individually rational, and satisfy the non-deficit property.

Given the number of agents n and the number of units m (n > m), the WCO
mechanism’s competitive ratio αWCO(n,m) is characterized by the following
equation:

αWCO(n,m) = 1− (n−1
m )∑n−1

j=m (n−1
j )

When n = 3 and m = 2, the WCO mechanism (the optimal efficient mech-
anism) is not competitive at all: αWCO(3, 2) = 0. In contrast, the following
simple mechanism that allocates inefficiently is somewhat competitive:

• Burn (throw away) one unit.

• Allocate the remaining unit according to the WCO mechanism for n = 3
and m = 1.

The new mechanism satisfies all the required properties, because it is equiv-
alent to the WCO mechanism for n = 3 and m = 1. It is not efficient because
one unit is burned. Since αWCO(3, 1) = 1

3 , the new mechanism is 1
3 -competitive

against the first-best mechanism for one unit (m = 1). That is, the new mech-
anism guarantees a welfare of 1

3v1 for any type profile. Since v1 ≥ v2, it also
guarantees a total utility of 1

6 (v1 + v2) for all type profiles. Hence, the compet-
itive ratio of the new mechanism against the first-best mechanism for two units
(m = 2) is at least 1

6 . That is, this new mechanism has a higher competitive
ratio. Essentially, if we keep both items, then no redistribution is possible. On
the other hand, if we throw away one item, then we are able to redistribute some
payments, which results in a higher competitive ratio. So, ironically, in some
cases, the agents are happier if one unit is burned. Motivated by this example,
in the rest of the paper, we study mechanisms that allocate inefficiently (and in
Section 5.1, we specifically study mechanisms that are based on burning units).
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4 Linear allocation mechanisms

In this section, we define and characterize a family of mechanisms that we call
linear allocation mechanisms.11 We then propose an optimization technique for
simultaneously finding a linear allocation mechanism and a redistribution rule,
which together have the highest competitive ratio among all mechanisms whose
allocation part is linear.12

Definition 1. An allocation mechanism is linear if the following two conditions
are satisfied:

• An agent’s probability of winning depends only on her rank. That is, under
a linear allocation mechanism, the ai are constants (ai only depends on the
rank i, but not the value of vi). (We recall that agent i is the agent with
the i-th highest type, and ai is agent i’s probability of winning.) That is,
a linear allocation mechanism corresponds to a constant allocation vector
(a1, a2, . . . , an).

• An agent’s payment is always 0 if her type is 0.

Example 1. The VCG mechanism is linear, for the following reasons. In the
VCG mechanism, the agents with the highest m types each win one unit. That
is, for all type profiles, we have ai = 1 for i ≤ m and ai = 0 for i > m. Under
the VCG mechanism, when an agent’s type is 0, her payment is 0.

Example 2. The random allocation mechanism in which the winners are picked
uniformly at random (without replacement), and there are no payments, is
linear, for the following reasons. Under this mechanism, for all type profiles, we
have ai = m/n for all i, and every agent pays 0.

We are only interested in linear allocation mechanisms that are strategy-
proof. The next claim gives a standard type of monotonicity characterization
of all strategy-proof linear allocation mechanisms.

Claim 2. There is a one-to-one correspondence between strategy-proof linear
allocation mechanisms and the following set of allocation vectors:

{(a1, a2, . . . , an)|1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0,

n∑
i=1

ai ≤ m}

That is, a strategy-proof linear allocation mechanism is characterized by its cor-
responding allocation vector (a1, a2, . . . , an) where 1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0.

11The linear allocation mechanisms are randomized mechanisms characterized by n param-
eters. In de Clippel et al. [6], the authors also studied multi-unit auctions with unit demand,
and proposed a family of nonlinear and deterministic mechanisms that are characterized by
exactly two parameters. Optimization within their mechanism family is easy because there
are only two parameters. The optimal linear allocation mechanism performs better, but it is
not deterministic.

12It is not clear whether there exist nonlinear allocation mechanisms with even higher
competitive ratios. Nevertheless, as we will show, the optimal linear allocation mechanisms
generally achieve competitive ratios that are close to 1 (we recall that 1 is the trivial upper
bound on competitive ratio of any mechanism, linear or nonlinear).

8



From now on, we will simply use allocation vector (a1, a2, . . . , an) to refer to
the (only) corresponding strategy-proof linear allocation mechanism. We will
only consider strategy-proof linear allocation mechanisms.

Under linear allocation mechanism (a1, a2, . . . , an), the mechanism’s effi-
ciency equals

∑n
i=1 aivi. Agent i’s VCG-based payment equals the following:

i−1∑
j=1

ajvj +

n∑
j=i+1

aj−1vj −
i−1∑
j=1

ajvj −
n∑

j=i+1

ajvj =

n∑
j=i+1

(aj−1 − aj)vj

The agents’ total payment equals

n∑
i=1

n∑
j=i+1

(aj−1 − aj)vj

Under a given linear allocation mechanism, the mechanism’s efficiency and
the agents’ total payment are both linear functions of the types, and the coeffi-
cients are constants. This is why we call these linear allocation mechanisms.

Next, we present more example linear allocation mechanisms.

Example 3. Let us consider the case where m > 1. The mechanism that burns
one unit and allocates the remaining units efficiently is linear. It corresponds
to the allocation vector (1, 1, . . . , 1︸ ︷︷ ︸

m−1

, 0, . . . , 0). (The agents’ payments are VCG-

based.)

Example 4. The mechanism that excludes one agent uniformly at random and
allocates the units among the remaining agents efficiently is linear. Agents 1
to m will win unless excluded, so ai = n−1

n for i = 1, 2, . . . ,m. Agent m + 1
will win only when one of the first m agents gets excluded, so am+1 = m

n . The
other agents never win. The mechanism corresponds to the allocation vector

(
n− 1

n
,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
m

, mn , 0, . . . , 0). (The agents’ payments are VCG-based.)

Example 5. It is easy to see that the set {(a1, a2, . . . , an)|1 ≥ a1 ≥ a2 ≥ . . . ≥
an ≥ 0,

∑n
i=1 ai ≤ m} is convex. That is, any probability mixture over linear

allocation mechanisms is also linear.

In what follows, we introduce an optimization technique for simultaneously
finding a linear allocation mechanism and a payment redistribution rule, which
together have the highest competitive ratio among all mechanisms whose allo-
cation part is linear.

Since there is a one-to-one correspondence between linear allocation mech-
anisms and allocation vectors in {(a1, a2, . . . , an)|1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥
0,
∑n

i=1 ai ≤ m}, essentially, we are solving for the optimal values of the ai,
as well as an optimal redistribution function R, so that the linear allocation
mechanism (a1, a2, . . . , an) and R together have the highest competitive ratio.
This comes down to the following optimization model:

9



Variable function: R : [0,∞)n−1 → R
Variables: α, a1, a2, . . . , an
Maximize α
Subject to:
1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0∑n

i=1 ai ≤ m
For every type profile v1 ≥ v2 ≥ . . . ≥ vn ≥ 0
R(v−n) ≥ 0 (individual rationality)∑n

i=1

∑n
j=i+1(aj−1 − aj)vj ≥

∑n
i=1R(v−i) (non-deficit)∑n

i=1 aivi −
∑n

i=1

∑n
j=i+1(aj−1 − aj)vj +

∑n
i=1R(v−i) ≥ α

∑m
i=1 vi

(competitive ratio constraint)

The non-deficit constraint and the competitive ratio constraint are both
self-explanatory. (We recall that

∑n
i=1

∑n
j=i+1(aj−1− aj)vj is the agents’ total

payment,
∑n

i=1 aivi is the mechanism’s efficiency, and
∑m

i=1 vi is the welfare
under the first-best mechanism.) What remains to be explained is why the
individual rationality constraint is equivalent to R(v−n) ≥ 0. First, R(v−n) ≥ 0
is necessary for individual rationality, because we need to make sure that every
agent’s final utility is nonnegative for every type profile. When agent n’s type
is 0, she pays 0 under any linear allocation mechanism. Because she does not
care for receiving any unit, her final utility is just her redistribution, which is
R(v−n). Hence, R(v−n) ≥ 0 is necessary for individual rationality. On the
other hand, when R(v−n) is nonnegative for every v−n, we have that for every
collection of n − 1 types, denoted by S, R(S) ≥ 0. That is, R(v−i) ≥ 0 for all
i. That is, redistribution makes every agent (weakly) better off. Even without
redistribution, every agent’s utility is at least 0. (An agent can always report 0
and pay 0.) Therefore, R(v−n) ≥ 0 is also sufficient for individual rationality.

The above formulation is a functional optimization problem, which may ap-
pear difficult to solve. In what follows, we present a linear program formulation.
Based on the solution to this linear program, we can construct an optimal so-
lution to the above functional optimization problem.

If we only consider the type profiles in which the vi are binary, then the
above functional optimization problem turns into a value optimization problem,
as follows. When we only consider binary type profiles, we do not have to
consider the values of R for other profiles. We use ri (i = 0, 1, . . . , n − 1) to
denote R(1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
n−1−i

): the redistribution received by an agent when i other

agents report 1, and the remaining n − 1 − i agents report 0. In the original
functional optimization problem, we are optimizing over the ai and the function
R. When we only consider binary type profiles, we only need to optimize over
the ai and the ri, which corresponds to the following value optimization problem:

10



Variables: α, a1, a2, . . . , an, r0, r1, . . . , rn−1
Maximize α
Subject to:
1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0∑n

i=1 ai ≤ m
For every type profile v1 ≥ v2 ≥ . . . ≥ vn ≥ 0, where the vi are binary
R(v−n) ≥ 0 (individual rationality)∑n

i=1

∑n
j=i+1(aj−1 − aj)vj ≥

∑n
i=1R(v−i) (non-deficit)∑n

i=1 aivi −
∑n

i=1

∑n
j=i+1(aj−1 − aj)vj +

∑n
i=1R(v−i) ≥ α

∑m
i=1 vi

(competitive ratio constraint)

The optimal objective value of the above value optimization problem is
greater than or equal to the optimal objective value of the original functional
optimization problem, because there are fewer constraints (here, we are only
enforcing the constraints on binary type profiles).

