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Abstract

Many important problems in multiagent systems involve the allocation of mul-
tiple resources among the agents. If agents are self-interested, théig @bbut
their valuations for the resources if they perceive this to be in their inteTést.
well-known VCG mechanism allocates the items efficiently, is strategy-fagets
have no incentive to lie), and never runs a deficit. Nevertheless, thesagay
have to make large payments to a party outside the system of agents, leading
decreased utility for the agents. Recent work has investigated the posability
redistributing some of the payments back to the agents, without violating te oth
desirable properties of the VCG mechanism.

Previous research on redistribution mechanisms has resulted in acasest-
optimal redistribution mechanism, that is, a mechanism that maximizestttefr
of VCG payments redistributed in the worst case. In contrast, in this pejeer
assume that a prior distribution over the agents’ valuations is availableguand
goal is to maximize the expected total redistribution.

In the first part of this paper, we study multi-unit auctions with unit demand
We analytically solve for a mechanism that is optimal améngar redistribu-
tion mechanisms. We also propodiscretizedredistribution mechanisms. We
show how to automatically solve for the optimal discretized redistribution mxech
nism for a given discretization step size, and show that the resulting misofa
converge to optimality as the step size goes to zero. We present expelimen
results showing that for auctions with many bidders, the optimal lineartredis
bution mechanism redistributes almost everything, whereas for auetitm$ew
bidders, we can solve for the optimal discretized redistribution mechamigma
very small step size.

In the second part of this paper, we study multi-unit auctions with noraisere
ing marginal values. We extend the notion of linear redistribution mechanism
previously defined only in the unit demand setting, to this more generalgettin
We introduce a linear program for finding the optimal linear redistributionhae
nism. This linear program is unwieldy, so we also introduce one simplifiedrine
program that produces relatively good linear redistribution mechanigvascon-
jecture an analytical solution for the simplified linear program.



1 Introduction

Many important problems in multiagent systems can be seersmairce allocation
problems. One natural way of allocating resources amongtagse to auction off
the items. An allocation mechanism (auction) takes as input the agents’ reported
valuations for the items, and as output produces an altmtafithe items to the agents,
as well as payments to be made by or to the agents. We assutragyémds areelf-
interested an agent will reveal her true valuation function only if dgiso maximizes
her utility. A mechanism istrategy-prooff it is a dominant strategy for the agents to
report their true valuations—that is, regardless of whaother agents do, an agent is
best off reporting her true valuation. A mechanisnefficientif it always chooses an
allocation that maximizes the sum of the agents’ valuat{aka. thesocial welfarg.

The well-knownvCG (Vickrey-Clarke-Groveshechanism [24, 6, 13] is both strategy-
proof and efficient. In fact, in sufficiently general settings, the wider but ellyselated
class of Groves mechanisms coincides exactly with the ofasgchanisms that satisfy
both properties [12, 18]. The VCG mechanism has an additiuna property, which
is that it satisfies thaon-deficitproperty (in allocation settings): the sum of the pay-
ments from the agents is nonnegative, which means that thbanesm does not need
to be subsidized by an outside party. A stronger property tha non-deficit property
is that of(strong) budget balangevhich requires that the sum of the payments from
the agents is zero—so that no value flows out of the system otsig€his property is
not satisfied by the VCG mechanism. In the context of auctioften, this is not seen
as a problem for the sake of maximizing the agents’ welfare:idea is that the pay-
ments are collected by the seller of the items, who is justrer@gent, so that nothing
goes to waste. However, this reasoning does not apply to maltjagent settings; in
particular, it does not apply to settings in whittere is no sellewho is separate from
the agents. For example, consider the problem of dissolaipgrtnership: suppose
there is a group of agents who have started a company togeétitedue to personal
disagreements can no longer work together, so that it bezessential to allocate the
(currently jointly owned) company to just one of the agentghile it makes sense
to auction off the company among the agents, ideally, themeg of this auction is
then distributed among the agents themselves—if the reveawues the system of the
agents, their welfare is reduced. Similarly, the agents beagleciding how to allocate
a resource that is not claimed by anyone—for example, thetageay have jointly
discovered a valuable commodity (say, an oil field) in umalkd territory, which they
now need to allocate to the one of them that can make the besifus Finally, the
agents may have a jointly owned resource (say, a powerfupatam) that can only be
used by one agent on any given day, and may wish to use anmatxtietermine which
agent gets to use it today. In all these cases, any paymeis that redistributed to the
agents truly goes to waste. Hence, to maximize social weeltaking payments into
account), we would prefer a budget balanced mechanism tohamenerely achieves
the non-deficit property (assuming both are efficient). Wnizately, it is impossible to

