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Abstract

Many important problems in multiagent systems involve the allocation of mul-
tiple resources among the agents. If agents are self-interested, they willlie about
their valuations for the resources if they perceive this to be in their interest.The
well-known VCG mechanism allocates the items efficiently, is strategy-proof(agents
have no incentive to lie), and never runs a deficit. Nevertheless, the agents may
have to make large payments to a party outside the system of agents, leadingto
decreased utility for the agents. Recent work has investigated the possibilityof
redistributing some of the payments back to the agents, without violating the other
desirable properties of the VCG mechanism.

Previous research on redistribution mechanisms has resulted in a worst-case
optimal redistribution mechanism, that is, a mechanism that maximizes the fraction
of VCG payments redistributed in the worst case. In contrast, in this paper, we
assume that a prior distribution over the agents’ valuations is available, andour
goal is to maximize the expected total redistribution.

In the first part of this paper, we study multi-unit auctions with unit demand.
We analytically solve for a mechanism that is optimal amonglinear redistribu-
tion mechanisms. We also proposediscretizedredistribution mechanisms. We
show how to automatically solve for the optimal discretized redistribution mecha-
nism for a given discretization step size, and show that the resulting mechanisms
converge to optimality as the step size goes to zero. We present experimental
results showing that for auctions with many bidders, the optimal linear redistri-
bution mechanism redistributes almost everything, whereas for auctionswith few
bidders, we can solve for the optimal discretized redistribution mechanismwith a
very small step size.

In the second part of this paper, we study multi-unit auctions with nonincreas-
ing marginal values. We extend the notion of linear redistribution mechanisms,
previously defined only in the unit demand setting, to this more general setting.
We introduce a linear program for finding the optimal linear redistribution mecha-
nism. This linear program is unwieldy, so we also introduce one simplified linear
program that produces relatively good linear redistribution mechanisms. We con-
jecture an analytical solution for the simplified linear program.

1



1 Introduction

Many important problems in multiagent systems can be seen asresource allocation
problems. One natural way of allocating resources among agents is to auction off
the items. An allocation mechanism (orauction) takes as input the agents’ reported
valuations for the items, and as output produces an allocation of the items to the agents,
as well as payments to be made by or to the agents. We assume that agents areself-
interested: an agent will reveal her true valuation function only if doing so maximizes
her utility. A mechanism isstrategy-proofif it is a dominant strategy for the agents to
report their true valuations—that is, regardless of what theother agents do, an agent is
best off reporting her true valuation. A mechanism isefficientif it always chooses an
allocation that maximizes the sum of the agents’ valuations(aka. thesocial welfare).

The well-knownVCG (Vickrey-Clarke-Groves)mechanism [24, 6, 13] is both strategy-
proof and efficient.1 In fact, in sufficiently general settings, the wider but closely related
class of Groves mechanisms coincides exactly with the classof mechanisms that satisfy
both properties [12, 18]. The VCG mechanism has an additional nice property, which
is that it satisfies thenon-deficitproperty (in allocation settings): the sum of the pay-
ments from the agents is nonnegative, which means that the mechanism does not need
to be subsidized by an outside party. A stronger property than the non-deficit property
is that of(strong) budget balance, which requires that the sum of the payments from
the agents is zero—so that no value flows out of the system of agents. This property is
not satisfied by the VCG mechanism. In the context of auctions, often, this is not seen
as a problem for the sake of maximizing the agents’ welfare: the idea is that the pay-
ments are collected by the seller of the items, who is just another agent, so that nothing
goes to waste. However, this reasoning does not apply to manymultiagent settings; in
particular, it does not apply to settings in whichthere is no sellerwho is separate from
the agents. For example, consider the problem of dissolvinga partnership: suppose
there is a group of agents who have started a company together, but due to personal
disagreements can no longer work together, so that it becomes essential to allocate the
(currently jointly owned) company to just one of the agents.While it makes sense
to auction off the company among the agents, ideally, the revenue of this auction is
then distributed among the agents themselves—if the revenueleaves the system of the
agents, their welfare is reduced. Similarly, the agents maybe deciding how to allocate
a resource that is not claimed by anyone—for example, the agents may have jointly
discovered a valuable commodity (say, an oil field) in unclaimed territory, which they
now need to allocate to the one of them that can make the best use of it. Finally, the
agents may have a jointly owned resource (say, a powerful computer) that can only be
used by one agent on any given day, and may wish to use an auction to determine which
agent gets to use it today. In all these cases, any payment that is not redistributed to the
agents truly goes to waste. Hence, to maximize social welfare (taking payments into
account), we would prefer a budget balanced mechanism to onethat merely achieves
the non-deficit property (assuming both are efficient). Unfortunately, it is impossible to

1We use the term “VCG mechanism” to refer to the Clarke mechanism. Sometimes people refer to the
wider class of Groves mechanisms as “VCG mechanisms,” but we willavoid this usage in this paper. In fact,
the mechanisms proposed in this paper fall within the class of Groves mechanisms.
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achieve budget balance together with strategy-proofness and efficiency [19, 12, 21].2

Incidentally, while these types of setting are perhaps not what one typically has in
mind when considering “auctions” in the common sense of the word, the fact that we
use auctions does not significantly limit the generality of our approach. Effectively, we
just use “auctions” as a convenient word to describe resource allocation mechanisms
that use payments.

Previous research has sacrificed either strategy-proofness or efficiency to achieve
budget balance [11, 22, 10]. Another approach is to allocatethe items according to the
VCG mechanism, and then to redistribute as much of the total VCG payment as possi-
ble back to the agents, in a way that does not affect the desirable properties of the VCG
mechanism. Several papers have pursued this idea and proposed some natural redistri-
bution mechanisms [2, 23, 3]. For example, in the Bailey mechanism [2], each agent
receives a redistribution payment that equals1/n times the VCG revenue that would
result if this agent were removed from the auction. In the Cavallo mechanism [3],
each agent receives a redistribution payment that equals1/n times the minimal VCG
revenue that can be obtained by changing this agent’s own bid. For revenue mono-
tonic settings, Bailey’s and Cavallo’s mechanisms coincide; in this case we refer to
this mechanism as the Bailey-Cavallo mechanism. More recently, there has been some
research on findingoptimal redistribution mechanisms. For the setting of multi-unit
auctions with unit demand (that is, each agent wants at most one of the indistinguish-
able units)—the setting that we study in most of this paper—a mechanism that maxi-
mizes the worst-case redistribution fraction has been analytically characterized [16, 20]
(one of these papers [16] also generalizes beyond the unit-demand case, to nonincreas-
ing marginal values). In this paper, we continue the search for optimal redistribution
mechanisms. Unlike the worst-case work, we assume that a prior distribution over the
agents’ valuations is available, and we aim to maximize theexpectedtotal redistribu-
tion. (There are two related papers [17, 5], in which the authors propose mechanisms
that maximize the sum of the agents’ utilities (taking payments into account) in ex-
pectation. However, these papers operate under the constraint that every agent’s total
payment must be nonnegative, which results in very different mechanisms.) In this
paper, we restrict ourselves to VCG redistribution mechanisms, so that the allocation
is always efficient; other work has studied what can be done when this constraint is re-
laxed [10, 20, 14, 9] (all the resulting mechanisms are characterized analytically). We
also restrict ourselves to static mechanisms; good redistribution mechanism has also
been analytically characterized in a dynamic context [4].

The rest of this paper is presented as follows. From Section 2to Section 5, we
focus on multi-unit auctions with unit demand. In Section 2,we cover the necessary
background and introduce our notation. In Section 3, we recall the definition of lin-
ear redistribution mechanisms and we solve for optimal-in-expectation linear (OEL)

2The dAGVA mechanism [8] is efficient, (strongly) budget balanced, andBayes-Nashincentive compat-
ible, which means that if each agent’s belief over the other agents’ valuations is the distribution that results
from conditioning the (common) prior distribution over valuations on the agent’s own valuation, and other
agents bid truthfully, then the agent is best off (in expectation) bidding truthfully. In practice, it is some-
what unreasonable to assume that agents’ beliefs are so consistent with each other and with the mechanism
designer’s belief, so we use the much stronger and more common notion of dominant-strategies incentive
compatibility (strategy-proofness) in this paper.
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redistribution mechanisms in our setting. We focus on deriving an analytical character-
ization of these OEL mechanisms. In Section 4, we show how to automatically (using
linear programming) solve for (possibly nonlinear) mechanisms that are close to opti-
mal, based on a discretization of the valuation space.3 This technique is only effective
for cases with small number of agents. That is, it does not scale very well. Fortunately,
the experimental results in Section 5 show that for auctionswith many bidders, the op-
timal linear mechanism redistributes almost everything, whereas for auctions with few
bidders, we can solve for the optimal discretized redistribution mechanism with a very
small step size. That is, the two approaches are in some sensecomplementary. Finally,
in Section 6, we study the more general setting of multi-unitauctions with nonincreas-
ing marginal values. We extend the notion of linear redistribution mechanisms to this
more general setting, and propose several models for findingoptimal linear redistribu-
tion mechanisms. It is more difficult to work in this more general setting, since we also
need to consider a type of ordering information; we discuss these difficulties in that
section.

2 Background

From this section to Section 5, we focus on multi-unit auctions with unit demand.
In a multi-unit auction, multiple indistinguishable unitsof the same good are for

sale. In a multi-unit auction with unit demand, each agent wishes to obtain at most one
unit—that is, if the agent receives more than one unit, her utility is the same as if she
receives one unit. We note that an (unrestricted) single-item auction is a special case
of multi-unit auctions with unit demand.

In this setting, each agent has a privately held true value for receiving (at least)
one unit. If an agent wins one unit, her utility is her true value minus her payment;
otherwise, her utility is the negative of her payment. In a(sealed-bid) mechanism,
every agent reports her value (herbid), and the mechanism determines which agents
win a unit, as well as how much each agent pays, as a function ofthese bids. A
mechanism isstrategy-proofif it is a dominant strategy for each agent to bid her true
valuation—that is, bidding truthfully is optimal regardless of what the other agents bid.
Since we only study strategy-proof mechanisms in this paper, we do not need to make
a clear distinction in our notation between the true values and the bids.