We now show that this is indeed a linear program. The objective is clearly
linear in the variables. The two constraints involving only the ai are clearly
linear inequalities. The individual rationality constraint is just “for all i from
0 to n − 1, ri ≥ 0.” The non-deficit constraint is also equivalent to a set of
linear inequalities, as follows. When vi = 0 for all i, the non-deficit constraint
is 0 ≥ nr0.13 When v1 = 1 and vi = 0 for all i > 1, the non-deficit constraint
is 0 ≥ (n − 1)r1 + r0. When v1 = v2 = 1 and vi = 0 for all i > 2, the non-
deficit constraint is (a1 − a2)v2 = a1 − a2 ≥ (n− 2)r2 + 2r1. Similarly, for any
other binary type profile, the non-deficit constraint also corresponds to a linear
inequality. In total, the vi can take n + 1 sets of values (from all 0s to all 1s).
Therefore, the non-deficit constraint is equivalent to n + 1 linear inequalities.
By similar reasoning, the competitive ratio constraint is also equivalent to n+1
linear inequalities. We conclude that the above value optimization problem is
indeed a linear program.

We use the a∗i , the r∗i , and α∗ to denote an optimal solution to the linear
program. As we noted, α∗, the optimal objective value of the linear program,
is greater than or equal to the optimal objective value of the original functional
optimization problem. That is, α∗ is an upper bound on the competitive ratio
of any complete mechanism whose allocation part is linear. In the following
theorem, we show that this upper bound can be achieved: we construct a com-
plete mechanism whose allocation part is linear, and prove that this mechanism
has a competitive ratio of α∗. It follows immediately that the mechanism we
construct is optimal among all complete mechanisms whose allocation part is
linear.

Theorem 1. For all i and all v−i, let R∗(v−i) =
∑n−1

j=1 (r∗j − r∗j−1)v−i,j. (We
recall that v−i,j is the j-th highest type among the agents other than i.) Complete
mechanism ((a∗1, a

∗
2, . . . , a

∗
n), R∗) is α∗-competitive. That is, this mechanism has

the highest competitive ratio among all complete mechanisms whose allocation

13Combined with the individual rationality constraint, we have that r0 should always be 0.
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part is linear.14

According to Footnote 13, we have r∗0 = 0. We note that when the vi are
binary, from the perspective of an agent, if all the other agents report 0, then
her redistribution equals

∑n−1
j=1 (r∗j − r∗j−1)0 = 0 = r∗0 . If among the other

agents, k (k > 0) agents report 1, and the remaining agents report 0, then

her redistribution equals
∑k

j=1(r∗j − r∗j−1) = r∗k. That is, in a sense, R∗ is a
linear interpolation of the r∗i . Before proving the theorem, we give the following
lemma. A similar lemma appeared in Guo and Conitzer [16].

Lemma 1. When the ci do not depend on the xi, the following two systems of
inequalities are equivalent:

(a) c1x1 + c2x2 + . . .+ csxs ≥ 0 for all x1 ≥ x2 ≥ . . . ≥ xs ≥ 0.

(b) c1x1 + c2x2 + . . .+ csxs ≥ 0 for all x1 ≥ x2 ≥ . . . ≥ xs, where the xi are
binary.

Proof. (a)⇒ (b) is trivial. We now prove (b)⇒ (a). (b) implies that
∑j

i=1 ci ≥
0 for all 1 ≤ j ≤ s. We have c1x1 + c2x2 + . . . + csxs =

∑s−1
j=1(

∑j
i=1 ci)(xj −

xj+1) + (
∑s

i=1 ci)xs. For all x1 ≥ x2 ≥ . . . ≥ xs ≥ 0, each term of the above
expression is nonnegative, hence the whole expression is nonnegative. So (b) ⇒
(a).

We are now ready to prove the theorem.

Proof. We only need to prove that α∗, the a∗i , and the function R∗ form a fea-
sible solution to the original functional optimization problem. If they form a
feasible solution, then ((a∗1, a

∗
2, . . . , a

∗
n), R∗) is α∗-competitive, implying that it

is optimal. That is, we need to prove that the following constraints hold (it is
obvious that the constraints involving only the ai hold):

For every type profile v1 ≥ v2 ≥ . . . ≥ vn ≥ 0,
R∗(v−n) ≥ 0 (individual rationality)∑n

i=1

∑n
j=i+1(a∗j−1 − a∗j )vj ≥

∑n
i=1R

∗(v−i) (non-deficit)∑n
i=1 a

∗
i vi −

∑n
i=1

∑n
j=i+1(a∗j−1 − a∗j )vj +

∑n
i=1R

∗(v−i) ≥ α∗
∑m

i=1 vi
(competitive ratio constraint)

We notice that all the above inequalities are linear inequalities of the vi,
which must hold for all v1 ≥ v2 ≥ . . . ≥ vn ≥ 0, where the coefficients only
depend on the r∗i , the a∗i , and α∗. For example, the individual rationality
constraint can be rewritten as “for every type profile v1 ≥ v2 ≥ . . . ≥ vn ≥ 0,∑n−1

j=1 (r∗j − r∗j−1)vj ≥ 0.” Similarly, the non-deficit constraint is “for every type

profile v1 ≥ v2 ≥ . . . ≥ vn ≥ 0,
∑n

i=1

∑n
j=i+1(a∗j−1 − a∗j )vj ≥

∑n
i=1

∑n−1
j=1 (r∗j −

r∗j−1)v−i,j . Here, the left-hand side of ≥ is a linear function of the vi, where the

14By generalizing our theorem, Naroditskiy et al. [26] proposed a technique for finding
optimal payments for given non-linear allocation mechanisms in single-parameter domains.
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linear coefficients only depend on the a∗i . We have that if j < i, then v−i,j = vj ,
otherwise v−i,j = vj+1. The right-hand side of ≥ is also a linear function of the
vi, where the linear coefficients only depend on the r∗i . Similarly, the competitive
ratio constraint is “for every type profile v1 ≥ v2 ≥ . . . ≥ vn ≥ 0,

∑n
i=1 a

∗
i vi −∑n

i=1

∑n
j=i+1(a∗j−1 − a∗j )vj +

∑n
i=1

∑n−1
j=1 (r∗j − r∗j−1)v−i,j ≥ α∗

∑m
i=1 vi. That

is, the competitive ratio constraint is also a linear inequality of the vi, which
must hold for all v1 ≥ v2 ≥ . . . ≥ vn ≥ 0, and the linear coefficients only depend
on the r∗i , the a∗i , and α∗. If we apply Lemma 1, then we only need to prove
that these constraints hold when the vi are binary. (When the vi are binary,
R∗ reduces to the r∗i .) But, we already know that linear allocation mechanism
(a∗1, a

∗
2, . . . , a

∗
n), combined with the redistribution rule characterized by the r∗i ,

satisfies all the constraints when the vi are binary.

Using Theorem 1, for different numbers of agents n and different numbers
of units m, we solve for the most competitive complete mechanisms whose al-
location part is linear. The obtained mechanisms’ competitive ratios will be
presented in Section 6.

5 Analytical competitive mechanisms

One drawback of the technique proposed in the previous section is that we need
to solve a linear program for every n and m, and we do not have an analytical
characterization of the resulting mechanisms. In this section, we study two
restricted families of linear allocation mechanisms. One family is based on
burning units. The other is based on partitioning the agents into groups. We
will use the technique introduced in the previous section to optimize within both
families (adding more constraints on the ai, as we are looking at more restricted
families of linear allocation mechanisms). By observing the patterns of the
obtained mechanisms, we have analytically characterized several competitive
mechanisms. In Section 6, we compare the competitive ratio of the optimal
mechanism that is based on linear allocation, and the competitive ratios of the
analytical mechanisms.

5.1 Burning units

In this subsection, we study linear allocation mechanisms that are based on
(sometimes) burning units. We start with the characterization. First, we can
construct m linear allocation mechanisms that are based on burning a deter-
ministic number of units. Let Mi (i = 1, . . . ,m) be the allocation mechanism in
which m− i units are burned, and the remaining i units are allocated efficiently
according to the VCG mechanism. Mm is just the original VCG mechanism.
We note that it makes no sense to burn all units, hence i > 0. We call the
Mi deterministic burning allocation mechanisms. Mi is the linear allocation
mechanism (1, 1, . . . , 1︸ ︷︷ ︸

i

, 0, 0, . . . , 0). We can also construct mechanisms in which
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Figure 1: A comparison of α∗D, α∗R and α∗WCO.

a random number of units is burned, by randomizing over the Mi. Let M
be a mixture of the Mi, where mechanism Mi is chosen with probability pi.
That is, M is the mechanism in which with probability pi, exactly m− i units
are burned. We call such mixtures over the Mi randomized burning alloca-
tion mechanisms. Under M , for i = 1, 2, . . . ,m, agent i wins with probability∑m

j=i pj , and the other agents never win. M is the linear allocation mechanism

(
∑m

i=1 pi,
∑m

i=2 pi,
∑m

i=3 pi, . . . ,
∑m

i=m pi, 0, 0, . . . , 0). The family of linear allo-
cation mechanisms that are based on the idea of burning a random number of
units is then the linear allocation mechanisms whose allocation vectors are in
{(a1, a2, . . . , an)|am+1 = am+2 = . . . = an = 0, 1 = a1 ≥ a2 ≥ . . . ≥ am ≥ 0}.

Using Theorem 1, we can find the most competitive burning-based mecha-
nism. To solve for the most competitive randomized burning-based mechanism,
we need to add two more constraints to the linear program: am+1 = 0 and
a1 = 1. To solve for the most competitive deterministic burning-based mecha-
nism, we need to add n more constraints to the linear program and turn it into
a mixed integer program: for all i, ai is binary. We will present more results in
Section 6. Here, for the case of n = 10, m = 1, . . . , 9, we compare the values of
α∗WCO (competitive ratio of the WCO mechanism, which burns nothing), α∗D
(competitive ratio of the optimal deterministic burning-based mechanism) and
α∗R (competitive ratio of the optimal randomized burning-based mechanism) in
Figure 1. When m is small, the three values are the same. As m gets large,
the value of α∗WCO decreases all the way to 0; the value of α∗D also decreases
but it gets stable when its value goes down to around 0.5; the value of α∗R first
decreases, but then increases, and at the end almost reaches 1.