1We use the term “VCG mechanism” to refer to the Clarke mechanisimeBmes people refer to the
wider class of Groves mechanisms as “VCG mechanisms,” but wawdlll this usage in this paper. In fact,
the mechanisms proposed in this paper fall within the class0¥€3 mechanisms.



achieve budget balance together with strategy-proofressficiency [19, 12, 21}.
Incidentally, while these types of setting are perhaps nuatvone typically has in
mind when considering “auctions” in the common sense of tbedwthe fact that we
use auctions does not significantly limit the generality af approach. Effectively, we
just use “auctions” as a convenient word to describe resoaltocation mechanisms
that use payments.

Previous research has sacrificed either strategy-pramfiresfficiency to achieve
budget balance [11, 22, 10]. Another approach is to allotetéems according to the
VCG mechanism, and then to redistribute as much of the tafb payment as possi-
ble back to the agents, in a way that does not affect the ddsipaoperties of the VCG
mechanism. Several papers have pursued this idea and ptbpase natural redistri-
bution mechanisms [2, 23, 3]. For example, in the Bailey raadm [2], each agent
receives a redistribution payment that equigls times the VCG revenue that would
result if this agent were removed from the auction. In thedallavmechanism [3],
each agent receives a redistribution payment that eqyalsimes the minimal VCG
revenue that can be obtained by changing this agent’s own Fd revenue mono-
tonic settings, Bailey's and Cavallo’'s mechanisms coiecid this case we refer to
this mechanism as the Bailey-Cavallo mechanism. More thcémere has been some
research on findingptimal redistribution mechanisms. For the setting of multi-unit
auctions with unit demand (that is, each agent wants at mesbbthe indistinguish-
able units)—the setting that we study in most of this paper—ehaeism that maxi-
mizes the worst-case redistribution fraction has beerytioally characterized [16, 20]
(one of these papers [16] also generalizes beyond the amtdd case, to nonincreas-
ing marginal values). In this paper, we continue the seascloftimal redistribution
mechanisms. Unlike the worst-case work, we assume thabadistribution over the
agents’ valuations is available, and we aim to maximizeetkgectedotal redistribu-
tion. (There are two related papers [17, 5], in which the arglpropose mechanisms
that maximize the sum of the agents’ utilities (taking pagtedanto account) in ex-
pectation. However, these papers operate under the ciomshrat every agent’s total
payment must be nonnegative, which results in very differsechanisms.) In this
paper, we restrict ourselves to VCG redistribution mectrasj so that the allocation
is always efficient; other work has studied what can be dorenvthis constraint is re-
laxed [10, 20, 14, 9] (all the resulting mechanisms are ataraed analytically). We
also restrict ourselves to static mechanisms; good réuistsn mechanism has also
been analytically characterized in a dynamic context [4].