We assume that we know the number of agentsn and the number of indistin-
guishable unitsm. If m ≥ n, then we can give every agent a unit without charging
any payments. Thus, we only consider the casem < n.4 Let the set of agents be
I = {1, . . . , n}, where agenti has theith highest valuevi. Let constantsL andU be
the lower bound and upper bound of the possible values. Hence, ∞ > U ≥ v1 ≥ v2 ≥
. . . ≥ vn ≥ L ≥ 0. We also assume that we have a prior joint probability distribu-
tion over the agents’ valuesvi. We denote the probability density function of this joint

3This falls under the general research agenda ofautomated mechanism design[7], where we have an
algorithm search through a space of possible mechanisms for anoptimal one. However, here we use a
formulation that is specifically tailored to this context. Infact, the linear programs elsewhere in this paper
could in principle also be used for the purpose of automated mechanism design, but of course there is little
purpose to doing so for the cases where we also provide an analytical solution.

4We remove this restriction in Section 6 where we consider settings without unit demand.
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distribution byf(v1, . . . , vn). We emphasize that we require neither that the agents’
values are drawn from identical distributions, nor that they are independent.

In a multi-unit auction with unit demand, the VCG mechanism coincides with the
(m + 1)th price auction. In this auction, the bidders with the highest m bids (bidders
1, . . . ,m) each win one unit, and each pay at the price of the(m + 1)th bid (vm+1).
(Whenm = 1, this is the well-known second-price auction.) Because it is a special
case of the VCG mechanism, the(m + 1)th price auction is strategy-proof, efficient,
and never incurs a deficit.

A redistribution mechanism works as follows: after collecting a vector of bids
v1 ≥ v2 ≥ . . . ≥ vn, we first run the VCG mechanism ((m + 1)th price auction).
The resulting allocation is efficient (agents1 . . . m each win a unit). However, because
each winner has to payvm+1, a total VCG payment ofmvm+1 leaves the system of
agents. In order to achieve higher social welfare (taking payments into account), we
try to redistribute a large portion of the total VCG payment back to the bidders, while
maintaining the desirable properties of the VCG mechanism.Let ri be the redistri-
bution received by bidderi. To maintain strategy-proofness,ri must be independent
of bidderi’s own bid vi. (It is not difficult to see that this is sufficient for maintain-
ing strategy-proofness: if an agent cannot affect her own redistribution payment, then
she may as well ignore it when she determines her strategy; hence, the incentives for
bidding are the same as in the VCG mechanism, which is strategy-proof. In general,
because our allocation is efficient, the requirement thatri does not depend onvi is
also necessary for strategy-proofness [12, 18].) Hence, wecan writei’s redistribution
asr(v−i), wherev−i is the multiset of bids other thanvi; functionsr determinesi’s
redistribution. In this paper, unless otherwise specified,we consider onlyanonymous
redistribution mechanisms, for which the redistribution function is the same for all
agents (denoted byr). This may still result in different redistribution payments for the
agents, because the input to the function,v−i, can be different for differenti.

Another property of the VCG mechanism that we want to maintain is thenon-
deficit property: the payments collected by the mechanism are at least the payments
redistributed by it. This is crucial if no external subsidy for the mechanism is available.5

In our setting, this means that
∑n

i=1 r(v−i) ≤ mvm+1.
Finally, one property of mechanisms that we have not discussed so far isindividual

rationality (aka.voluntary participation): participating in the mechanism should not
make agents worse off. Since our objective is to maximize social welfare, if the prior
distribution is symmetric across agents, then under any redistribution mechanism that
redistributes a nonnegative amount of payment in expectation, every agent benefits
from participating in the mechanism (the agent receives nonnegative expected utility).
That is,ex-interimindividual rationality is not a binding constraint. The techniques
in this paper can also be used to design mechanisms that are ex-interim individually
rational when the prior is not symmetric across agents, or mechanisms that satisfy the
even strongerex-postindividual rationality. However, this would require additional
constraints and make the analytical characterization in Section 3 too complex. For the
above reasons, we omit individual rationality constraintsin this paper.

5Without the non-deficit constraint, we can simply redistribute 1/n of the expected total VCG payment
to every agent, which leaves no waste in expectation.
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3 Linear Redistribution Mechanisms

We first restrict our attention to the family oflinear redistribution mechanisms. A
linear redistribution mechanism is characterized by a linear redistribution function of
the following form:

r(v−i) = c0 + c1v−i,1 + c2v−i,2 + . . . + cn−1v−i,n−1

wherev−i,j is the jth highest bid amongv−i (the set of bids other thanvi). The
coefficientscj completely characterize the redistribution mechanism. All previously
proposed redistribution mechanisms for this setting [3, 2,23, 16, 20] are in fact linear
redistribution mechanisms.

3.1 Optimal-in-expectation linear redistribution mechanisms

We will prove the following result, which characterizes a linear redistribution mech-
anism that maximizes the expected total redistribution (among linear redistribution
mechanisms). We call this mechanism OEL (optimal-in-expectation, linear).

Theorem 1. Givenn, m, and a prior distribution over agents’ valuations, the follow-
ing ci define a redistribution mechanism that maximizes expected redistribution, under
the constraints that the mechanism must be a linear redistribution mechanism, efficient,
strategy-proof, and satisfy the non-deficit property.

Let theoi be defined as follows:

o0 = U − Ev1, oi = Evi − Evi+1 (i = 1, 2, . . . , n − 1), andon = Evn − L.

Theoi are determined by the given prior distribution.
Letk be any integer satisfying

k ∈ arg mini{oi/
(

n
i

)

|i − m odd, i = 0, . . . , n}

Let functionG be defined as follows:

G(n,m, i) =
(

n−i−1
n−m−1

)

/
(

m−1
i−1

)

= (n−i−1)!(i−1)!
(n−m−1)!(m−1)!

• If 0 < k < m, then

ci = (−1)m−iG(n,m, i) for i = k + 1, . . . ,m,

ck = m/n −
∑m

i=k+1(−1)m−iG(n,m, i),

andci = 0 for otheri.

• If k = 0, then

ci = (−1)m−iG(n,m, i) for i = 1, . . . ,m,

c0 = Um/n − U
∑m

i=1(−1)m−iG(n,m, i),

andci = 0 for otheri.
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• If m < k < n, then

ci = (−1)m−i−1G(n,m, i) for i = m + 1, . . . , k − 1,

ck = m/n −
∑k−1

i=m+1(−1)m−i−1G(n,m, i),

andci = 0 for otheri.

• If k = n, then

ci = (−1)m−i−1G(n,m, i) for i = m + 1, . . . , n − 1,

c0 = Lm/n − L
∑n−1

i=m+1(−1)m−i−1G(n,m, i),

andci = 0 for otheri.

In expectation, this mechanism fails to redistribute

okm
(

n−1
m

)

/
(

n
k

)

This mechanism is uniquely optimal among all linear redistribution mechanisms if
and only if the choice ofk is unique and there does not exist an eveni and an oddj
such thatoi = oj = 0.

The mechanism is complicated, and is perhaps easier to understand using the aux-
iliary variables that we define in the derivation of this mechanism (in Appendix A).

The key property of the mechanisms in the theorem is that the waste is always a
multiple of: 1) the expected difference between two adjacent (in terms of size) bids,
or 2) the expected difference between the upper bound and thelargest bid, or 3) the
expected difference between the lowest bid and the lower bound. Moreover, the mul-
tiplication coefficient is determined bym andn. Then, the OEL mechanism simply
chooses the best of these options. In contrast, under the worst-case optimal mecha-
nism [16, 20], the waste is a linear combination of all of the bids (except for the highest
m).

We now present a special case that may give some further intuition. The case where
k = m + 1 in Theorem 1 corresponds to the redistribution mechanism inwhich each
agent receives a redistribution payment that is equal tom/n times the(m+1)th highest
bid from the other agents. In our setting of multi-unit auctions with unit demand, this
is exactly the Bailey-Cavallo mechanism. This observationis formally stated in the
following corollary.

Corollary 1. Givenn, m, and a prior distribution over agents’ valuations, we define
theoi as follows:

o0 = U − Ev1, oi = Evi − Evi+1 (i = 1, 2, . . . , n − 1), andon = Evn − L.

If the following condition holds:

om+1 ≤ oi

(

n
m+1

)

/
(

n
i

)

for all 0 ≤ i ≤ n with i − m odd,

then the Bailey-Cavallo mechanism maximizes expected redistribution, under the con-
straints that the mechanism must be a linear redistributionmechanism, efficient, strategy-
proof, and satisfy the non-deficit property.
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Next, we present two example OEL mechanisms.

Example 1. Consider the case wheren = 3 andm = 1, and the bids are all drawn
independently and uniformly from[0, 1]. In this case,Evi = 4−i

4 for i = 1, . . . , 3. So,
U = 1, L = 0, oi = 1

4 for i = 0, . . . , 3. (We recall thato0 = U −Ev1, on = Evn −L,
andoi = Evi − Evi+1 otherwise.)arg mini{oi/

(

n
i

)

|i − m odd, i = 0, . . . , n} is then
{m+1} = {2}. The expected amount that fails to be redistributed iso2m

(

n−1
m

)

/
(

n
2

)

=
1
6 . (The expected total VCG payment is12 .) The optimal solution is given byc2 =
1
3 , and ci = 0 for other i. Hence, this optimal-in-expectation linear redistribution
mechanism is defined byri = 1

3v−i,2, which is actually the Bailey-Cavallo mechanism.
The total redistribution is

∑n
i=1 ri = 1

3v2 + 2
3v3. The expected amount that fails to be

redistributed isE(v2 −
1
3v2 −

2
3v3) = 2

3E(v2 − v3) = 1
6 .

Example 2. Consider the case wheren = 8 andm = 2, and the bids are all drawn
independently and uniformly from[0, 1]. In this case,Evi = 9−i

9 for i = 1, . . . , 8. So
U = 1, L = 0, oi = 1

9 for i = 0, . . . , 8. arg mini{oi/
(

n
i

)

|i − m odd, i = 0, . . . , n} is
then{3, 5}. The expected amount that fails to be redistributed iso3m

(

n−1
m

)

/
(

n
3

)

= 1
12 .

(The expected total VCG payment is4
3 .)