Of course, α∗WCO ≤ α∗D ≤ α∗R; it turns out that all of these inequalities are
sometimes strict. Therefore, in general, we need to burn a random number of
units to get the most competitive burning-based mechanism.
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While we can use Theorem 1 to numerically solve for the most competitive
burning-based mechanism for given n and m, it is still desirable to have a gen-
eral analytical characterization for all n and m. The following claim analytically
characterizes a burning-based mechanism for all n and m, and gives its competi-
tive ratio. We obtained this analytical competitive mechanism by observing the
patterns of the (numerically obtained) optimal burning-based mechanisms for
all n < 10. We do not know whether this mechanism is still optimal for larger
n. However, we do know that this mechanism is feasible and has the specified
competitive ratio for all n and m.

The intuition behind the proposed mechanism is as follows. We aim to
redistribute more by allocating inefficiently, in order to achieve a net benefit. It
turns out that we can guarantee 100% redistribution by burning at most one
unit. For any type profile, the total VCG payment is mvm+1 when nothing
is burned, and it is (m − 1)vm when one unit is burned. If we burn one unit
with probability n−m

n−1 , then in expectation, the total payment collected by the

allocation mechanism is n−m
n−1 (m − 1)vm + (1 − n−m

n−1 )mvm+1 = m−1
n−1 (mvm+1 +

(n − m)vm). Throughout this paper, for randomized mechanisms, we simply
charge agents the expected payments, instead of charging a different payment
depending on the realization of the mechanism (e.g., whether a unit was burned).
The agents’ incentives will not be affected, because agents are assumed to be
maximizing their expected (quasilinear) utility. By redistributing to every agent
m−1
n−1 times the m-th highest type among the others, the total redistribution
equals exactly the total payment. When m is not too small, it is an acceptable
sacrifice of allocative efficiency to burn at most one unit to achieve strong budget
balance. When m is very small, we cannot afford to burn any units, so it is better
to use the original worst-case optimal VCG redistribution mechanism (nothing
is burned).

Claim 3. For any n and m, we can achieve the following competitive ratio with
a burning-based mechanism:

max{1−
(
n−1
m

)∑n−1
j=m

(
n−1
j

) , mn− n
mn−m

}

If the first expression is greater (or equal), then the mechanism achieving the
above ratio is the worst-case optimal VCG redistribution mechanism (nothing is
burned).

If the second expression is greater, then the mechanism achieving the above
ratio is the following:

• Burn (throw away) one unit with probability n−m
n−1 . The remaining units

are allocated efficiently. Every agent pays the VCG-based payment. (This
is linear allocation mechanism (1, 1, . . . , 1, m−1n−1 , 0, 0, . . . , 0).)

• Every agent receives a redistribution of m−1
n−1 times the m-th highest type

among types other than this agent’s own type.
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5.2 Partitioning units and agents

In this subsection, we study linear allocation mechanisms that are based on
partitioning the agents into groups. This is an idea that has previously been
proven effective in mechanism design [3, 9]. Based on this idea, we characterize
a family of strongly budget balanced mechanisms. Some of the mechanisms in
this class have been proposed previously [7, 23]. We focus on finding the most
competitive mechanism in this family. Because all the mechanisms in this family
are strongly budget balanced, no redistributions are ever needed.

We start with two example mechanisms. They are both based on excluding
one agent from the set of all agents. The first one is due to Moulin [23], and
the second one is due to Faltings [7].

Example Mechanism 1

• Exclude one agent uniformly at random.

• Assign one unit to the excluded agent at no charge.

• The remaining units are allocated to the remaining agents according to
the VCG mechanism.

• Transfer all the VCG revenue to the excluded agent.

Example Mechanism 2

• Exclude one agent uniformly at random.

• Units are allocated to the remaining agents according to the VCG mech-
anism.

• Transfer all the VCG revenue to the excluded agent.

Both example mechanisms are strategy-proof, individually rational, and
strongly budget balanced. In the first mechanism, one agent is excluded and
assigned one unit. In the second mechanism, one agent is excluded and as-
signed zero units. It should be noted that if we omit the last step in Ex-
ample Mechanism 2, that is, if we do not transfer all the VCG revenue to
the excluded agent, then the mechanism becomes exactly the linear allocation
mechanism in Example 4. That is, it becomes linear allocation mechanism

(
n− 1

n
,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
m

, mn , 0, . . . , 0). Similarly, if we omit the last step in Ex-

ample Mechanism 1, then the mechanism becomes linear allocation mechanism
(1, 1, . . . , 1︸ ︷︷ ︸

m−1

, mn ,
1
n ,

1
n , . . . ,

1
n ). (The first m − 1 agents always win, excluded or

not. The m-th agent wins only if she is excluded or one agent from 1 to m− 1
is excluded. The other agents win only when excluded.)

We now introduce the family of partitioning-based mechanisms; this family
generalizes both of the previous two mechanisms.
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Definition 2. Given n andm, for n1 ∈ {1, . . . , bn2 c}, m1 ∈ {0, . . . ,min{n1,m}},
we define the following mechanism:

• Pick n1 agents to form one group, uniformly at random. The other n−n1
agents form the second group.

• Allocate m1 units among the first group, according to the VCG mecha-
nism.

• Allocate the remaining m−m1 units among the second group, according
to the VCG mechanism.

• Transfer the VCG revenue from the first group to the second group, in
any predetermined way.

• Transfer the VCG revenue from the second group to the first group, in
any predetermined way.

We call this mechanism the (n1,m1)-partition mechanism.

We note that Example Mechanisms 1 and 2 are the (1, 1)-partition mecha-
nism and the (1, 0)-partition mechanism, respectively. Under any partitioning-
based mechanism, whether an agent wins depends on which group she is assigned
to, and her rank within her group. Since groups are randomly formed, indepen-
dent of the type profile, an agent’s probability of winning depends only on her
rank. If we do not transfer the VCG revenue between the groups, then an agent
pays 0 when her type is 0. That is, without transferring the VCG revenue, every
partitioning-based mechanism is linear.

Claim 4. The partitioning-based mechanisms are strategy-proof, individually
rational, and strongly budget balanced.

Proof. Without transferring the VCG revenue, every agent is participating in a
VCG mechanism, which is strategy-proof. For each agent, the transfer payment
she receives depends only on the types in the other group of agents, hence it
does not affect her incentives. Therefore, the mechanisms are strategy-proof.
Similarly, without transferring the VCG revenue, every agent is participating
in a VCG mechanism, which is individually rational. With transferring, the
agents’ utilities become higher or stay the same. Therefore, the mechanisms are
individually rational. Finally, the strong budget balance property follows from
the fact that the entire VCG revenue is transferred.

Since the partitioning-based mechanisms are strongly budget balanced, wel-
fare equals efficiency for them. Hence, for our objective of finding the most
competitive partitioning-based mechanism, we can completely ignore the VCG
payments and the revenue transferring process. That is, for the analysis that
follows, we pretend that there are no payments of any kind; when we use the
mechanism, we add the VCG payments and transfers back to achieve strategy-
proofness.
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We can use the technique in Theorem 1 to solve for the most competi-
tive partitioning-based mechanism (ignoring all payments and redistributions).
However, we now present a simpler solution technique based on the special
structure of the family of partitioning-based mechanisms. The following claim
characterizes the competitive ratio of a given partitioning-based mechanism.

Claim 5. Given n and m, the competitive ratio of the (n1,m1)-partition mech-
anism equals

UMn1,m1
(m)

m

Here, UMn1,m1
(m) is the expected efficiency (welfare) under the (n1,m1)-partition

mechanism when m agents report 1 and the remaining agents report 0. This
competitive ratio is equal to∑

x∈X
(
n1

x

)(
n−n1

m−x
)
(min{x,m1}+ min{m− x,m−m1})

m
(
n
m

)
Here, X = {x|x ∈ {0, 1, . . . , n1}, 0 ≤ m − x ≤ n − n1}. We will call this
competitive ratio α∗n1,m1

.

So far, we have not considered mixtures over partitioning-based mechanisms.
One might think that, by taking such mixtures, we can obtain more competitive
mechanisms. However, the following claim rules out this idea.

Claim 6. If M is a mixture over M1,M2, . . . ,Mt, where the Mi are partitioning-
based mechanisms for different values of n1 and m1, and Mi is chosen with prob-
ability pi, then there exists 1 ≤ j ≤ t so that Mj attains at least the competitive
ratio of M .

Proof. By the same argument as in Claim 5, the competitive ratio of M is

at most UM (m)
m . We have that UM (m)

m =
∑t

i=1 piUMi
(m)

m ≤ maxj
UMj

(m)

m . But
UMj

(m)

m is the competitive ratio for Mj by Claim 5. Hence, taking j ∈ arg maxj
UMj

(m)

m , Mj is at least as competitive as M .

By Claim 5, for given n and m, by maximizing∑
x∈X

(
n1

x

)(
n−n1

m−x
)
(min{x,m1}+ min{m− x,m−m1})

m
(
n
m

)
over n1 and m1, we obtain the optimal (n1,m1)-partition mechanism. This
mechanism is also optimal among all mixtures of partitioning-based mechanisms
by Claim 6. It is still desirable to have a general analytical characterization
of the optimal n1 and m1 for all n and m. The following claim analytically
characterizes three partitioning-based mechanisms for all n and m, and gives
their corresponding competitive ratios. We identified these three mechanisms by
observing the patterns of the (numerically obtained) optimal partitioning-based
mechanisms for all n < 10. We do not know whether there are other mechanisms
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that obtain higher competitive ratios for larger n. However, we do know that
all three mechanisms are feasible and achieve the specified competitive ratios
for all n and m.