The rest of this paper is presented as follows. From Sectit;m Section 5, we
focus on multi-unit auctions with unit demand. In Sectiow2, cover the necessary
background and introduce our notation. In Section 3, wellrfoa definition of lin-
ear redistribution mechanisms and we solve for optimadxpectation linear (OEL)

2The dAGVA mechanism [8] is efficient, (strongly) budget bajed, andBayes-Naslncentive compat-
ible, which means that if each agent’s belief over the othentgj valuations is the distribution that results
from conditioning the (common) prior distribution over vaioas on the agent’s own valuation, and other
agents bid truthfully, then the agent is best off (in expgaoté bidding truthfully. In practice, it is some-
what unreasonable to assume that agents’ beliefs are sstoTisvith each other and with the mechanism
designer’s belief, so we use the much stronger and more commim reftdominant-strategies incentive
compatibility (strategy-proofness) in this paper.



redistribution mechanisms in our setting. We focus on diggian analytical character-
ization of these OEL mechanisms. In Section 4, we show howtonaatically (using

linear programming) solve for (possibly nonlinear) medkars that are close to opti-
mal, based on a discretization of the valuation sgag€his technique is only effective
for cases with small number of agents. That is, it does ndé seay well. Fortunately,

the experimental results in Section 5 show that for auctwitts many bidders, the op-
timal linear mechanism redistributes almost everythingergas for auctions with few
bidders, we can solve for the optimal discretized redistidn mechanism with a very
small step size. That is, the two approaches are in some senmg#ementary. Finally,

in Section 6, we study the more general setting of multi-anitions with nonincreas-
ing marginal values. We extend the notion of linear redistion mechanisms to this
more general setting, and propose several models for firaptighal linear redistribu-

tion mechanisms. It is more difficult to work in this more gaaieetting, since we also
need to consider a type of ordering information; we dischesé difficulties in that
section.

2 Background

From this section to Section 5, we focus on multi-unit augtiavith unit demand.

In a multi-unit auction, multiple indistinguishable unité the same good are for
sale. In a multi-unit auction with unit demand, each ageshes to obtain at most one
unit—that is, if the agent receives more than one unit, hdityis the same as if she
receives one unit. We note that an (unrestricted) singl®-iauction is a special case
of multi-unit auctions with unit demand.

In this setting, each agent has a privately held true valuedceiving (at least)
one unit. If an agent wins one unit, her utility is her truewneaminus her payment;
otherwise, her utility is the negative of her payment. I{saaled-bid) mechanism
every agent reports her value (Had), and the mechanism determines which agents
win a unit, as well as how much each agent pays, as a functidghese bids. A
mechanism istrategy-prooff it is a dominant strategy for each agent to bid her true
valuation—that is, bidding truthfully is optimal regardéesf what the other agents bid.
Since we only study strategy-proof mechanisms in this papedo not need to make
a clear distinction in our notation between the true valuesthe bids.

We assume that we know the number of agentand the number of indistin-
guishable unitsn. If m > n, then we can give every agent a unit without charging
any payments. Thus, we only consider the case< n.* Let the set of agents be
I ={1,...,n}, where agent has theith highest value);. Let constantd., andU be
the lower bound and upper bound of the possible values. Heace U > v; > vy >
... >wv, > L > 0. We also assume that we have a prior joint probability disgtri
tion over the agents’ values. We denote the probability density function of this joint

3This falls under the general research agendaubmated mechanism desifif|, where we have an
algorithm search through a space of possible mechanisms foptimal one. However, here we use a
formulation that is specifically tailored to this context. fatt, the linear programs elsewhere in this paper
could in principle also be used for the purpose of automatechareésm design, but of course there is little
purpose to doing so for the cases where we also provide ayt@aakolution.

“We remove this restriction in Section 6 where we consideingstwithout unit demand.



distribution by f (v, ..., v,). We emphasize that we require neither that the agents’
values are drawn from identical distributions, nor thaytaee independent.

In a multi-unit auction with unit demand, the VCG mechanissincides with the
(m + 1)th price auction. In this auction, the bidders with the highe bids (bidders
1,...,m) each win one unit, and each pay at the price of(the+ 1)th bid @,,+1).
(Whenm = 1, this is the well-known second-price auction.) Becauss & special
case of the VCG mechanism, tle + 1)th price auction is strategy-proof, efficient,
and never incurs a deficit.