One optimal solution is given byc3 = 1
4 , andci = 0 for other i. Hence this

expectation optimal linear redistribution mechanism is defined byri = 1
4v−i,3 (Bailey-

Cavallo mechanism). The total redistribution is
∑n

i=1 ri = 5
4v3 + 3

4v4. The expected
amount that fails to be redistributed isE(2v3 −

5
4v3 −

3
4v4) = 3

4E(v3 − v4) = 1
12 .

The other optimal solution is given byc3 = 2
5 , c4 = − 3

10 , c5 = 3
20 , andci = 0 for

otheri. Hence this expectation optimal linear redistribution mechanism is defined by
ri = 2

5v−i,3−
3
10v−i,4+

3
20v−i,5. The total redistribution is

∑n
i=1 ri = 2v3−

3
4v5+

3
4v6.

The expected amount that fails to be redistributed isE( 3
4 (v5 − v6)) = 1

12 .

3.2 Properties of the OEL mechanism

In the remainder of this section, we present some propertiesof the OEL mechanism.
First, we have that there cannot be another redistribution mechanism that always redis-
tributes at least as muchin total as OEL, and strictly more in at least one case. That is,
the OEL mechanism iswelfare undominated[1].6

Proposition 1 ([1]). For anym,n and any prior distribution, there does not exist any
redistribution mechanism that, for every multiset of bids,redistributes at least as much
in total as OEL, and redistributes strictly more in at least one case.

The above proposition was shown in [1]. More precisely, thatpaper shows that
the OEL mechanisms characterized in Theorem 1 are the only welfare undominated
redistribution mechanisms that are anonymous and linear inmulti-unit auctions with
unit demand.

It should be noted that Proposition 1 only applies to the OEL mechanism, as defined
in Theorem 1. Under certain circumstances (as detailed in Theorem 1), this mechanism

6This immediately implies that there cannot be another redistribution mechanism that always redistributes
at least as muchfor every agentas OEL. That is, the OEL mechanism is alsoundominated[15].
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is not uniquely optimal; and the other optimal mechanisms donot always have the
property of Proposition 1.

The next proposition shows that, if the prior distribution does not distinguish among
agents, OEL isex-interimindividually rational—that is, in expectation, agents benefit
from participating in the mechanism (they receive nonnegative expected utilities).

Proposition 2. If the prior distribution is symmetric across agents (for example, the
agents’ values are independent and identically distributed), then the OEL redistribution
mechanism is ex-interim individually rational.

Proof. The original VCG mechanism (redistributing nothing) is also a linear redistri-
bution mechanism (corresponding toci = 0 for all i). Hence, the OEL mechanism will
always redistribute a nonnegative amount in expectation. That is,E(

∑n
i=1 ri) ≥ 0. If

the distribution is symmetric across agents,E(ri) = E(rj) for anyi andj (E(ri) is the
expected redistribution received by agenti, which is independent of her own report).
SoE(ri) ≥ 0 for all i. However, the VCG mechanism is well-known to be ex-interim
(in fact, ex-post) individually rational in this setting, so that even ifE(ri) = 0, agents’
expected utility from participating in the mechanism is nonnegative. It follows that
OEL must also be ex-interim individually rational.

As an aside, if the prior is not symmetric across agents, thenwe can explicitly add
the ex-interim individual rationality constraint (or the strongerex-postindividual ratio-
nality constraint7) into our optimization model. This still results in a linearprogram
(but it does not admit an elegant analytical solution).

In Theorem 1, we gave an expression for the expected amount that OEL fails to
redistribute, which depended on the prior. In the next proposition, we give an upper
bound on this that does not depend on the prior.

Proposition 3. For any prior, the OEL mechanism fails to redistribute at most

(U − L)m
(

n−1
m

)

/
∑

i=0,1,...,n;i−m odd

(

n
i

)

in expectation. This bound is tight.

Proof. Given a prior distribution (and therefore, given theoi), the expected amount that
fails to be redistributed isokm

(

n−1
m

)

/
(

n
k

)

for anyk ∈ arg mini{oi/
(

n
i

)

|i−m odd, i =

0, . . . , n}. If a distribution is constructed such thatoi = (U−L)
(

n
i

)

/
∑

i=0,...,n;i−m odd

(

n
i

)

for all i with i−m odd, andoi = 0 for all otheri (this is in fact a feasible setting of the
oi—we can just use a degenerate distribution where the agents’ valuations are not inde-
pendent), thenarg mini{oi/

(

n
i

)

|i−m odd, i = 0, . . . , n} = {i|0 ≤ i ≤ n, i−m odd}.
So k can be anyi as long asi − m is odd. In this case, the expected amount not
redistributed is exactly(U − L)m

(

n−1
m

)

/
∑

i=0,...,n;i−m odd

(

n
i

)

.

Now suppose that there is another distribution under which the mechanism fails to
redistribute strictly more in expectation. Then, the new set of o′i must satisfy
o′im

(

n−1
m

)

/
(

n
k

)

> m
(

n−1
m

)

/
∑

i=0,...,n;i−m odd

(

n
i

)

= oim
(

n−1
m

)

/
(

n
k

)

for anyi with i−m

7A mechanism is ex-post individually rational if every agent receives nonnegative utility foranybids.
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odd. It follows thato′i > oi for anyi with i−m odd. Since
∑

i=0,...,n;i−m odd
oi = U −L

and o′i ≥ 0 for any i with i − m even, we have
∑

i=0,...,n

o′i > U − L, which is a

contradiction.

For Example 1, Proposition 3 gives an upper bound on the expected amount that
fails to be redistributed of0.5 (we recall that the actual amount is16 ). For Example 2,
Proposition 3 gives an upper bound on the expected amount that fails to be redistributed
of 0.3281 (we recall that the actual amount is112 ).

The next proposition shows that for fixedm, asn goes to infinity, the expected
amount that fails to be redistributed goes to0; hence OEL is asymptotically optimal
for fixed number of units.

Proposition 4. For fixedm, asn goes to infinity, the expected amount that fails to be
redistributed by OEL goes to0.

Proof. By Proposition 3, we only need to show that for fixedm, asn goes to infinity,
(U − L)m

(

n−1
m

)

/
∑

i=0,1,...,n;i−m odd

(

n
i

)

goes to0.

We have that(U −L)m
(

n−1
m

)

/
∑

i=0,1,...,n;i−m odd

(

n
i

)

≤ (U −L)m
(

n−1
m

)

/
(

n
m+1

)

=

(U −L)m(n−1)!(m+1)!(n−m−1)!
m!(n−m−1)!n! = (U −L)(m + 1)m/n. The right-hand side goes to

0 asn goes to infinity.

On the other hand, if we increase bothn andm, and keep their difference within
constantC, then the expected amount fails to redistributed by OEL alsogoes to0: for
largen, the expected amount fails to be redistributed by OEL is at most
(U −L)m

(

n−1
m

)

/
∑

i=0,1,...,n;i−m odd

(

n
i

)

≤ (U −L)n(n−1)C−1/
∑

i=0,1,...,n;i−m odd

(

n
i

)

= (U − L)n(n − 1)C−1/(
∑

i=1,2,...,n−1;i−m odd
(
(

n−1
i−1

)

+
(

n−1
i

)

) +
∑

i=0,n;i−m odd

(

n
i

)

).

Basically, the denominator is exponential inn, while the numerator is polynomial inn.
Therefore, asn increases, the amount fails to be redistributed by OEL approaches0.

So far, we have only considered anonymous redistribution mechanisms (that is,
mechanisms with the same redistribution functionr(·) for each agent).8 If we allow
the redistribution mechanism to be nonanonymous, then we can use differentci for dif-
ferent bidders. Moreover, even for the same bidder, we can use differentci depending
on the order of the other bidders (in terms of their bids), andthere are(n − 1)! such
orders. Thus, it is clear that to optimize among the class of nonanonymous linear re-
distribution mechanisms, we need significantly more variables, and analytical solution
of the linear program no longer seems tractable. However, wedo have the follow-
ing proposition, which shows that the OEL mechanism remainsoptimal even among
nonanonymous linear redistribution mechanisms, if the prior is symmetric.

Proposition 5. If the prior distribution is symmetric across agents (for example, the
agents’ values are independent and identically distributed), then no nonanonymous

8An exception is Proposition 1, which shows that there is not even a nonanonymous mechanism that
always redistributes at least as much in total as OEL, and strictly more in at least one case.
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linear redistribution mechanism can redistribute strictly more than the OEL mechanism
(which is anonymous) in expectation.

Proof. Let us define the average of two (not necessarily anonymous) redistribution
mechanisms as follows: for any multiset of bids, for any agent i, if one redistribution
mechanism redistributesx to agenti, and the other redistribution mechanism redis-
tributesy to i, then the average mechanism redistributes(x + y)/2 to i. It is not
difficult to see that if two redistribution mechanisms both never incur a deficit, then the
average of these two mechanisms also satisfies the non-deficit property. This averaging
operation is easily generalized to averaging over three or more mechanisms.

Now let us assume thatr is a nonanonymous linear redistribution mechanism, and
thatr redistributes strictly more than the OEL mechanism in expectation when the prior
distribution is symmetric across agents. Letπ be any permutation ofn elements. We
permute the wayr treats the agents according toπ, and denote the new mechanism by
rπ. That is,rπ treats agentπ(i) the wayr treatsi. Since we assumed that the prior
distribution is symmetric across agents, the expected total amount redistributed byrπ

should be the same as that redistributed byr. Now, if we take the average of therπ

over all permutationsπ, we obtain an anonymous linear redistribution mechanism that
redistributes as much in expectation asr (and hence more than the OEL mechanism).
But this contradicts the optimality of the OEL mechanism among anonymous linear
redistribution mechanisms.

4 Discretized Redistribution Mechanisms

In the previous section, we only considered linear redistribution mechanisms. This re-
striction allowed us to find the optimal linear redistribution mechanism by analytically
solving a linear program. In this section, we consider a larger domain of eligible mech-
anisms, and proposediscretized redistribution mechanisms, which can be automatically
designed [7] and can outperform the OEL mechanism. (In this section, for simplicity
and to be able to compare to the previous section, we only consider anonymous mech-
anisms, and we do not impose an individual rationality constraint. However, all of the
below can be generalized to allow for nonanonymous mechanisms and an individual
rationality constraint.)