The intuition behind the following mechanism is as follows. When m is small,
given a random agent, most likely this agent does not belong to the m highest
agents. Therefore, when m is small, it is an acceptable sacrifice of allocative
efficiency to randomly remove one agent and deny her any units (run the (1, 0)-
partition mechanism). By doing so, we achieve strong budget balance, as well
as efficiency for the rest of the agents. Similarly, when m is large relative to
n, given a random agent, most likely this agent does belong to the m highest
agents. Therefore, when m is large relative to n, it is an acceptable sacrifice of
allocative efficiency to randomly remove one agent and give her one unit (run
the (1, 1)-partition mechanism). Finally, when m is neither small nor large (e.g.,
m is close to n/2), neither (1, 0) nor (1, 1) works the best. When m is close to
n/2, given two random agents, most likely exactly one of them belongs to the
m highest agents. Therefore, in this scenario, it is more reasonable to exclude
two agents at random, and give them only one unit (run the (2, 1)-partition
mechanism).

Claim 7. For any n and m, we can achieve the following competitive ratio with
a partitioning-based mechanism:

max{n− 1

n
,
nm+m− n

nm
,

∑
x∈{x|0≤x≤2,0≤m−x≤n−2}

(
2
x

)(
n−2
m−x

)
(min{x, 1}+ min{m− x,m− 1})

m
(
n
m

) }

If the first expression is the largest, then the mechanism achieving the above
ratio is the (1, 0)-partition mechanism.

If the second expression is the largest, then the mechanism achieving the
above ratio is the (1, 1)-partition mechanism.

If the third expression is the largest, then the mechanism achieving the above
ratio is the (2, 1)-partition mechanism.

6 Numerical results

In the following table, for different numbers of agents and different numbers
of units, we present the competitive ratios of the WCO mechanism (α∗WCO),
the competitive ratios of the optimal deterministic burning-based mechanism
(α∗D), the competitive ratios of the optimal randomized burning-based mecha-
nism (α∗R), the competitive ratios of the optimal partitioning-based mechanism
(α∗n1,m1

), and the competitive ratios of the optimal mechanism whose allocation
part is linear (α∗). It should be noted that in all the experiments, the optimal
randomized burning-based mechanism matches the analytical characterization

19



in Claim 3, and the optimal partitioning-based mechanism matches the ana-
lytical characterization in Claim 7. The numbers below α∗D are the numbers
of units burned to achieve α∗D. The numbers below α∗R are the probabilities
of having one unit burned to achieve α∗R. The numbers below α∗n1,m1

are the
values of n1 and m1 to achieve α∗n1,m1

.

α∗WCO α∗D α∗R α∗n1,m1
α∗

n=4,m=1 0.571 0.571 0.571 0.750 0.842
0 0 (1,0)

n=4,m=2 0.250 0.286 0.667 0.833 0.864
1 0.67 (2,1)

n=4,m=3 0 0.267 0.889 0.917 0.923
2 0.33 (1,1)

n=6,m=1 0.839 0.839 0.839 0.833 0.918
0 0 (1,0)

n=6,m=3 0.375 0.410 0.800 0.867 0.914
1 0.6 (2,1)

n=6,m=5 0 0.356 0.960 0.967 0.968
3 0.2 (1,1)

n=8,m=1 0.945 0.945 0.945 0.875 0.962
0 0 (1,0)

n=8,m=3 0.646 0.646 0.762 0.875 0.929
0 0.71 (1,0)

n=8,m=5 0.276 0.452 0.914 0.925 0.950
2 0.43 (1,1)

n=8,m=7 0 0.422 0.980 0.982 0.982
4 0.14 (1,1)

Example 6. For illustration, for n = 8 andm = 5, for type profile (8, 7, 6, 5, 4, 3, 2, 1),
we present the specific optimal mechanisms:

• Optimal deterministic burning-based mechanism: Two units are burned.
Agents compete for the remaining 3 units under the original VCG mecha-
nism. Agents pay the VCG payments. On top of this, for all i, agent i re-
ceives back a redistribution amount that equals 0.4518v−i,4−0.2047v−i,5+
0.1412v−i,6 − 0.1059v−i,7, where v−i,j is the j-th highest type among the
agents other than i. For the example type profile, the total valuation is
21. The total VCG-based payment equals 15 while the total redistribution
equals 12.3247. The efficiency ratio equals 0.6108 (slightly higher than the
worst-case ratio α∗D = 0.422).

• Optimal randomized burning-based mechanism: One unit is burned with
probability 0.4286. That is, the four highest agents win for sure. The fifth
highest agent wins with probability 0.5714. Agents pay the VCG-based
payments. On top of this, for all i, agent i receives back a redistribution
amount that equals 0.5714v−i,5, where v−i,5 is the fifth highest type among
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the agents other than i. For the example type profile, the total valuation
is 28.2857. The total VCG-based payment equals 15.4285 while the total
redistribution is the same. The efficiency ratio equals 0.9429 (slightly
higher than the worst-case ratio α∗R = 0.914).

• Optimal partitioning-based mechanism: One agent is chosen uniformly
at random. This agent receives one unit for free and is excluded from
the auction. The remaining seven agents compete for the remaining four
units under the original VCG mechanism. The VCG payments are redis-
tributed to the excluded agent. Redistribution is always 100% under this
mechanism. For the example type profile, the total valuation is 28.1250.
The efficiency ratio equals 0.9375 (slightly higher than the worst-case ratio
α∗1,1 = 0.925).

• Optimal linear mechanism: The four highest agents win for sure. The fifth
highest agent wins with probability 0.7506 and the sixth highest agent wins
with probability 0.2494. Agents pay the VCG-based payments. On top
of this, for all i, agent i receives back a redistribution amount that equals
0.3325v−i,5+0.2969v−i,6−0.0356v−i,7, where v−i,j is the j-th highest type
among the agents other than i. For the example type profile, the total
valuation is 29.7596. The total VCG-based payment equals 14.5012 while
the total redistribution equals 14.0024. The efficiency ratio equals 0.9751
(slightly higher than the worst-case ratio α∗ = 0.950).

7 General multi-unit auctions

In this section, we drop the unit demand restriction. That is, we study multi-
unit auctions in which an agent may demand more than one unit.

We no longer require that m < n. However, in this section, we only consider
cases where m > 1 (cases where m = 1 reduce to the unit demand setting). An
agent’s type is no longer a single value, but a vector of length m. We use vi,j
to denote agent i’s marginal value for winning her j-th unit. That is, if agent
i wins k units, then her valuation equals

∑k
j=1 vi,j . A type profile is then an

m× n matrix: 
v1,m v2,m . . . vn,m

...
...

...
...

v1,2 v2,2 . . . vn,2
v1,1 v2,1 . . . vn,1


We use ei (i = 1, 2, . . . ,mn) to denote the i-th highest element in the type

profile. We still use v−i to denote the types of the agents other than i. That is,
v−i is an m× (n− 1) matrix:
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v1,m . . . vi−1,m vi+1,m . . . vn,m

...
...

...
...

...
...

v1,2 . . . vi−1,2 vi+1,2 . . . vn,2
v1,1 . . . vi−1,1 vi+1,1 . . . vn,1


We still useR to denote the redistribution function, whereR : [0,∞)m(n−1) →

R. Agent i’s redistribution equals R(v−i). If for all possible type profiles,
vi,j ≥ vi,j+1 for all i and all j (j < m), then we say we are in the setting of
multi-unit auctions with nonincreasing marginal values.

In general multi-unit auctions, the first-best mechanism is defined as the
mechanism that always correctly identifies the allocation that maximizes the
agents’ total efficiency, without asking for their types, and allocates the units
among the agents accordingly at no charge. Again, clearly this mechanism ob-
tains the largest welfare that we could hope for without an external subsidy.
We will only use the first-best mechanism as a benchmark, because it is not
strategy-proof. Again, our objective is to design strategy-proof complete mech-
anisms (consisting of both an allocation mechanism and a redistribution rule)
that are competitive against the first-best mechanism, in terms of the agents’
welfare.

The welfare under the first-best mechanism is

max
x1, x2, . . . , xn ∈ {0, 1, . . . ,m}∑n

i=1 xi = m

n∑
i=1

∑
1≤j≤xi

vi,j

If the marginal values are nonincreasing, then the welfare under the first-best
mechanism is simply

∑m
i=1 ei.

Our objective is to simultaneously find an allocation mechanism and a re-
distribution rule, which together form a mechanism with a high competitive
ratio. In the unit demand setting, we had a useful set of candidate allocation
mechanisms to choose from – the family of linear allocation mechanisms. The
following properties made this set useful. First, the linear allocation mechanisms
are characterized by n parameters (the ai). Therefore, it is a value optimization
problem to find an optimal linear allocation mechanism (under the premise that
we know how to design a corresponding redistribution rule). Second, under a
linear allocation mechanism, both the mechanism’s efficiency and the agents’
total payment are linear functions of the agents’ types (ordered types, to be
more precise). This fact allows us to consider only binary type profiles when
designing a redistribution rule for a given linear allocation mechanism, as shown
in Theorem 1.

As we will show, we can generalize the definition of linear allocation mech-
anisms to general multi-unit auctions. However, we no longer have a param-
eterized characterization of the whole linear family, like that in Claim 2. We
can also generalize the optimization technique behind Theorem 1, but only when
the marginal values are nonincreasing. Therefore, when the marginal values are
nonincreasing, for a given parameterized family of linear allocation mechanisms,
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we are able to simultaneously find both a linear allocation mechanism within the
given family, and a redistribution rule, which together maximize the competi-
tive ratio. As we will see, both the burning allocation mechanisms and the par-
titioning allocation mechanisms, when generalized to multi-unit auctions with
nonincreasing marginal values, can be parameterized and are linear. This allows
us to use our technique to solve for the most competitive burning/partitioning-
based mechanism, when the marginal values are nonincreasing. Actually, it
is easy to prove that the (1, 0)-partition mechanism (Faltings’ mechanism [7])
has the highest competitive ratio among all partitioning-based mechanisms, so
we do not actually need our general technique for this. When the marginal
values are not necessarily nonincreasing, our technique no longer works, but
still, both the burning allocation mechanisms and the partitioning allocation
mechanisms are well defined. It turns out that the (1, 0)-partition mechanism is
still the most competitive partitioning-based mechanism. We conclude with a
negative result saying that no burning-based mechanism can be as competitive
as the (1, 0)-partition mechanism when the marginal values are not necessarily
nonincreasing.