A redistribution mechanism works as follows: after coliegta vector of bids
v > vg > ... > vy, we first run the VCG mechanisnfrg + 1)th price auction).
The resulting allocation is efficient (agerits. . m each win a unit). However, because
each winner has to pay, 1, a total VCG payment ofnv,, 1 leaves the system of
agents. In order to achieve higher social welfare (takingnents into account), we
try to redistribute a large portion of the total VCG paymeatloto the bidders, while
maintaining the desirable properties of the VCG mechanitet.r; be the redistri-
bution received by bidder. To maintain strategy-proofness, must be independent
of bidderi's own bid v;. (It is not difficult to see that this is sufficient for maintai
ing strategy-proofness: if an agent cannot affect her owistigbution payment, then
she may as well ignore it when she determines her strategehéhe incentives for
bidding are the same as in the VCG mechanism, which is syrggegpf. In general,
because our allocation is efficient, the requirement thatoes not depend on; is
also necessary for strategy-proofness [12, 18].) Hencaanenritei's redistribution
asr(v_;), wherev_; is the multiset of bids other than; functionsr determines’s
redistribution. In this paper, unless otherwise specifiesl consider onlyanonymous
redistribution mechanisms, for which the redistributiemdtion is the same for all
agents (denoted hy). This may still result in different redistribution payntsrior the
agents, because the input to the functian,, can be different for different

Another property of the VCG mechanism that we want to maintaithe non-
deficit property: the payments collected by the mechanism are st flea payments
redistributed by it. This is crucial if no external subsidy fhe mechanism is availabte.
In our setting, this means thgﬁ?zl r(v_;) < MUmt1-

Finally, one property of mechanisms that we have not diszlise far isndividual
rationality (aka.voluntary participation): participating in the mechanism should not
make agents worse off. Since our objective is to maximizéasoe|fare, if the prior
distribution is symmetric across agents, then under angtrdaition mechanism that
redistributes a nonnegative amount of payment in expectagvery agent benefits
from participating in the mechanism (the agent receivesagative expected utility).
That is, ex-interimindividual rationality is not a binding constraint. The b@iques
in this paper can also be used to design mechanisms that -anéeer individually
rational when the prior is not symmetric across agents, ahasgisms that satisfy the
even strongeex-postindividual rationality. However, this would require addital
constraints and make the analytical characterization ai®@e3 too complex. For the
above reasons, we omit individual rationality constraintshis paper.

Swithout the non-deficit constraint, we can simply redisttéoly/» of the expected total VCG payment
to every agent, which leaves no waste in expectation.



3 Linear Redistribution Mechanisms

We first restrict our attention to the family dihear redistribution mechanisms. A
linear redistribution mechanism is characterized by aalirredistribution function of
the following form:

r(v_i) = co+ c1v—_i1 + CoV_j2+ ...+ Cho1V_jp_1

wherewv_; ; is the jth highest bid among_; (the set of bids other tham;). The
coefficientsc; completely characterize the redistribution mechanismi. pAdviously
proposed redistribution mechanisms for this setting [23,16, 20] are in fact linear
redistribution mechanisms.

3.1 Optimal-in-expectation linear redistribution mechanisms

We will prove the following result, which characterizes agéar redistribution mech-
anism that maximizes the expected total redistributionof@nlinear redistribution
mechanisms). We call this mechanism OEL (optimal-in-eiqiém, linear).

Theorem 1. Givenn, m, and a prior distribution over agents’ valuations, the tl-
ing ¢; define a redistribution mechanism that maximizes expeetidtribution, under
the constraints that the mechanism must be a linear retigtion mechanism, efficient,
strategy-proof, and satisfy the non-deficit property.

Let theo; be defined as follows:

oo =U— FEvy,0;, = Ev; — Eviy; i =1,2,...,n—1),ando,, = Fv,, — L.