We study the following problem: given a prior distributionf (the joint pdf of
v1, v2, . . . , vn), we try to find a redistribution mechanism that redistributes the most in
expectation among all redistribution mechanisms that can be characterized by contin-
uous functions. For simplicity, we will assume thatf is continuous. The optimization
model is the following:

Variable function: r : Rn−1 → R, r continuous
Maximize

∫

U≥v1≥...≥vn≥L

∑n
i=1 r(v−i)f(v1, v2, . . . , vn)dv1dv2 . . . dvn

Subject to:
For every bid vectorU ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
∑n

i=1 r(v−i) ≤ mvm+1

11



Let R∗ be the optimal objective value for this model. (To be precise, we have not
proved that an optimal solution exists for this model: it could be that the set of feasible
solution values does not include its least upper bound. In this case, simply letR∗ be
the least upper bound.) Since we are not able to solve this model analytically, we try to
solve it numerically.

We divide the interval[L,U ] (within which the bids lie) intoN equal parts, with
step sizeh = (U −L)/N . Let k denote the subinterval:I(k) = [L + kh, L + kh + h]
(k = 0, 1, . . . , N − 1). Definerh : R

n−1 → R as follows: for allU ≥ x1 ≥
x2 ≥ . . . ≥ xn−1 ≥ L, rh(x1, x2, . . . , xn−1) = zh[k1, k2, . . . , kn−1] whereki =
⌊(xi − L)/h⌋ (except thatki = N − 1 if xi = U ). Here, thezh[k1, k2, . . . , kn−1] are
variables. We call such a mechanism a discretized redistribution mechanism of step
sizeh.

Proposition 6. A discretized redistribution mechanism satisfies the non-deficit con-
straint if and only if

∑n
i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤ m(L + km+1h)

for everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0.

Proof. For everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0, if vi = L + kih for all i, then
∑n

i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn] is the total redistribution andm(L + km+1h)
is the total VCG payment. It follows that if the mechanism satisfies the non-deficit
property, the inequalities in the proposition must hold. Conversely, if all the inequalities
in the proposition hold, then the total redistribution of the mechanism is never more
thanm(L + km+1h), which is less than equal to the total VCG paymentmvm+1. So
the mechanism never incurs a deficit if all the inequalities in the proposition hold.

The following linear program finds the optimal discretized redistribution mecha-
nism for step sizeh. The variables arezh[k1, k2, . . . , kn−1] for all integerski satis-
fying N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. The objective is the expected total
redistribution, wherep[k1, k2, . . . , kn] = P (v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn))
(we note that thep[k1, k2, . . . , kn] are constants).

Variables: zh[. . .]
Maximize
∑

N−1≥k1≥k2≥...≥kn≥0 p[k1, k2, . . . , kn]
∑n

i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn]
Subject to:
For everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0
∑n

i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤ m(L + km+1h)

Let z∗h[. . .] denote the optimal solution of the above linear program, andlet r∗h de-
note the corresponding optimal discretized redistribution mechanism. LetR∗h denote
the optimal objective value. The next proposition shows that discretized redistribution
mechanisms cannot outperform the best continuous redistribution mechanisms.

Proposition 7. R∗h ≤ R∗.
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Proof. For anyǫ > 0, we will show how to construct a continuous functionr′ǫ so that
r′ǫ ≤ r∗h everywhere, and the measure of the set{r∗h 6= r′ǫ} is less thanǫ.

Let B be the greatest lower bound ofr∗h (r∗h is bounded below because it is a
piecewise constant function with finitely many pieces). Forgiven U ≥ x1 ≥ x2 ≥
. . . ≥ xn−1 ≥ L, let d(x1, . . . , xn−1) be the minimal distance from anyxi − L to the
nearest multiple ofh. For anyδ > 0, let rδ(x1, . . . , xn−1) = r∗h(x1, . . . , xn−1) if
d(x1, . . . , xn−1) > δ, andrδ(x1, . . . , xn−1) = r∗h(x1, . . . , xn−1)
− (δ − d(x1, . . . , xn−1))(r

∗h(x1, . . . , xn−1) − B)/δ otherwise.
It is easy to see that the functionrδ is continuous at any point whered(x1, . . . , xn−1)

> δ, because at these points,r∗h is continuous. Furthermore, the function is continuous
at any point whereδ > d(x1, . . . , xn−1) > 0, becauser∗h andd are both continuous at
these points. Moreover, it is also continuous at any point whered(x1, . . . , xn−1) = δ,
because at such a pointr∗h(x1, . . . , xn−1)−(δ−d(x1, . . . , xn−1))(r

∗h(x1, . . . , xn−1)−
B)/δ = r∗h(x1, . . . , xn−1). Finally, at any point whered(x1, . . . , xn−1) = 0, the
function is continuous because on any pointx′

1, . . . , x
′
n−1 at distance at mostγ > 0

from x1, . . . , xn−1, the function will take value at mostγ(H − B)/δ, whereH is an
upper bound onr∗h (H is finite).

As δ goes to0, so does the measure of the set{r∗h 6= rδ}. Moreover,rδ ≤ r∗h

everywhere. Hence we can obtainr′ǫ with the desired property by letting it equalrδ for
sufficiently smallδ.

Now, r′ǫ is a feasible redistribution mechanism, because it always redistributes less
thanr∗h. Moreover, becausef is a continuous pdf on a compact domain, asǫ → 0, the
difference in expected value betweenr′ǫ andr∗h goes to0. Hence, we can create con-
tinuous redistribution functions that come arbitrarily close toR∗h in terms of expected
redistribution, and henceR∗ (the least upper bound of the expected redistributions that
can be obtained with continuous functions) is at leastR∗h.

The next proposition shows that if we make the discretization finer, we will do no
worse.

Proposition 8. R∗h ≤ R∗h/2.

Proof. For all 2N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0, let zh/2[k1, k2, . . . , kn−1] =
z∗h[⌊k1/2⌋, ⌊k2/2⌋, . . . , ⌊kn−1/2⌋]. The discretized redistribution mechanism corre-
sponding tozh/2[. . .] is exactlyr∗h. The discretized redistribution mechanismr∗h

satisfies the non-deficit property. Hence the variableszh/2[. . .] form a feasible solution
of the linear program corresponding to step sizeh/2, so its expected redistribution must
be less than or equal to that of the optimal solution of the linear program corresponding
to step sizeh/2. That is,R∗h ≤ R∗h/2.

The next proposition shows that as we make the discretization finer and finer, we
converge to the optimal value for continuous redistribution mechanisms.

Proposition 9. limh→0 R∗h = R∗.

Proof. For anyγ > 0, there exists a continuous redistribution mechanismr∗ such that
its expected redistribution is at leastR∗ − γ. r∗ is continuous on a closed and bounded
domain, sor∗ is uniformly continuous. Hence for anyǫ > 0, there existsδ > 0 so that
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|r∗(x1, x2, . . . , xn−1) − r∗(x′
1, x

′
2, . . . , x

′
n−1)| ≤ ǫ as long asmaxi{|xi − x′

i|} ≤ δ.
Chooseh ≤ δ, and definezh[k1, k2, . . . , kn−1] byr∗(L+k1h,L+k2h, . . . , L+kn−1h)
for all N − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. zh[. . .] corresponds to a feasible
discretized mechanismrh. In addition,rh ≥ r∗−ǫ. Hence, the expected redistribution
of the optimal discretized mechanism with step size (at most) h is R∗h ≥ R∗ − γ −
nǫ. Sinceγ andǫ are both arbitrarily small,limh→0 R∗h ≥ R∗. By Proposition 7,
limh→0 R∗h ≤ R∗.

We note that a discretized redistribution mechanismrh is defined by a finite number
of real-valued variables: namely, one variablezh[k1, k2, . . . , kn−1] for everyN − 1 ≥
k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0. Because of this, we can use a standard LP solver to solve
for the optimal discretized redistribution mechanismrh (for givenm,n, h and prior).
In general, this linear program involves exponential number of variables and does not
scale. However, at least for small problem instances, we canseth to very small values,
and by Proposition 9, we expect the resulting mechanism to beclose to optimal.

But how do we know how far from optimal we are? As it turns out, the discretiza-
tion method can also be used to find upper bounds onR∗. Here, we will assume that
agents’ values are independent and identically distributed. The following linear pro-
gram gives an upper bound onR∗.

Variables: zh[. . .]
Maximize
∑

N−1≥k1≥k2≥...≥kn≥0 p[k1, k2, . . . , kn]
∑n

i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn]
Subject to:
For everyN − 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn ≥ 0
∑n

i=1 zh[k1, k2, . . . , ki−1, ki+1, . . . , kn] ≤
mE(vm+1|v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn))

The intuition behind this linear program is the following. In the previous linear
program, the non-deficit constraints were effectively set for the lowestvalues within
each discretized block, which guaranteed that they would hold for every value in the
block. In this linear program, however, we set the non-deficit constraints by taking
theexpectationover the values in each block. Generally, this will result indeficits for
values inside the block, so this program does not produce feasible mechanisms.

Let ẑh[. . .] denote the optimal solution of the above linear program, andlet r̂h

denote the (not necessarily feasible) corresponding optimal discretized redistribution
mechanism. Let̂Rh denote the optimal objective value. We have the following propo-
sitions:

Proposition 10. If the bids are independent and identically distributed, thenR̂h ≥ R∗.

Proof. Let r be any feasible continuous (anonymous) redistribution mechanism. Now,
consider the conditional expectation of a bidder’s redistribution payment underr, given
that, for eachi ∈ {1, . . . , n − 1}, the ith highest bid among other bidders is in
I(ki) = [L + kih,L + kih + h]. Let zh[k1, k2, . . . , kn−1] denote this conditional
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expectation. (We emphasize that this does not depend on which agent we choose, due
to the i.i.d. assumption.)

Now, thesezh[. . .] constitute a feasible solution of the above linear program,for
the following reason. The left-hand side of the constraint in the above linear program
is now the expected total redistribution ofr, given that for eachi ∈ {1, . . . , n}, the
ith highest bid is inI(ki); and the right-hand side is the expected total VCG payment,
given that for eachi ∈ {1, . . . , n}, theith highest bid is inI(ki). Becauser satisfies
non-deficit by assumption, the constraint must be met by thezh[. . .].