The key idea behind Theorem 1 is that if the allocation is linear, then when
designing the redistribution rule, we can focus on binary type profiles (type
profiles in which the vi are binary). The generalized optimization technique
in this section builds on the same idea. That is, in multi-unit auctions with
nonincreasing marginal values, if the allocation is linear (according to the gen-
eralized definition of linearity), then when we design the redistribution rule, we
can focus on binary marginal values (type profiles in which the ei are binary).
It should be noted that in previous work [17], when designing VCG redistribu-
tion mechanisms, also in the setting of multi-unit auctions with nonincreasing
marginal values, we have implicitly used an almost identical idea. In that pa-
per, the objective is to design a redistribution rule that maximizes the expected
total redistribution, and the non-deficit constraint is the only constraint. In
contrast, in this paper, we adopt a prior-free worst-case approach, and besides
the non-deficit property, we also require individual rationality. Despite all these
differences, the technique in this section can be interpreted as a slight exten-
sion of the technique in our earlier work [17]. There, the basic idea is that, if
the allocation mechanism is the VCG mechanism, then for the objective and
constraint in that paper, when designing the redistribution rule, it is enough to
focus on binary marginal values. Here, we show that as long as the allocation
mechanism is linear (VCG is a special case of the linear allocation mechanisms),
then when designing the redistribution rule for our objective and constraints,
we can focus on binary marginal values.

We now generalize the definition of linearity to multi-unit auctions with
nonincreasing marginal values.

Definition 3. A type profile is tie-free if no two marginal values in it are equal.
That is, for any i, i′, j, j′, vi,j = vi′,j′ implies i = i′ and j = j′.

Definition 4. Let V and V ′ be two tie-free type profiles. We use the vi,j to
denote the elements in V , and we use the v′i,j to denote the elements in V ′. We
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say V and V ′ are order-consistent 15 if for any i1, i2, j1, j2, vi1,j1 > vi2,j2 implies
v′i1,j1 > v′i2,j2 .

The set of all tie-free type profiles can be divided into a finite number of
maximal order consistent classes, where tie-free type profiles that are order
consistent with each other all belong to the same class, and tie-free type profiles
that are not order consistent belong to different classes.

For example, let us consider the case with three agents and two units (n = 3
and m = 2). In this case, a type profile is a 2× 3 matrix:[

v1,2 v2,2 v3,2
v1,1 v2,1 v3,1

]
An example maximal order consistent class is the set of all type profiles that

satisfy v1,1 > v2,1 > v3,1 > v1,2 > v2,2 > v3,2. Actually, each ordering of the mn
marginal values (satisfying the constraint that marginal values of each agent are
non-increasing) corresponds to a maximal order consistent class.

We use EM (V ) to denote the mechanism’s efficiency under allocation mech-
anism M for type profile V . We use PM (V ) to denote the agents’ total payment
under allocation mechanism M for type profile V . (For redistribution functions,
we will omit the M superscript for simplicity.)

Now we are ready to define the linear allocation mechanisms in multi-unit
auctions with nonincreasing marginal values.

Definition 5. In multi-unit auctions with nonincreasing marginal values, an
allocation mechanism M is linear if the following conditions are satisfied:

• When we restrict our attention to type profiles in a particular maximal
order consistent class S, both EM (V ) and PM (V ) can be written as linear
functions of the elements in V , and the coefficients are constants.

• EM (V ) and PM (V ) are continuous in the elements in V .

• An agent’s payment is always 0 if all her marginal values are 0.

As in the unit demand setting, the family of linear allocation mechanisms is
convex: any probability mixture over linear allocation mechanisms is also linear.

When the marginal values are nonincreasing, the VCG mechanism is linear.
For the earlier example with three agents and two items, we revisit the example
maximal order consistent class containing all type profiles that satisfy v1,1 >
v2,1 > v3,1 > v1,2 > v2,2 > v3,2. When we only consider type profiles in this
class, the mechanism’s efficiency under the VCG mechanism is always v1,1+v2,1
(agents 1 and 2 each win one unit). That is, the mechanism’s efficiency is a linear
function of the vi,j , with constant coefficients. Similarly, when we only consider
type profiles in this class, the agents’ total payment under the VCG mechanism
is always 2v3,1 (agents 1 and 2 each pay v3,1). That is, the agents’ total payment

15The definition of order-consistency in our earlier work [17] is slightly different.
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is also a linear function of the vi,j , with constant coefficients. The same holds
for other maximal consistent classes.

Next, we show that, under the VCG mechanism, the mechanism’s effi-
ciency and total payment are both continuous in the vi,j . We use maxi(S)
to denote the sum of the i highest values in set S. For any type profile,
the mechanism’s efficiency equals max2({v1,1, v1,2, v2,1, v2,2, v3,1, v3,2}), which
is continuous in the vi,j . For any type profile, the agents’ total payment equals
max2({v1,1, v1,2, v2,1, v2,2}) + max2({v1,1, v1,2, v3,1, v3,2}) + max2({v2,1, v2,2,
v3,1, v3,2})− 2 max2({v1,1, v1,2, v2,1, v2,2, v3,1, v3,2}), which is also continuous in
the vi,j .

Finally, it is clear that when an agent’s marginal values are all 0, she pays 0
under the VCG mechanism. Therefore, for n = 3 and m = 2, the VCG mecha-
nism is linear. By similar reasoning, it can be seen that the VCG mechanism is
linear for all n and m, when the marginal values are nonincreasing.

We can straightforwardly generalize the burning allocation mechanisms and
the partitioning allocation mechanisms to general multi-unit auctions. Just as
in the unit demand setting, in a general multi-unit auction, under a burning
allocation mechanism, we burn a deterministic/random number of units, and
then allocate the remaining units according to the VCG mechanism. Again, a
burning allocation mechanism is characterized by the pi: with probability pi,
we burn m− i units. (If one of the pi is 1, then we are burning a deterministic
number of units.) In general multi-unit auctions, under a partitioning alloca-
tion mechanism, we partition both the agents and the units into two groups,
and run the VCG mechanism on each group. Again, a partitioning allocation
mechanism is characterized by the number of agents in the smaller group (n1)
and the number of units assigned to the smaller group (m1). Both the burning
allocation mechanisms and the partitioning allocation mechanisms are based on
VCG mechanisms. The burning allocation mechanisms are mixtures over VCG
mechanisms for different numbers of units, and under a partitioning allocation
mechanism, for each subgroup of agents that results from partitioning, we use
the VCG mechanism to allocate the units assigned to this subgroup. We can use
the same technique that we used to prove the linearity of the VCG mechanism
to prove that both the burning allocation mechanisms and the partitioning al-
location mechanisms (after ignoring payments) are linear in multi-unit auctions
with nonincreasing marginal values.

Let us consider a parameterized family of linear allocation mechanisms (e.g.,
the family of burning allocation mechanisms). We denote the parameters by the
pi (i = 1, 2, . . . , k). The pi may need to satisfy certain constraints for the cor-
responding mechanism to be feasible. For example, for the family of burning
allocation mechanisms, the pi must sum to 1, because they represent probabil-
ities of burning different numbers of units (k = m in this case). The following
optimization model solves for the optimal values of the pi, as well as a redistribu-
tion function R, so that together, the linear allocation mechanism characterized
by the pi and the redistribution function R have the highest competitive ratio.
(We use F to denote the first-best mechanism.)
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Variable function: R : [0,∞)m(n−1) → R
Variables: α, p1, p2, . . . , pk
Maximize α
Subject to:
The pi characterize a feasible linear allocation mechanism M .
For every type profile V in which the marginal values, denoted by the vi,j ,
are nonincreasing,

For all i, R(v−i) ≥ 0 (individual rationality)
PM (V ) ≥

∑n
i=1R(v−i) (non-deficit)

EM (V )− PM (V ) +
∑n

i=1R(v−i) ≥ αEF (V ) (competitive ratio)

Once again, this is a functional optimization problem, which appears difficult
to solve. We use the vector (x1, x2, . . . , xn−1) to denote the matrix v−i in
which the j-th column contains xj ones (the xi are integers). For example,[

1 0 0
1 1 0

]
is denoted by the vector (2, 1, 0). We use r(x1, x2, . . . , xn−1) to

denote the redistribution received by an agent when the other agents’ types are
(x1, x2, . . . , xn−1). Just as in the unit demand setting, if we only consider binary
marginal values, then the redistribution function R can be represented by the
r(·), where 0 ≤ xi ≤ m. In the original functional optimization problem, we are
optimizing over the pi and the redistribution function R. When we only consider
binary marginal values, we are optimizing over the pi and the r(·). Hence, we
have a value optimization problem. Under some conditions, this optimization
problem corresponds to a linear program (e.g., when we focus on the family of
burning allocation mechanisms).

Variables: α, p1, p2, . . . , pk, r(x1, x2, . . . , xn−1) (0 ≤ x1, x2, . . . , xn−1 ≤ m)
Maximize α
Subject to:
The pi characterize a feasible linear allocation mechanism M .
For every type profile V in which the marginal values, denoted by the vi,j ,
are nonincreasing and binary,

For all i, R(v−i) ≥ 0 (individual rationality)
PM (V ) ≥

∑n
i=1R(v−i) (non-deficit)

EM (V )− PM (V ) +
∑n

i=1R(v−i) ≥ αEF (V ) (competitive ratio)

We use the p∗i , the r∗(x1, x2, . . . , xn), and α∗ to denote an optimal solution
of the above value optimization program. We always have that r∗(0, 0, . . . , 0) =
0. (For the type profile in which all the marginal values are 0, individual
rationality implies r∗(0, 0, . . . , 0) ≥ 0, and the non-deficit constraint implies
r∗(0, 0, . . . , 0) ≤ 0.) Again, α∗, the optimal objective value of the above linear
program, must be greater than or equal to the optimal objective value of the
original functional optimization problem. That is, α∗ is an upper bound on the
competitive ratio of any complete mechanism whose allocation part is within
the family under consideration. It turns out that we can achieve this upper
bound. In what follows, we construct a complete mechanism whose allocation
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part is within the family under consideration, and prove that this mechanism
has a competitive ratio of α∗. Hence, the constructed mechanism is an optimal
solution to the original functional optimization problem.

We define function R∗ as follows:

R∗(v−i) =

m(n−1)∑
j=1

(r∗(T−i,j)− r∗(T−i,j−1))e−i,j (1)

e−i,j is the j-th highest element in v−i. T−i,j is obtained from v−i by replac-
ing the j highest marginal values in v−i by 1, and by replacing the remaining
marginal values by 0.16

R∗ is defined in such a way that when v−i is binary, R∗(v−i) matches r∗(v−i).
Therefore, R∗ can be interpreted as a linear interpolation of the r∗(·).

R∗, as defined above, is continuous in the elements in v−i, for the following
reasons. If we perturb an element x in v−i by δ, then some of the e−i,j are per-
turbed. Let k1 be the smallest number for which e−i,k1

is perturbed. Let k2 be
the largest number for which e−i,k2

is perturbed. We must have that before the
perturbation, for all k1 ≤ j ≤ k2, e−i,j differs from x by at most δ, and after the
perturbation, for all k1 ≤ j ≤ k2, e−i,j differs from x by at most δ. We also have
that T−i,j is unchanged for j < k1 and j ≥ k2. Therefore, before the perturba-

tion, R∗(v−i) is close to
∑k1−1

j=1 (r∗(T−i,j)−r∗(T−i,j−1))e−i,j+
∑k2

j=k1
(r∗(T−i,j)−

r∗(T−i,j−1))x +
∑n

j=k2+1(r∗(T−i,j) − r∗(T−i,j−1))e−i,j =
∑k1−1

j=1 (r∗(T−i,j) −
r∗(T−i,j−1))e−i,j+r

∗(T−i,k2
)x−r∗(T−i,k1−1)x+

∑n
j=k2+1(r∗(T−i,j)−r∗(T−i,j−1))

e−i,j . (The difference between R∗(v−i) and this expression is bounded above
by a multiple of δ.) It should be noted that the value of this expression is
unchanged after the perturbation, because T−i,j is unchanged for j < k1 and
j ≥ k2, and e−i,j is unchanged for j < k1 and j > k2. After the perturba-
tion, with the new values of the T−i,j and the e−i,j , we still have that R∗(v−i)

is close to
∑k1−1

j=1 (r∗(T−i,j)− r∗(T−i,j−1))e−i,j + r∗(T−i,k2)x− r∗(T−i,k1−1)x+∑n
j=k2+1(r∗(T−i,j) − r∗(T−i,j−1))e−i,j . (The difference between R∗(v−i) after

the perturbation and this expression is also bounded above by a multiple of δ.)
That is, with or without the perturbation, R∗(v−i) is close to the same expres-
sion (which has the same value with or without the perturbation). Therefore,
R∗, as defined above, is continuous in the elements in v−i.

Theorem 2. Within the family of allocation mechanisms that we consider,
let M(p∗1, p

∗
2, . . . , p

∗
k) denote the allocation mechanism characterized by the p∗i .

(M(p∗1, p
∗
2, . . . , p

∗
k), R∗) is α∗-competitive. That is, it is optimal among all com-

plete mechanisms whose allocation part is within the family under consideration.

Before proving the theorem, we give the following lemma, which is similar
to Lemma 1.

16Here, ties can be broken arbitrarily (we will show later that R∗, as defined above, is
continuous in the elements in v−i).
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Lemma 2. Let the ci be constants. The following two systems of inequalities
are equivalent:

(a) c1x1 + c2x2 + . . .+ csxs ≥ 0 for all x1 > x2 > . . . > xs > 0.

(b) For any δ > 0, there exists ε > 0, so that c1x1 + c2x2 + . . . + csxs > −δ
for all (x1, x2, . . . , xs) ∈

⋃
k=1,2,...,s{(x1, x2, . . . , xs)|1 > x1 > x2 > . . . >

xs > 0, xk > 1− ε, xk+1 < ε}.

Proof. (a)⇒ (b) is trivial. We now prove (b)⇒ (a). By Lemma 1, we only need
to prove (b) implies the following: c1x1 + c2x2 + . . .+ csxs ≥ 0 for all x1 ≥ x2 ≥
. . . ≥ xs, where the xi are binary. For any δ and ε, if we have that c1x1 +c2x2 +
. . . + csxs > −δ for all (x1, x2, . . . , xs) ∈

⋃
k=1,2,...,s{(x1, x2, . . . , xs)|1 > x1 >

x2 > . . . > xs > 0, xk > 1−ε, xk+1 < ε}, then we have c1x1 +c2x2 + . . .+csxs ≥
−δ for all (x1, x2, . . . , xs) ∈

⋃
k=1,2,...,s{(x1, x2, . . . , xs)|1 ≥ x1 ≥ x2 ≥ . . . ≥

xs ≥ 0, xk ≥ 1− ε, xk+1 ≤ ε}. This implies that c1x1 + c2x2 + . . .+ csxs ≥ 0 for
all x1 ≥ x2 ≥ . . . ≥ xs, where the xi are binary.

The above lemma is basically a variant of Lemma 1, where part (b) has been
changed slightly (from binary to almost binary and from nonnegative to almost
nonnegative). As we mentioned earlier, the technique proposed in this section
is a slight generalization of the result in [17]. Therefore, we only present the
following proof sketch.

Proof. We only need to prove that α∗, the p∗i , and the function R∗ form a fea-
sible solution to the original functional optimization problem. If they form a
feasible solution, then (M(p∗1, p

∗
2, . . . , p

∗
k), R∗) is α∗-competitive, implying that

it is optimal. That is, we need to prove that the constructed mechanism satis-
fies individual rationality, the non-deficit constraint, and the competitive ratio
constraint (it is obvious that the constraints involving only the pi hold).

According to the definition of the linear allocation mechanisms, both EM (V )
and PM (V ) are continuous in the elements in V . We have also proved that
the constructed R∗ is continuous in the elements in V . We now consider the
constraints in the optimization model that are related to the redistribution rule.
The individual rationality constraint is that for all type profiles V in which the
elements are the vi,j , we must have R∗(v−i) ≥ 0 for all i and all v−i. Because
the set of tie-free type profiles is dense in the set of all type profiles, it suffices
to prove that for all tie-free type profiles V in which the elements are the vi,j ,
we must have R∗(v−i) ≥ 0 for all i and all v−i. Let V be an arbitrary tie-
free type profile. Let S be the maximal order consistent class containing V .
When we focus only on type profiles in S, for any type profile/matrix V , the
i-th highest element is always in a fixed position (j, k). To prove that all type
profiles in S satisfy R∗(v−i) ≥ 0, we need to prove a linear inequality in the
form of part (a) in Lemma 2, because R∗ is linear in the ei, and the ei can take
any values as long as we have e1 > e2 > . . . > emn > 0. When the type profiles
are binary, the individual rationality constraint is satisfied, by the definition
of R∗. Because R∗ is continuous, when we perturb a binary type profile, the
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individual rationality constraint can at most be violated by a small amount.
It follows that the aforementioned linear inequality in the ei can at most be
violated by a small amount if the ei are close to binary. This gives us part
(b) in Lemma 2. Therefore, we have that individual rationality is satisfied for
all tie-free type profiles (and hence, as we argued before, for all profiles) in an
arbitrary maximal order consistent class. Similarly, we can prove that the non-
deficit constraint and the competitive ratio constraint are satisfied for all type
profiles.

Based on the technique proposed above, we can solve for an optimal burning-
based mechanism. For n = 5 and different m, the following table presents the
optimal competitive ratios of burning-based mechanisms in multi-unit auctions
with nonincreasing marginal values.

m = 1 m = 3 m = 5 m = 7 m = 9
0.733 0.643 0.610 0.595 0.587

As a comparison, for the unit demand setting, when n = 5 and m = 1, the
competitive ratio of the optimal randomized burning-based mechanism is also
0.733. This is not surprising, because when there is only one item, the two
settings are the same. When n = 5 and m = 3, for the unit demand setting,
the competitive ratio of optimal randomized burning-based mechanism is 0.833
(higher than the value of 0.643 for the multi-demand setting). For the cases
where n = 5 and m ≥ 5, in the unit demand setting we naturally obtain a
competitive ratio of 1 because we can satisfy all agents trivially.

Example 7. For illustration, for n = 3 and m = 2, we present the specific
optimal burning-based mechanism.

With probability 0.8, nothing is burned. With probability 0.2, one unit is
burned. Optimal redistributions are characterized by the following r∗ function:

r∗(0, 0) = r∗(1, 0) = r∗(2, 0) = 0
r∗(1, 1) = r∗(2, 1) = 0.2
r∗(2, 2) = 0.6
Let us consider a specific type profile:[

5 3 1
6 4 2

]
Agent 1’s marginal value for winning the first unit equals 6, and her marginal

value for winning the second unit equals 5. Agent 2’s marginal value for winning
the first unit equals 4, and her marginal value for winning the second unit equals
3. Finally, agent 3’s marginal value for winning the first unit equals 2, and her
marginal value for winning the second unit equals 1.

For this specific type profile, agent 1 wins one unit for sure, and she wins
a second unit with probability 0.8. The total valuation equals 6 + 5 · 0.8 = 10.
Agent 1 is the only agent who pays positive VCG payment. The total VCG
payment equals 4 + 3 · 0.8 = 6.4.
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According to Equation 1, agent 1’s redistribution equals

R(

[
3 1
4 2

]
) = 4(r∗(1, 0)− r∗(0, 0)) + 3(r∗(2, 0)− r∗(1, 0))

+2(r∗(2, 1)− r∗(2, 0)) + 1(r∗(2, 2)− r∗(2, 1))

= 2 · 0.2 + 1 · 0.4 = 0.8

Similarly, agent 2’s redistribution and agent 3’s redistribution equal 0.8 and
2, respectively.