Moreover, the objective value of the feasible solution defined by thezh[. . .] is iden-
tical to the expected total amount redistributed byr. Hence, for every expected total
amount redistributed by a feasible continuous mechanism, there exists a feasible solu-
tion to the above linear program that attains that value. It follows thatR̂h ≥ R∗.

So, we have thatR∗h is a lower bound onR∗, andR̂h is an upper bound. The next
proposition considers how close these two bounds are, in terms of the step sizeh.

Proposition 11. If the bids are independent and identically distributed, then R̂h ≤
R∗h + mh.

Proof. Consider the right-hand side of the constraints of the abovelinear program. We
havemE(vm+1|v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn)) ≤ m(L+km+1h+h), since
vm+1 ∈ I(km+1) implies thatvm+1 ≤ L+km+1h+h. Consider an optimal solution of
the linear program for determininĝRh. Now, from every variablezh[k1, k2, . . . , kn−1],
subtractmh/n. This results in a feasible solution of the linear program for determining
R∗h, and the decrease in the objective value isnmh/n = mh. Hence,R̂h ≤ R∗h +
mh.

Hence, by solving the linear program for determiningR∗h, we get a lower bound
onR∗ and a discretized redistribution mechanism that comes close to it. If we also have
that the bids are independent and identically distributed,by solving the linear program
for determiningR̂h, we get an upper bound onR∗ that is close toR∗h.

5 Experimental Results

We now have two different types of redistribution mechanisms with which we can try to
maximize the expected total redistributed. The OEL mechanism has the advantage that
Theorem 1 gives a simple expression for it, so it is easy to scale to large auctions. In
addition, it is optimal among all linear redistribution mechanisms, although nonlinear
redistribution mechanisms may perform even better in expectation despite not being
able to welfare dominate the OEL mechanism. On the other hand, the discretized
mechanisms have the advantage that, as we decrease the step size h, we will converge
to the maximum amount that can be redistributed by any continuous redistribution
mechanism. The disadvantage of this approach is that it doesnot scale to large auctions.
Fortunately, the experimental results below show that for auctions with many bidders,
the OEL mechanism redistributes almost everything, whereas for auctions with few
bidders, we can solve for the optimal discretized redistribution mechanism with a very
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small step size. That is, the two types of redistribution mechanisms are in some sense
complementary.

In the following table, for differentn (number of agents) andm (number of units),
we list the expected amount of redistribution by both the OELmechanism and the
optimal discretized mechanism (for specific step sizes). The bids are independently
drawn from the uniform[0, 1] distribution.

n,m VCG BC OEL R∗h R̂h %
3,1 0.5000 0.3333 0.3333 0.4218 (N=100) 0.4269 84.4
4,1 0.6000 0.5000 0.5000 0.5498 (N=40) 0.5625 91.6
5,1 0.6667 0.6000 0.6000 0.6248 (N=25) 0.6452 93.7
6,1 0.7143 0.6667 0.6667 0.6701 (N=15) 0.7040 93.8

3,2 0.5000 0.0000 0.3333 0.4169 (N=100) 0.4269 83.4
4,2 0.8000 0.5000 0.5000 0.6848 (N=40) 0.7103 85.6
5,2 1.0000 0.8000 0.8000 0.8944 (N=25) 0.9355 89.4
6,2 1.1429 1.0000 1.0000 1.0280 (N=15) 1.0978 89.9

Expected redistribution by VCG, BC, OEL, and discretized mechanisms, for small numbers of agents.

In the above table, the column “VCG” gives the expected totalVCG payment; the
column “BC” gives the expected redistribution by the Bailey-Cavallo mechanism; the
column “OEL” gives the expected redistribution by the OEL mechanism; the column
“R∗h” gives the expected redistribution by the optimal discretized redistribution mech-
anism (step size1/N ); the column “̂Rh” gives the upper bound on the expected redis-
tribution by any continuous redistribution mechanism (same step size as that ofR∗h).
The last column gives the percentages of the VCG payment thatare redistributed by
the optimal discretized redistribution mechanisms (rounding to the nearest tenth).

Finally, when the number of agents is large, the OEL mechanism is very close to
optimal, as shown below:

n,m VCG BC OEL % n,m VCG BC OEL %
10,1 0.8182 0.8000 0.8143 99.5 20,1 0.9048 0.9000 0.9048 100.0
10,3 1.9091 1.8000 1.8000 94.3 20,5 3.5714 3.5000 3.5564 99.6
10,5 2.2727 2.0000 2.0000 88.0 20,10 4.7619 4.5000 4.5000 94.5
10,7 1.9091 1.4000 1.8000 94.3 20,15 3.5714 3.0000 3.5564 99.6
10,9 0.8182 0.0000 0.8143 99.5 20,19 0.9048 0.0000 0.9048 100.0

Expected redistribution by VCG, BC, and OEL for large numbersof agents.

The fifth and tenth columns give the percentages of the VCG payment that are
redistributed by the OEL mechanisms (rounding to the nearest tenth).

6 Multi-Unit Auctions with Nonincreasing Marginal
Values

In this section, we consider a more general setting in which agents do not necessar-
ily have unit demand, that is, they may value receiving unitsin addition to the first.
However, we assume that the marginal values are nonincreasing, that is, they value the
earlier units (weakly) more. (Units remain indistinguishable.) We still usen andm to
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denote the number of agents and the number of available units, but we no longer require
thatm < n. An agent’s bid is now a nonincreasing sequence ofm elements. We de-
note agenti’s bid byBi =< bi1, bi2, . . . , bim >, wherebij is agenti’s marginal value
for getting herjth unit (so thatbij ≥ bi(j+1)). That is, agenti’s valuation for receiving

j units is
∑j

k=1 bik. A bid profile now consists ofn vectorsBi, with 1 ≤ i ≤ n, or
equivalentlymn elementsbij , with 1 ≤ i ≤ n and1 ≤ j ≤ m. We represent thebij in
matrix form as follows:









b1m b2m . . . bnm

. . . . . . . . . . . .
b12 b22 . . . bn2

b11 b21 . . . bn1









Without loss of generality, we assume thatb11 ≥ b21 ≥ . . . ≥ bn1. That is, the
agents are ordered according to their marginal values for winning their first unit. We
denote thekth highest element among all thebij by vk (1 ≤ k ≤ mn).

We assume that we know the joint distribution of thebij (and hence we also know
the joint distribution of thevk). We continue to useU to denote the known upper bound
on the values that thebij can take (U is also the upper bound on thevk). In this part
of the paper, we will not consider the case where there is a lower boundL > 0 on all
thebij (vk); that is, we assume the lower bound is0. (In fact, if there is a lower bound
L > 0, we can simply require the agents to bid how far aboveL their marginal values
are, that is, require them to submitb′ij = bij − L, in which case we arrive at the case
that we study below. The VCG payments under these modified bids will always be
mL less than under the original bids, but we can easily redistribute this additionalmL.
Hence, the restriction thatL = 0 comes without loss of generality.)

Let B be a bid profile. We denote the set of bids other thanBi (agenti’s own bid)
by B−i. B−i consists ofmn − m elements. We can writeB−i in matrix form as
follows:









b1m . . . bi−1,m bi+1,m . . . bnm

. . . . . . . . . . . . . . . . . . . . .
b12 . . . bi−1,2 bi+1,2 . . . bn2

b11 . . . bi−1,1 bi+1,1 . . . bn1









We denote thekth highest element inB−i by v−i,k (1 ≤ k ≤ mn − m).
Our definition for VCG redistribution mechanisms in this setting is similar to our

earlier definition. Namely, in a VCG redistribution mechanism, we first allocate the
units efficiently, according to the VCG mechanism; then, each agent receives a redistri-
bution payment that is independent of her own bid. An efficient allocation is obtained
by accepting them highest marginal values (v1, v2, . . . , vm). That is, if x elements
amongv1, v2, . . . , vm come from agenti’s bid, then agenti winsx units. Agenti’s re-
distribution equalsr(B−i), wherer is the function that characterizes the redistribution
rule.

We now need a definition oflinear redistribution mechanisms in this setting. We
could define linear redistribution mechanisms as follows:

r(B−i) = c0 + c1v−i,1 + c2v−i,2 + . . . + cmn−mv−i,mn−m
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We will study this particular definition later in the paper; however, it should imme-
diately be noted that this definition ignores some potentially valuable information in
B−i, as shown by the following example.

Example 3. Let n = 3 andm = 2.

• Case 1: LetB−i be

[

0 0
U U

]

.

• Case 2: LetB−i be

[

U 0
U 0

]

.

In both cases, we havev−i,1 = U , v−i,2 = U , v−i,3 = 0, andv−i,4 = 0. Hence, if we
define the linear redistribution mechanisms as above, then the redistribution payment
must be the same in both cases.

We can see that the above definition loses some information about the ordering
of the elements in the matrix. We will show later that this information loss can in
fact come at a cost (less payments can be redistributed). It would be good if we can
incorporate the information about the order of thebij in B−i in the definition of linear
redistribution mechanisms. This is what we will do next.

Let B andB′ be two bid profiles. The elements inB andB′ are denoted bybij

andb′ij , respectively, for1 ≤ i ≤ n and1 ≤ j ≤ m. We sayB andB′ areorder
consistent, denoted byB ≃ B′, if for any i1, j1, i2, j2, we have thatbi1j1 > bi2j2

implies b′i1j1
≥ b′i2j2

, andb′i1j1
> b′i2j2

implies bi1j1 ≥ bi2j2 . An order consistent
classof bid profiles consists of bid profiles that are all pairwise order consistent. The
set of all allowable bid profiles can be divided into a finite number of maximal order
consistent classes (that is, order consistent classes thatare not proper subsets of other
order consistent classes). (Specifically, we have one such class for every strict ordering
< on the ordered pairs(i, j) (1 ≤ i ≤ m and1 ≤ j ≤ n) such that(i, j + 1) < (i, j)
and(i + 1, 1) < (i, 1) everywhere. We note that some bid profiles are part of more
than one of these maximal order consistent classes: for example, the bid profile with
all 0 elements belongs to all the classes.) We can apply the same definitions of order
consistency and (maximal) order consistent classes to the profiles of other bids, the
B−i. Let I(B−i) denote the maximal order consistent class that containsB−i.9

The following definition of linear redistribution mechanisms successfully captures
the ordering information ofB−i, by having separate coefficients for every maximal
order consistent class.

r(B−i) = cI(B−i),0 + cI(B−i),1v−i,1 + . . . + cI(B−i),mn−mv−i,mn−m

Since

[

0 0
U U

]

and

[

U 0
U 0

]

are not order consistent, they can result in differ-

ent redistribution payments in this class of redistribution mechanisms.
Of course, this set of coefficients is unwieldy. As it turns out, we can simplify the

representation of these mechanisms if we assume that they are continuous.

9If B−i belongs to multiple maximal order consistent classes, thenI(B−i) is the class with the smallest
index in any predetermined order of all the classes. If we assume continuity of the redistribution function, as
we will do below, then in fact it does not matter which maximal order consistent class we choose forB−i.
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Let r be a linear redistribution mechanism (as just defined). LetT (B−i, k) be the
result of changing the largestk elements ofB−i into U , and changing the remaining
elements ofB−i into 0. (We assume that ties for the topk values are broken in a
consistent way.) We note thatT (B−i, k) ≃ B−i for all 0 ≤ k ≤ mn − m. For

example,T (

[

1 2
4 3

]

, 1) =

[

0 0
U 0

]

andT (

[

1 2
4 3

]

, 2) =

[

0 0
U U

]

.

We define the following functionr′:

r′(B−i) = r(T (B−i, 0)) +
r(T (B−i, 1)) − r(T (B−i, 0))

U
v−i,1 + . . . +

r(T (B−i,mn − m)) − r(T (B−i,mn − m − 1))

U
v−i,mn−m

Proposition 12. If r is continuous, thenr = r′.

Proof. We first restrict our attention to profilesB−i in a specific (but arbitrary) maxi-
mal order consistent class; moreover, we only consider profilesB−i in which no two
elements are equal. For anyB−i in this class, we use the samemn−m+1 coefficients
of r, andT (B−i, k) (and hencer(T (B−i, k))) depends only onk. That is, both the
coefficients andT (B−i, k) are constant inB−i.

If r is continuous, then whenB−i approachesT (B−i, k), we have thatr(B−i) ap-
proachesr(T (B−i, k)). By the definition ofr′, we also have that whenB−i approaches
T (B−i, k), that is, when the firstk elements ofB−i approachU and the remaining el-
ements ofB−i approach0, we have thatr′(B−i) approachesr(T (B−i, k)). That is,
r(T (B−i, k)) = r′(T (B−i, k)) for 0 ≤ k ≤ mn − m; that is, the functions agree in
mn−m+1 different places. Sincer andr′ are both linear functions withmn−m+1
constant coefficients,r andr′ must be the same function whenB−i is restricted to one
class. Since the choice of class was arbitrary, we have thatr = r′.

From now on, we only consider continuousr. Hence, we can characterizer by
the values it attains at all possibleT (B−i, k). T (B−i, k) consists of only the numbers
U and 0. We representT (B−i, k) by an integer vector of lengthn, where theith
coordinate of the vector is the number ofUs in theith column ofT (B−i, k).

For example,

T (

[

4 2
5 3

]

, 2) =

[

U 0
U 0

]

→< 2, 0 >

T (

[

1 2
4 3

]

, 3) =

[

0 U
U U

]

→< 1, 2 >

Using this,r(T (B−i, k)) can be rewritten asr[x1, x2, . . . , xn−1], where
< x1, x2, . . . , xn−1 > is the vector representingT (B−i, k) (with for eachi, 0 ≤ xi ≤

m, and
∑

xi = k). Moreover, because we have, for example, thatr(

[

0 U
U U

]

) =

r(

[

U 0
U U

]

), we can assume without loss of generality thatx1 ≥ x2 ≥ . . . ≥ xn−1.

The following is an example of how to compute an agent’s redistribution payment
based on the values ofr[x1, x2, . . . , xn−1].
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Example 4. Let n = 3 andm = 2. Let B−i =

[

3 1
4 2

]

.

r(B−i) = r(T (B−i, 0)) +
r(T (B−i, 1)) − r(T (B−i, 0))

U
v−i,1 + . . . +

r(T (B−i,mn − m)) − r(T (B−i,mn − m − 1))

U
v−i,mn−m

= r(

[

0 0
0 0

]

)+

r(

[

0 0
U 0

]

) − r(

[

0 0
0 0

]

)

U
·4+

r(

[

U 0
U 0

]

) − r(

[

0 0
U 0

]

)

U
·3

+

r(

[

U 0
U U

]

) − r(

[

U 0
U 0

]

)

U
· 2 +

r(

[

U U
U U

]

) − r(

[

U 0
U U

]

)

U
· 1

= r[0, 0]+
r[1, 0] − r[0, 0]

U
·4+

r[2, 0] − r[1, 0]

U
·3+

r[2, 1] − r[2, 0]

U
·2+

r[2, 2] − r[2, 1]

U
·1

Since the values of ther[x1, x2, . . . , xn−1] completely characterize the continuous
linear redistribution mechanism, we can solve for values ofthe r[x1, x2, . . . , xn−1]
for which the corresponding linear redistribution mechanism satisfies the non-deficit
property and produces the least waste in expectation under this constraint.

The following proposition characterizes the non-deficit linear redistribution mech-
anisms.

Proposition 13. A linear redistribution mechanism satisfies the non-deficitproperty
if and only if the correspondingr[x1, x2, . . . , xn−1] satisfy the following inequalities:
For all m ≥ x1 ≥ x2 ≥ x3 ≥ . . . ≥ xn ≥ 0,

∑n
i=1 r[x1, . . . , xi−1, xi+1, . . . , xn] ≤

U ·(
∑n

i=1 min{(
∑n

j=1 xj)−xi,m}−(n−1)min{
∑n

j=1 xj ,m}). (The right-hand side
of the inequality corresponds to the total VCG payment for the profile< x1, x2, . . . , xn >.)

Proof. To see why the right-hand sideU · (
∑n

i=1 min{(
∑n

j=1 xj) − xi,m} − (n −

1)min{
∑n

j=1 xj ,m}) corresponds to the total VCG payment, we note that
U · min{(

∑n
j=1 xj) − xi,m} is the total efficiency wheni is removed, so thatU ·

∑n
i=1 min{(

∑n
j=1 xj) − xi,m} is the sum of all the terms corresponding to efficien-

cies when one agent is removed.U · (n − 1)min{
∑n

j=1 xj ,m}) corresponds to the
sum of the basic Groves terms in the payments from the agents:in this term, each
agent receives the total efficiency obtained by the other agents (when the agent is not
removed), and if we sum over all the agents, that means each agent is countedn − 1
times.

Now we can prove the main part of the proposition. If the non-deficit property is
satisfied for all bid profiles, then it should also be satisfiedwhen the marginal values
are restricted to be eitherU or 0. This proves the “only if” direction. Now we prove
the “if” direction. Let B be any bid profile from a fixed maximal order consistent
class. This implies that the maximal order consistent classof B−i is fixed as well, for
everyi. The total VCG payment equals the sum over alli of them highest elements
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in B−i, minusn − 1 times the sum of them highest elements inB. In either case,
because we are restricting attention to a fixed class, them highest elements are the
same ones for anyB in the class. Because of this, the VCG payments are linear in the
vi. Additionally, again because we are restricting attentionto one particular class, the
redistribution payments are also linear in thevi.

Now, if the inequalities hold, that means that the total VCG payment minus the
total redistribution is nonnegative when the marginal values are restricted to eitherU
or 0. That is, the non-deficit constraints hold for these extremecases. But by Lemma 1,
if a non-deficit constraint is violated anywhere, then a non-deficit constraint must be
violated for one of these extreme cases. It follows that the non-deficit constraints hold
everywhere in the class that we were considering, and because this class was arbitrary,
the non-deficit constraint must hold everywhere.

Let z be the total number of maximal order consistent classes. LetZj be an arbi-
trary bid profile that is (only) in thejth class. LetP (B ∈ I(Zj)) be the probability
that a bid profile is drawn that is (only) in thejth class, and letE(v−i,k|B ∈ I(Zj)) be
the expectation of thekth-highest marginal value amongB−i, given thatB is (only) in
thejth class. We assume that the probability that we draw a bid vector that is in more
than one class is zero (this would require that two values areexactly equal).

Now we are ready to introduce a linear program that solves forthe optimal-in-
expectation linear redistribution mechanism.10 This linear program is based on the
alternative representation of linear redistribution mechanisms, whose correctness was
established by Proposition 12, and on the characterizationof the non-deficit constraints
established for this representation by Proposition 13.

Variables: r[x1, x2, . . . , xn−1] for all integerm ≥ x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0
Maximize:

∑

j P (B ∈ I(Zj))
∑

i[r(T (Zj
−i, 0)) +

r(T (Zj

−i
,1))−r(T (Zj

−i
,0))

U E(v−i,1|B ∈

I(Zj)) + . . . +
r(T (Zj

−i
,mn−m))−r(T (Zj

−i
,mn−m−1))

U E(v−i,mn−m|B ∈ I(Zj))]

Subject to:
For allm ≥ x1 ≥ x2 ≥ x3 ≥ . . . ≥ xn ≥ 0,
∑n

i=1 r[x1, . . . , xi−1, xi+1, . . . , xn] ≤
U · (

∑n
i=1 min{(

∑n
j=1 xj) − xi,m} − (n − 1)min{

∑n
j=1 xj ,m})

We do not have an analytical solution to this linear program;all that we can do is
solve for the optimal mechanism for specific values ofm andn. More problematically,
in general it is not easy to compute the constantsP (B ∈ I(Zj)) andE(v−i,k|B ∈

10Incidentally, we can give a similar linear program for findingthe linear redistribution mechanism that is
worst-case optimal, that is, it maximizes the fraction of totalVCG payment redistributed in the worst case. In
previous work [16], we have already identified a worst-case optimal linear mechanism for the nonincreasing
marginal values case; however, that mechanism is only optimal under the requirement of ex-post individual
rationality. The linear programming technique here can be used to find the worst-case optimal mechanism
when individual rationality is not required. For the sake ofcoherence of this paper, we will not go into further
detail on this here.
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I(Zj)). One way to work around this problem is to approximate the final result. That
is, instead of computing an exact optimal linear redistribution mechanism, we can draw
a few sample bid profiles, and solve for a linear redistribution mechanism that is op-
timal for the samples. This way, we do not need to compute any probabilities or con-
ditional expectations; we simply sum over the profiles in thesample in the objective.
(However, we still enforce the constraints everywhere, notjust on the samples.) Be-
cause the linear redistribution mechanisms are continuousand we assume continuous
and bounded prior distributions for the valuations, it follows that as the number of
samples grows, we approach an optimal mechanism.