The total redistribution is then 3.6. The efficiency ratio equals 10−6.4+3.6
11 =

0.6545. The worst-case ratio is only 0.3. As a comparison, for n = 3 and m = 2,
in the unit demand setting, the optimal randomized burning-based mechanism
has a worst-case ratio of 0.75.

We can also use the proposed technique to solve for the optimal partitioning-
based mechanism. Actually, it turns out that this is not necessary, as it is easy to
prove that the (1, 0)-partition mechanism is the most competitive partitioning-
based mechanism, whether the marginal values are assumed to be nonincreasing
or not.

Theorem 3. In general multi-unit auctions, the (1, 0)-partition mechanism is
the most competitive partitioning-based mechanism, whether the marginal values
are assumed to be nonincreasing or not.

Example 8. For the type profile in Example 7, if we run the (1, 0)-partition
mechanism, then the valuation equals 7+11+11

3 = 9.6667. All payments are
redistributed. The efficiency ratio equals 9.6667

11 = 0.8788 (higher than the worst-
case ratio n−1

n = 0.6667).

Finally, we conclude with a negative result saying that no burning-based
mechanism can be more competitive than the (1, 0)-partition mechanism when
the marginal values are not necessarily nonincreasing.

Claim 8. In multi-unit auctions, if there are at least two agents,17 and the
marginal values are not necessarily nonincreasing, then no burning-based mech-
anism’s competitive ratio can be strictly more than n−1

n .

8 Future Research

Future research on maximizing the agents’ welfare under the constraint of
strategy-proofness can take a number of directions. Are there other families
of inefficient mechanisms that result in a high welfare for the agents? Among
what more general classes of mechanisms are the mechanisms proposed in this
paper optimal? Can we generalize some of these results to wider settings, for

17If there is only one agent, we can simply allocate all the units to the only agent at no
charge.
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example, settings with heterogeneous objects? What happens if we change the
objective, for example, if we have a prior distribution over type profiles and we
wish to maximize expected welfare?

Finally, we have assumed in this paper that random bits are not chosen
adversarially, that is, the worst-case adversary controls the agents’ valuations
but not our random choices. If the adversary also controls our random choices
(which would correspond to a different notion of worst-case optimality), then it
never hurts to use a deterministic mechanism. To illustrate how this affects our
results, let us consider Example Mechanism 2 of Subsection 5.2 (the Faltings
mechanism), in which we (uniformly) randomly choose one agent to be excluded
from the auction and assign this agent zero units. This mechanism is competitive
in the sense of this paper. (An agent is excluded with probability 1

n , hence the
competitive ratio is n−1

n .) However, if we use the alternative notion of worst-
case optimality where the adversary controls the random choices, then the agent
with the highest valuation will always be excluded, so that the mechanism is not
competitive. It remains to be seen what we can do for this alternative notion
of worst-case optimality. There has already been work in this direction. de
Clippel et al. [6] study deterministic inefficient mechanisms that are competitive
in multi-unit auctions with unit demand. Specifically, their mechanisms are
based on burning deterministic numbers of units. The difference between their
mechanisms and the deterministic burning-based mechanisms studied in this
paper is that in their mechanisms, different numbers of units may be burned
for different type profiles, while in our mechanisms, we only consider burning a
fixed number of units for all type profiles.

9 Conclusion

The VCG mechanism is not strongly budget balanced: in general, value flows
out of the system of agents in the form of VCG payments, which reduces the
agents’ utilities. In many settings, the objective is to maximize the sum of the
agents’ utilities (taking payments into account). For this purpose, several VCG
redistribution mechanisms have been proposed that redistribute a large fraction
of the VCG payments back to the agents, in a way that maintains strategy-
proofness and the non-deficit property. Unfortunately, sometimes even the best
VCG redistribution mechanism fails to redistribute a substantial fraction of the
VCG payments. This results in a low welfare for the agents, even though the
items are allocated efficiently. In this paper, we studied strategy-proof alloca-
tion mechanisms that do not always allocate the items efficiently. It turns out
that by allocating inefficiently, more payment can sometimes be redistributed,
so that the net effect is an increase in the sum of the agents’ utilities. The ob-
jective that we pursued is to design mechanisms that are competitive in terms
of welfare against the first-best mechanism. The results obtained in our paper
are summarized as follows.

• Multi-Unit Auctions with Unit Demand:
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– We characterized the family of linear allocation mechanisms (Claim 2).
We proposed an optimization technique for simultaneously finding a
linear allocation mechanism and a payment redistribution rule, which
together are optimal (Theorem 1).

– Given n and m, we analytically characterized a competitive mech-
anism based on burning units (Claim 3). The mechanism burns at
most one unit. For some values of n and m, the mechanism does not
burn any units, in which case it is identical to the previously known
WCO mechanism [16]. For other n and m values, the mechanism
burns one unit with a certain probability, in which case all payments
can be redistributed, achieving strong budget balance.

– Given n and m, we analytically characterized a competitive mech-
anism based on partitioning the agents into groups (Claim 7). De-
pending on the values of n and m, the mechanism is one of the follow-
ing mechanisms: the (1, 0)-partition mechanism, the (1, 1)-partition
mechanism, and the (2, 1)-partition mechanism. Here, both (1, 0)
and (1, 1) are previously known mechanisms [7, 23].

• Multi-Unit Auctions with Nonincreasing Marginal Values:

– We generalized the definition of linear allocation mechanisms to this
setting and also generalized the corresponding optimization technique
(Theorem 2).

• General Multi-Unit Auctions:

– We showed that the previously known Faltings mechanism (the (1, 0)-
partition mechanism) is optimal among all partitioning-based mech-
anisms, whether the marginal values are nonincreasing or not (The-
orem 3).

– We showed that for general multi-unit auctions, no burning-based
mechanism can be better than Faltings’ mechanism (Claim 8).
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Appendix

Proof of Claim 218:

Proof. Let us consider a specific strategy-proof linear allocation mechanism,
whose allocation vector is (a1, a2, . . . , an). Let us reason from the perspective
of a particular agent Alice. (We use “agent Alice” instead of “agent i” because
agent i specifically refers to the agent whose type is the i-th highest.) We use
xi (i = 1, 2, . . . , n − 1) to denote the i-th highest type among the agents other
than Alice. We consider a specific type profile in which the xi are all distinct,
and xn−1 > 0.

First of all, we observe that (holding the types of the other agents fixed),
Alice’s payment depends only on her rank. This is because if there were two
types that resulted in the same rank but a different payment, then if she had the
type that resulted in the higher payment, she would have an incentive to report
the one that results in the lower payment instead, because, by assumption, the
allocation will be the same. In particular, if she is ranked n-th, she will pay 0,
because an agent bidding 0 always pays 0.

We use zi to denote Alice’s payment when she is the i-th highest agent
(so zn = 0). Since we are considering a strategy-proof mechanism, for any
1 ≤ i ≤ n− 1, we have the following:

ai+1(xi − ε)− zi+1 ≥ ai(xi − ε)− zi
ai+1(xi + ε)− zi+1 ≤ ai(xi + ε)− zi

Here, ε is a sufficiently small positive value. The first inequality says that
when Alice’s type is just below xi, she prefers winning with probability ai+1 and
paying zi+1 (reporting truthfully) to winning with probability ai and paying zi
(misreporting to be ranked i-th). The second inequality says that this is reversed
when when Alice’s type is just above xi. It is straightforward to verify that if
ai+1 > ai, then the above two inequalities cannot be simultaneously satisfied.
That is, for a linear allocation mechanism to be strategy-proof, we must have
that ai ≥ ai+1 for all 1 ≤ i ≤ n − 1. That is, every strategy-proof linear
allocation mechanism corresponds to an allocation vector in {(a1, a2, . . . , an)|1 ≥
a1 ≥ a2 ≥ . . . ≥ an ≥ 0,

∑n
i=1 ai ≤ m}.

We now consider Alice’s payment for an arbitrary type profile. We still use
xi (i = 1, 2, . . . , n − 1) to denote the i-th highest type from the agents other
than Alice. We no longer require the xi to be distinct or xn−1 > 0. We still
use zi to denote Alice’s payment when she is the i-th highest agent. We know
that zn = 0. When Alice’s type is exactly xn−1, she should be indifferent be-
tween being the (n − 1)-th highest agent and the n-th highest agent. That is,
we have an−1xn−1 − zn−1 = anxn−1, or equivalently, zn−1 = (an−1 − an)xn−1.
When Alice’s type is exactly xn−2, she should be indifferent between being

18It should be noted that in the proof, to address the issue of tie-breaking, we assume that
a strategic agent can choose the way that the tie is broken for her—that is, she can choose
any rank consistent with her bid. To avoid conflict during tie-breaking, we also require that
if multiple agents have the same bid, then they are all indifferent about how the tie is broken.
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the (n− 2)-th highest agent and the (n− 1)-th highest agent. That is, we have
an−2xn−2−zn−2 = an−1xn−2−zn−1. Using the previous expression for zn−1, we
have zn−2 = (an−2−an−1)xn−2+(an−1−an)xn−1. Continuing this reasoning, we

obtain zi =
∑n−1

j=i (aj−aj+1)xj . Since we are considering an arbitrary agent and
an arbitrary type profile, we have that the ai characterize the agents’ payments,
and thus characterize the entire mechanism (because the ai also characterize the
allocation). When the ai are nonincreasing and sum to at most m, the linear al-
location mechanism characterized by the ai is exactly the maximal-in-range [27]
allocation mechanism under which the allowable allocations are those in which
the agents win with probabilities a1, a2, . . . , an. Moreover, the payments de-
scribed above are exactly the corresponding VCG-based payments. We know
that maximal-in-range allocations combined with VCG-based payments result
in strategy-proof mechanisms. Therefore, we have that each allocation vector
in {(a1, a2, . . . , an)|1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0,

∑n
i=1 ai ≤ m} corresponds to a

strategy-proof linear allocation mechanism.

Proof of Claim 3:

Proof. We already know that WCO has competitive ratio 1− (n−1
m )∑n−1

j=m (n−1
j )

. Hence,

we only need to show that the other mechanism proposed in the claim is feasible
and has competitive ratio mn−n

mn−m , for the values of n and m for which this
mechanism outperforms WCO.