We now return to the original idea for the definition of linearredistribution mech-
anisms: what if we ignore the ordering information and just use coefficientsck for
0 ≤ k ≤ mn − m, which do not depend on the maximal order consistent class? This
will be a more scalable approach, although it will come at a loss. To find an optimal
mechanism in this class, we can take a similar approach as we did above for the more
general definition of linear redistribution mechanisms (and this approach is correct for
similar reasons). We consider the extreme bid vectors whereall marginal values are
U or 0, represented by vectors of integersx1, x2, . . . , xn, as before. The fact that we
ignore the ordering information now implies that we requirethatr[x1, x2, . . . , xn−1] =

r[y1, y2, . . . , yn−1] whenever
∑n−1

i=1 xi =
∑n−1

i=1 yi. So, we can rewriter[x1, . . . , xn−1]

asr[
∑n−1

i=1 xi]. That is, the variables now arer[k] for k = 0, 1, . . . ,mn − m. The re-
distribution function now becomes:

r(B−i) = r[0] +
r[1] − r[0]

U
v−i,1 + . . . +

r[mn − m] − r[mn − m − 1]

U
v−i,mn−m

The linear program for finding an optimal mechanism becomes:

Variables: r[k] for integer0 ≤ k ≤ mn − m
Maximize:

∑

i[r[0] + r[1]−r[0]
U E(v−i,1) + . . . + r[mn−m]−r[mn−m−1]

U E(v−i,mn−m)]

Subject to:
For allm ≥ x1 ≥ x2 ≥ x3 ≥ . . . ≥ xn ≥ 0,
∑n

i=1 r[(
∑n

j=1 xj) − xi] ≤

U · (
∑n

i=1 min{(
∑n

j=1 xj) − xi,m} − (n − 1)min{
∑n

j=1 xj ,m})

While this linear program is much more manageable, it may leadto worse results
than the earlier linear program, which optimizes over the more general class of linear
redistribution mechanisms that take the ordering information into account. We now
study some example solutions to this linear program, and compare them to the Bailey-
Cavallo redistribution mechanism [2, 3]. We recall that theBailey-Cavallo mechanism
redistributes to every agent1n times the VCG payment that would result if this agent
were removed from the auction. If we only consider bid profiles from a specific maxi-
mal order consistent class, then for anyi, the VCG payment that would result ifi is re-
moved is a linear combination of thev−i,k. Therefore, the Bailey-Cavallo mechanism

22



belongs to the family of linear redistribution mechanisms that consider the ordering
information (and hence, the optimal solution to the earlierlinear program will do at
least as well as the Bailey-Cavallo mechanism). The Bailey-Cavallo mechanism does
not belong to the family of linear redistribution mechanisms that ignore the ordering
information: in fact, we will see that it sometimes performsbetter than the optimal
mechanism among linear redistribution mechanisms that ignore the ordering informa-
tion. Hence, ignoring the ordering information in general comes at a cost.

For these examples, let us recall that agenti’s bid vectorBi consists ofm elements
bi1, bi2, . . . , bim. In both examples, we assume that the values ofbi1, bi2, . . . , bim are
drawn independently from the uniform[0, 1] distribution, withbij being thejth highest
among them drawn values. We also assume thatB1, B2, . . . , Bn are independent.

Example 5. Suppose thatn = 3 andm = 2. By solving the above linear program (the
one that ignores the ordering information), we get the following linear redistribution
mechanism that ignores ordering information:r(B−i) = 2

3v−i,3. That is, an agent’s
redistribution is equal to two thirds of the third highest marginal value among the set of
other bids. The expected waste of this mechanism is0.2571. In contrast, the expected
waste of the Bailey-Cavallo mechanism is0.4571. (The expected total VCG payment is
1.0571.) So, for this example, the optimal linear redistribution mechanism that ignores
the ordering information outperforms the Bailey-Cavallo mechanism.

Example 6. Suppose thatn = 7 andm = 2. By solving the above linear program (the
one that ignores the ordering information), we get the following linear redistribution
mechanism that ignores ordering information:r(B−i) = 1

5v−i,3 + 3
35v−i,4. That is,

an agent’s redistribution is equal to15 times the third highest marginal value among
the set of other bids, plus335 times the fourth highest marginal value among the set of
other bids. The expected waste of this mechanism is0.0923. In contrast, the expected
waste of the Bailey-Cavallo mechanism is0.0671. (The expected total VCG payment is
1.5846.) So, for this example, the Bailey-Cavallo mechanism outperforms the optimal
linear redistribution mechanism that ignores the orderinginformation.

In both of these examples (as well as in other examples for which we solved the
linear program, including examples with other distributions), the optimal linear re-
distribution mechanism that ignores the ordering information is a special case of the
following more general mechanism.

MechanismM∗ is defined as follows, wheret = m + ⌊m(n−2)
n ⌋.

• r[k] = U k−m
n−2 for k = m + 1,m + 2, . . . , t

• r[k] = U m
n for k > t

The redistribution an agent receives is:

r(B−i) =
∑

m+1≤k≤t

1

n − 2
v−i,k + (

m

n
−

t − m

n − 2
)v−i,t+1

We conjecture that there are some more general conditions under whichM∗ is the
optimal linear redistribution mechanism that ignores the ordering information.
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7 Conclusion

The well-known VCG mechanism allocates the items efficiently, is strategy-proof, and
never runs a deficit. Nevertheless, the agents may have to make large payments to a
party outside the system of agents, leading to decreased utility for the agents. Recent
work has investigated the possibility of redistributing some of the payments back to
the agents, without violating the other desirable properties of the VCG mechanism.
Previous research on redistribution mechanisms has resulted in a worst-case optimal
redistribution mechanism, that is, a mechanism that maximizes the fraction of VCG
payments redistributed in the worst case. In contrast, in this paper, we assumed that
a prior distribution over the agents’ valuations is available, and studied the goal of
maximizing the expected total redistribution.

For the setting of multi-unit auctions with unit demand, we first consideredlinear
redistribution mechanisms. We gave an analytical solutionfor a redistribution mech-
anism that, among linear redistribution mechanisms, maximizes the expected redis-
tribution, and gave conditions under which it is unique. We also proved some other
desirable properties of this mechanism—it is asymptotically optimal for fixed number
of units and welfare undominated. We then proposeddiscretizedredistribution mecha-
nisms, which discretize the space of possible valuations, and determine redistributions
solely based on the discretized values (however, the strategy-proofness and non-deficit
constraints still hold over the non-discretized space). Given a discretization step size,
we showed how to solve for the optimal discretized redistribution mechanism using a
linear program. We also showed that as the step size goes to0, the mechanism con-
verges to the optimal value for all continuous mechanisms (and we proved a bound
on how close to optimal we are). We presented experimental results showing that for
auctions with many bidders, the optimal linear redistribution mechanism redistributes
almost everything, whereas for auctions with few bidders, we can solve for the optimal
discretized redistribution mechanism with a very small step size.

For the setting of multi-unit auctions with nonincreasing marginal values, we first
generalized the definition of linear redistribution mechanisms. We then introduced
a linear program for finding the optimal linear redistribution mechanism. Because
this linear program is unwieldy, we also introduced a simplified linear program that
produces relatively good (though not necessarily optimal)linear redistribution mech-
anisms. We also conjectured an analytical solution to the linear program, which we
expect to be correct for most reasonable distributions.

Future research on optimal-in-expectation redistribution mechanisms can take a
number of directions. For the setting of nonincreasing marginal utilities, one can try to
find subclasses of the linear redistribution mechanisms that are more general than the
subclass we considered but still lead to more tractable optimization problems. In gen-
eral, one can also try to solve for an optimal-in-expectation redistribution mechanism
that is not necessarily linear. Another direction is to extend the results of this paper to
more general settings, for example, combinatorial auctions. Finally, inefficient mech-
anisms sometimes achieve higher social welfare than efficient mechanisms [14, 9] in
the worst case. It would be interesting to see whether agents’ expected social welfare
can also be improved by allocating units inefficiently, and if so, by how much.
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08 conferences. We thank Hervé Moulin and Giuseppe Lopomo for helpful discus-
sions. This work has been supported by NSF under IIS-0812113and an Alfred P. Sloan
Research Fellowship.

References

[1] K. Apt, V. Conitzer, M. Guo, and E. Markakis. Welfare undominated Groves
mechanisms. InProceedings of the Fourth Workshop on Internet and Network
Economics (WINE), pages 426–437, Shanghai, China, 2008.

[2] M. J. Bailey. The demand revealing process: to distribute the surplus.Public
Choice, 91:107–126, 1997.

[3] R. Cavallo. Optimal decision-making with minimal waste: Strategyproof redis-
tribution of VCG payments. InProceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 882–889, Hako-
date, Japan, 2006.

[4] R. Cavallo. Efficiency and redistribution in dynamic mechanism design. InPro-
ceedings of the ACM Conference on Electronic Commerce (EC), pages 220–229,
Chicago, IL, USA, 2008.

[5] S. Chakravarty and T. Kaplan. Manna from heaven or forty years in the desert:
Optimal allocation without transfer payments, October 2006. Working Paper.

[6] E. H. Clarke. Multipart pricing of public goods.Public Choice, 11:17–33, 1971.

[7] V. Conitzer and T. Sandholm. Complexity of mechanism design. In Proceedings
of the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI),
pages 103–110, Edmonton, Canada, 2002.
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A Deriving an optimal linear redistribution mechanism

Here we derive the OEL mechanism and prove its optimality. Our objective is to find an
linear redistribution mechanism that redistributes the most in expectation. To optimize
among the family of linear redistribution mechanisms, we must solve for the optimal
values of theci. We want the resulting redistribution mechanism to be strategy-proof
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and efficient, and we want it to satisfy the non-deficit property. The first two properties
are satisfied by all the mechanisms inside the linear family,so the only constraint is
the non-deficit property. The following optimization modelcan be used to find the
linear redistribution mechanism (theci) that redistributes the most in expectation, while
satisfying the non-deficit property.

Variables: c0, c1, . . . , cn−1

Maximize E(
∑n

i=1 ri)
Subject to:
For every bid vectorU ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
∑n

i=1 ri ≤ mvm+1

ri = c0 + c1v−i,1 + c2v−i,2 + . . . + cn−1v−i,n−1

Given the prior distribution,E(mvm+1) is a constant, so the objective of the above
model may be rewritten asMinimize E(mvm+1 −

∑n
i=1 ri).

Sinceri = c0 + c1v−i,1 + c2v−i,2 + . . . + cn−1v−i,n−1, wherev−i,j is thejth
highest bid among bids other thani’s own bid, we have the following:

r1 = c0 + c1v2 + c2v3 + c3v4 . . . + cn−2vn−1 + cn−1vn

r2 = c0 + c1v1 + c2v3 + c3v4 . . . + cn−2vn−1 + cn−1vn

r3 = c0 + c1v1 + c2v2 + c3v4 . . . + cn−2vn−1 + cn−1vn

. . .
rn−1 = c0 + c1v1 + c2v2 + c3v3 . . . + cn−2vn−2 + cn−1vn

rn = c0 + c1v1 + c2v2 + c3v3 . . . + cn−2vn−2 + cn−1vn−1

We can writemvm+1 −
∑n

i=1 ri asq0 + q1v1 + q2v2 + . . . + qnvn, where the
coefficientsqi are listed below:

q0 = −nc0

qi = −(i − 1)ci−1 − (n − i)ci for i = 1, 2, . . . ,m,m + 2, . . . , n
qm+1 = m − mcm − (n − m − 1)cm+1

(We note that we introduced a dummy variablecn in the above equations—since
there are onlyn − 1 other bids,cn will always be multiplied by0, but adding this
variable makes the definition of theqi more elegant.) Givenn andm, q0, . . . , qn (n+1
values) are determined byc0, . . . , cn−1 (n values). Conversely, ifq0, . . . , qn−1 are
fixed, then we can completely solve for the values ofc0, . . . , cn−1 (and hence also for
qn). This results in the following relation among theqi:

q1−
n−1
1! q2+ (n−1)(n−2)

2! q3−
(n−1)(n−2)(n−3)

3! q4+ . . .+(−1)n−1 (n−1)(n−2)...2·1
(n−1)! qn =

(−1)mm (n−1)(n−2)...(n−m)
m!

After simplification we obtain:
∑n

i=1(−1)i−1
(

n−1
i−1

)

qi = (−1)mm
(

n−1
m

)
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Now, we can use theqi as the variables of the optimization model, since from them
we will be able to infer theci. Becausemvm+1 −

∑n
i=1 ri = q0 + q1v1 + q2v2 + . . .+

qnvn, we can rewrite the non-deficit constraint by requiring thatthe latter summation
is nonnegative. Also, theqi must satisfy the previous inequality (otherwise there will
be no correspondingci).

Variables: q0, q1, . . . , qn

Minimize E(q0 + q1v1 + q2v2 + . . . + qnvn)
Subject to:
For every bid vectorU ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L
q0 + q1v1 + q2v2 + . . . + qnvn ≥ 0
∑n

i=1(−1)i−1
(

n−1
i−1

)

qi = (−1)mm
(

n−1
m

)

In what follows, we will cast the above model into a linear program. We begin with
the following lemma[16]:

Lemma 1. The following are equivalent:
(1) q0 + q1v1 + q2v2 + . . . + qnvn ≥ 0 for all U ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ L

(2) q0 + L
∑n

i=1 qi + (U − L)
∑k

i=1 qi ≥ 0 for k = 0, . . . , n

Proof. (1)⇒(2): (2) can be obtained from (1) by settingv1 = v2 = . . . = vk = U and
vk+1 = vk+2 = . . . = vn = L.

(2)⇒(1): Let us rewriteT = q0+q1v1+q2v2+. . .+qnvn asq0+L
∑n

i=1 qi+(v1−

v2)
∑1

i=1 qi + (v2 − v3)
∑2

i=1 qi + . . . + (vn−1 − vn)
∑n−1

i=1 qi + (vn − L)
∑n

i=1 qi.
If

∑k
i=1 qi ≥ 0 for everyk = 1, . . . , n, thenT ≥ q0 + L

∑n
i=1 qi ≥ 0 (because

v1 − v2, v2 − v3, . . . , vn − L are all nonnegative). Otherwise, letk′ be the index so

that
∑k′

i=1 qi is minimal (hence negative). To makeT minimal, we wantvk′ − vk′+1

(which is multiplied by
∑k′

i=1 qi) to be maximal. So the minimal value forT is q0 +

L
∑n

i=1 qi + (U − L)
∑k′

i=1 qi ≥ 0, which is attained whenv1 = v2 = . . . = vk′ = U
andvk′+1 = vk′+2 = . . . = vn = L. HenceT is always nonnegative.

Letxk = (q0+L
∑n

i=1 qi)/(U−L)+
∑k

i=1 qi for k = 0, . . . , n. Thexi correspond
(one to one) to theqi, so we can use thexi as the variables in the optimization model.
The first constraint of the optimization model now becomesxk ≥ 0 for everyk. Since
xk − xk−1 = qk for k = 1, . . . , n, the second constraint becomes

∑n
i=1(−1)i−1

(

n−1
i−1

)

(xi − xi−1) = (−1)mm
(

n−1
m

)

After simplification we get:
∑n

i=0(−1)i
(

n
i

)

xi = (−1)m−1m
(

n−1
m

)

Let o0 = U −Ev1, oi = Evi −Evi+1 (i = 1, . . . , n− 1) andon = Evn −L. The
oi are all nonnegative constants that we know from the prior distribution. The objective
of the optimization model can be rewritten as follows:
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E(q0 + q1v1 + q2v2 + . . . + qnvn)
= q0 + q1Ev1 + q2Ev2 + . . . + qnEvn

= x0(U − L) + q1(Ev1 − L) + q2(Ev2 − L) + . . . + qn(Evn − L)
= x0((U − L) − (Ev1 − L)) + (x0 + q1)((Ev1 − L) − (Ev2 − L)) + (x0 + q1 +

q2)((Ev2 − L) − (Ev3 − L)) + . . . + (x0 + q1 + . . . + qn)(Evn − L)
= o0x0 + o1x1 + . . . + onxn

We finally obtain the following linear program:

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + . . . + onxn

Subject to:
xi ≥ 0
∑n

i=0(−1)i
(

n
i

)

xi = (−1)m−1m
(

n−1
m

)

At this point, for any givenn andm, for any prior distribution, it is possible to
solve this linear program using any LP solver; then, using the above, the resultingxi

can be transformed back toci to obtain an optimal-in-expectation linear redistribution
mechanism. However, this will not be necessary. The following proposition gives an
analytical solution of this linear program.

Proposition 14. Letk be any integer satisfying

k ∈ arg mini{oi/
(

n
i

)

|i − m odd, i = 0, . . . , n}

The above linear program has the following optimal solution:

xk = m
(

n−1
m

)

/
(

n
k

)

, andxi = 0 for i 6= k

The optimal objective value is

okm
(

n−1
m

)

/
(

n
k

)

This solution is the unique optimal solution if and only if the choice ofk is unique
and there does not exist an eveni and an oddj such thatoi = oj = 0.

Proof. We can rewrite the second constraint as
∑n

i=0((−1)i−m+1
(

n
i

)

)/(m
(

n−1
m

)

)xi = 1

This results in the program

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + . . . + onxn

Subject to:
xi ≥ 0

∑

i=0...n;i−m odd

(

n
i

)

/(m
(

n−1
m

)

)xi =
∑

i=0...n;i−m even

(

n
i

)

/(m
(

n−1
m

)

)xi + 1
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Theoi are nonnegative. To minimize the objective, we want all thexi to be as small
as possible. It is not hard to see that it does not hurt to set thexi for which i−m is even
to zero: in fact, setting them to a larger value will only force thexi for which i − m is
odd to take on larger values, by the last constraint. (It should be noted that if there exists
an eveni and an oddj such thatoi = oj = 0, then we can increase the corresponding
xi andxj at no cost to the objective without breaking the constraint,hence the solution
is not unique in that case.) This results in the following linear program:

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + . . . + onxn

Subject to:
xi ≥ 0

∑

i=0...n;i−m odd

(

n
i

)

/(m
(

n−1
m

)

)xi = 1

We want thexi to be as small as possible. However, the second constraint makes
it impossible to set all thexi to 0. For eachxi with i − m odd, if we increase it byδ,
the left side of the second constraint is increased by

(

n
i

)

/(m
(

n−1
m

)

)δ and the objective
value is increased byoiδ. We need the left side of the second constraint to increase to
1 (starting from0), while minimizing the increase in the objective value. To do so, we
want to find thexi (with i − m odd) that has the minimal cost-gain ratio (where the
cost isoiδ, and the gain is

(

n
i

)

/(m
(

n−1
m

)

)δ). It follows that for any integerk satisfying
k ∈ arg mini{oi/

(

n
i

)

|i − m odd, i = 0, . . . , n}, the linear program has the following
optimal solution:xk = m

(

n−1
m

)

/
(

n
k

)

andxi = 0 for i 6= k. The resulting optimal
objective value isokm

(

n−1
m

)

/
(

n
k

)

.
In the above argument, there were only two conditions under which we made a

choice that is not necessarily uniquely optimal: if (and only if) there exists an eveni
and an oddj such thatoi = oj = 0, then, as we explained, there exist optimal solutions
where somexi with m − i even is set to a positive value (in fact, it can be set to any
value in this case); and if (and only if)arg mini{oi/

(

n
i

)

|i − m odd, i = 0, . . . , n} is
not a singleton set, then there exists another optimal solution with anotherxk set to a
positive value (in fact, in this case, multiplexk may simultaneously be set to a positive
value).

By transforming thexi from Proposition 14 to the correspondingci, we obtain the
OEL mechanism from Theorem 1.
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