If m = 1, then mn−n
mn−m = 0, which cannot be greater than the competi-

tive ratio of WCO. So we only need to consider m > 1. We first prove that
the mechanism is feasible. That is, it is individually rational and satisfies the
non-deficit property. Individual rationality is satisfied because the redistribu-
tion is always nonnegative. For any type profile, the total VCG payment is
mvm+1 when nothing is burned, and it is (m − 1)vm when one unit is burned.
In expectation, the total payment collected by the allocation mechanism is
n−m
n−1 (m − 1)vm + (1 − n−m

n−1 )mvm+1 = m−1
n−1 (mvm+1 + (n − m)vm). For the

agents reporting v1, . . . , vm, the redistribution received is m−1
n−1 vm+1. For the

other agents, the redistribution received is m−1
n−1 vm. Therefore, the total redis-

tribution equals the total payment, so the non-deficit constraint is satisfied. We
conclude that the mechanism is feasible.

Now we show that the mechanism has competitive ratio mn−n
mn−m . With prob-

ability n−m
n−1 , the total efficiency is

∑m−1
i=1 vi (one unit is burned). When noth-

ing is burned, the total efficiency is
∑m

i=1 vi. In expectation, the total effi-

ciency is n−m
n−1

∑m−1
i=1 vi + (1 − n−m

n−1 )
∑m

i=1 vi. This is greater than or equal to
n−m
n−1

m−1
m

∑m
i=1 vi +(1− n−m

n−1 )
∑m

i=1 vi = mn−n
mn−m

∑m
i=1 vi (we have equality when

all the vi are equal). Since the total payment equals the total redistribution,
efficiency is equal to welfare, so we conclude that we obtain the competitive
ratio mn−n

mn−m .

Proof of Claim 5:
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Proof. For the type profile in which m agents report 1 and the remaining
agents report 0, the first-best mechanism achieves an efficiency of m. Hence,
UMn1,m1

(m)

m is an upper bound on α∗n1,m1
.

We now show that
UMn1,m1

(m)

m is equal to the second expression in the claim;
then, we will show that Mn1,m1

does in fact attain this competitive ratio. In
the (n1,m1)-partition mechanism, n1 agents are randomly picked to form one
group, and the remaining n−n1 agents form a second group. If m agents report
1 and the remaining agents report 0, then the probability of having x agents that

report 1 in the group of size n1 is
(n1

x )(n−n1
m−x )

(n
m)

. The corresponding total welfare

is (min{x,m1}+ min{m− x,m−m1}). The set of possible values of x is X. It

follows that UMn1,m1
(m) is equal to

∑
x∈X (n1

x )(n−n1
m−x )(min{x,m1}+min{m−x,m−m1})

(n
m)

.

All that is left to show is that Mn1,m1
does in fact attain this competitive

ratio. Let us consider the following allocation mechanism, which is never better
than Mn1,m1

:

• Pick n1 agents to form one group, uniformly at random. The other n−n1
agents form the second group.

• Remove the agents with the lowest n−m types.

• For the first group, if there are more than m1 agents left, allocate m1

units uniformly at random among the remaining agents in group one.
Otherwise, allocate one unit to every remaining agent in group one.

• For the second group, if there are more than m−m1 agents left, allocate
m−m1 units uniformly at random among the remaining agents in group
two. Otherwise, allocate one unit to every remaining agent in group two.

For any type profile, the above mechanism results in (weakly) lower efficiency
than the (n1,m1)-partition mechanism, because in the partitioning-based mech-
anism, the units are assigned efficiently within each group, and in the modified
mechanism they are not because of agent removal and random assignment.

Under the modified mechanism, only the agents reporting v1, . . . , vm possibly
win any units, and the probability of winning is the same for each of them. For
the type profile in which m agents report 1 and the remaining agents report
0, the modified mechanism results in the same efficiency as the partitioning-
based mechanism. Therefore, because in this case, a winning agent’s utility is 1,
the expected number of winners under the modified mechanism is UMn1,m1

(m).
But this number must be the same for all type profiles. So, using the fact that
each of the top m agents is equally likely to win, for a general type profile,

the expected efficiency under the modified mechanism is
UMn1,m1

(m)

m

∑m
i=1 vi;

and we know that this is (weakly) lower than the expected efficiency under
the (n1,m1)-partition mechanism. Hence, the (n1,m1)-partition mechanism

has a competitive ratio of at least
UMn1,m1

(m)

m . We have already proved that
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UMn1,m1
(m)

m is an upper bound on α∗n1,m1
, so this expression must be exactly

equal to the competitive ratio.

Proof of Theorem 3:

Proof. Let us consider the type profile in which agent 1’s marginal value is 1
for every additional unit, and all the other agents have only marginal values of
0. For this type profile, under the (n1,m1)-partition mechanism, the agents’
total welfare equals n1

n m1 + n−n1

n (m −m1). (With probability n1

n , agent 1 is
assigned to the group of size n1, in which case the welfare equals m1. With
probability n−n1

n , agent 1 is assigned to the group of size n − n1, in which
case the welfare equals m −m1.) This expression is at most n−1

n m for any n1
and m1. The agents’ total welfare under the first-best mechanism is simply m.
Therefore, whether the marginal values are assumed to be nonincreasing or not,
any partitioning-based mechanism is at most n−1

n -competitive.
Given any type profile, let S denote the set of agents that win something

under the first-best mechanism. If we apply the (1, 0)-partition mechanism,
then every agent is excluded with probability 1

n . Suppose that, when a win-
ner is excluded, we do not change the allocation, but simply throw away the
units that the excluded agent would have won; the resulting welfare is exactly
n−1
n times the welfare under the first-best mechanism; moreover, it is always

smaller than or equal to the agents’ welfare under the (1, 0)-partition mecha-
nism (which allocates efficiently among the non-excluded bidders). Therefore,
the (1, 0)-partition mechanism is at least n−1

n -competitive, which means that
it is optimal among all partitioning-based mechanisms, whether the marginal
values are assumed to be nonincreasing or not.

Proof of Claim 8:

Proof. To ensure individual rationality, any agent’s redistribution should be
nonnegative. To ensure the non-deficit property, an agent’s redistribution should
never exceed the minimal total payment that can result when we hold the other
agents’ types fixed and change her own type. Otherwise, when her type is one
that minimizes the total payment, the total redistribution, which is at least the
redistribution received by this agent, is more than the total payment.19

We first prove the result for the case of two agents. Let M be a burning-
based mechanism under which m−i units are burned with probability pi. Let us
consider the type profile in which agent 1’s marginal values are (0, 0, . . . , 0, 1).
That is, agent 1’s valuation equals 1 if she wins all the units, and 0 otherwise.
Let agent 2’s type be the same. For this type profile, with probability pm, the
efficiency equals 1, and the payment equals 1. With probability 1 − pm, the
efficiency equals 0, and the payment equals 0. That is, the expected efficiency is
pm, and we try to redistribute as much as possible from the expected payment
pm. The welfare is maximized when pm = 1 (nothing is burned). That is, among
all burning-based mechanisms, nothing can outperform the VCG mechanism

19This observation is due to [4].
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with redistribution on this profile. However, when there are only two agents,
neither agent can collect any redistribution: for either agent, the minimal total
payment is always 0 (when we fix the other agent’s type and change her own
type), because if her type is (0, 0, . . . , 0), then the total payment is 0. Therefore,
no burning-based mechanism can result in greater welfare on this profile than
the VCG mechanism itself. However, under the VCG mechanism, the agents’
total welfare is 0 for this type profile. Thus, when there are two agents, no
burning-based mechanism can be competitive at all.

Next, we prove the result for the case of at least three agents. Let M be a
burning-based mechanism under which m− i units are burned with probability
pi, and suppose that its competitive ratio is strictly more than n−1

n . Let us
consider the type profile in which agent 1’s marginal values are (0, 0, . . . , 0, 1).
That is, agent 1’s valuation equals 1 if she wins all the units, and 0 otherwise.
Let all the other agents have only marginal values of 0. That is, the other
agents are not interested in any units. For this type profile, it is clear that if
pm ≤ n−1

n , then the mechanism is at most n−1
n -competitive. That is, we must

have pm > n−1
n . Now, let us consider another type profile in which agent 1’s type

is the same, but we let agent 2’s marginal values be (0, 0, . . . , 0, 1− ε, 0), where
ε is a very small positive value. That is, agent 2’s valuation equals 1− ε if she
wins at least m− 1 units. Let all the other agents’ marginal values all be 0. For
this type profile, burning more than one unit results in a welfare of 0, and as we
have proved, the probability of burning one unit is less than 1

n . If agent 1’s type
were (0, 0, . . . , 0) instead, then the total payment would be 0 under M . (The
total payment would be 0 both under the VCG mechanism, and under the VCG
mechanism with one unit burned.) It follows that agent 1’s redistribution is 0 for
the type profile considered. Similarly, agent 2’s redistribution is also 0. For any
other agent, if we were to replace her type by (1 + ε, 0, 0, . . . , 0), then the total
payment under the VCG mechanism would be ε, and the total payment under
the VCG mechanism with one unit burned would be 1− ε. Since pm > n−1

n , the
expected total payment would be at most n−1

n ε+ 1
n (1−ε) = n−2

n ε+ 1
n . Therefore,

each agent other than agent 1 and 2 at most receives a redistribution of n−2
n ε+ 1

n .

Thus, the total redistribution is at most (n−2)2
n ε+ n−2

n . The total efficiency for
this type profile is at most 1. The VCG payment for this type profile is 1 − ε.
The VCG payment with one unit burned is 0. Therefore, the total payment is

at least n−1
n −

n−1
n ε. So, the welfare is at most 1− n−1

n + n−1
n ε+ (n−2)2

n ε+ n−2
n =

n−1
n + (n−2)2+n−1

n ε. The welfare under the first-best mechanism is 1. Since ε can
be arbitrarily small, the burning-based mechanism’s competitive ratio cannot
be strictly more than n−1

n , and we have the desired contradiction.

39