Theo; are determined by the given prior distribution.
Let %k be any integer satisfying

k€ argmini{oi/(?)ﬁ—modd,i =0,...,n}

Let functionG be defined as follows:
Gln,m.1) = (1570 / (1) = o1

e If 0 < k < m,then

ci = (=1)""'G(n,m,i) fori =k +1,...,m,

cp =m/n— Z£k+1(_1)m_iG(n7 m, i),

and¢; = 0 for otheri.
e If £ =0, then

c; = (=1)""'G(n,m,i) fori=1,...,m,

co=Um/n—-UY" (-1)"""'G(n,m,i),

andc; = 0 for others.



e Ifm < k <n,then
c; = (=1)"" " 1G(n,myi) fori=m+1,...,k -1,

o =m/n— S0t (1) G (nm, i),

andc; = 0 for others.

e If k =n, then
c; = (=1)"" " 1G(n,myi) fori=m+1,...,n—1,
co=Lm/n— LY (~1)" " G (n,m,q),
andc; = 0 for otheri.

In expectation, this mechanism fails to redistribute
oxm(".)/(3)
This mechanism is uniquely optimal among all linear redisttion mechanisms if

and only if the choice of is unique and there does not exist an evernd an oddj
such thaip; = o; = 0.

The mechanism is complicated, and is perhaps easier tostaddrusing the aux-
iliary variables that we define in the derivation of this magism (in Appendix A).

The key property of the mechanisms in the theorem is that #tenis always a
multiple of: 1) the expected difference between two adjacienterms of size) bids,
or 2) the expected difference between the upper bound anidigpest bid, or 3) the
expected difference between the lowest bid and the lowendholMloreover, the mul-
tiplication coefficient is determined by. andn. Then, the OEL mechanism simply
chooses the best of these options. In contrast, under th&t-a@se optimal mecha-
nism [16, 20], the waste is a linear combination of all of tiasl{except for the highest
m).

We now present a special case that may give some furthetiamuihe case where
k = m + 1in Theorem 1 corresponds to the redistribution mechaniswhich each
agent receives a redistribution payment that is equal to times the(m -+ 1)th highest
bid from the other agents. In our setting of multi-unit aons with unit demand, this
is exactly the Bailey-Cavallo mechanism. This observatooformally stated in the
following corollary.

Corollary 1. Givenn, m, and a prior distribution over agents’ valuations, we define
theo; as follows:

oo =U — FEvy,0; = Ev; — E’U,‘_H (Z =1,2,...,n— 1), andon = kv, — L.
If the following condition holds:
Oms1 < 04 (m11)/(?) forall 0 < i < n withi — m odd,

then the Bailey-Cavallo mechanism maximizes expectestribdition, under the con-
straints that the mechanism must be a linear redistributigthanism, efficient, strategy-
proof, and satisfy the non-deficit property.



Next, we present two example OEL mechanisms.

Example 1. Consider the case where= 3 andm = 1, and the bids are all drawn

independently and uniformly frof®, 1]. In this caseFv; = % fori=1,...,3. So,
U=1,L=0,0;=%fori=0,...,3. (Werecall thab, = U — Evy,0, = Ev, — L,
ando; = Ev; — Ev; 41 otherwise.)arg min;{o;/(})|i —moddi = 0,...,n} is then

{m+1} = {2}. The expected amount that fails to be redistributedis (" ") /(%) =
L (The expected total VCG payment %s) The optimal solution is given by, =
g, andc¢; = 0 for otheri. Hence, this optimal-in-expectation linear redistribati

mechanism is defined by = %1}_1’,2, which is actually the Bailey-Cavallo mechanism.
The total redistribution i$°7" ; r; = $v + Zv3. The expected amount that fails to be

redistributed IS (vs — Lvs — 2v3) = 2E(vy — vg) = 1.

Example 2. Consider the case where= 8 andm = 2, and the bids are all drawn
independently and uniformly fron, 1]. In this caseEv; = % fori=1,...,8. So
U=1,L=0,0; = % fori =0,...,8. argmini{oi/(?)ﬁ —moddi=0,...,n}is
then{3,5}. The expected amount that fails to be redistributegiis (" ') /(%) = .
(The expected total VCG paymentés)

One optimal solution is given by; = i, andc; = 0 for otheri. Hence this
expectation optimal linear redistribution mechanism i byr; = %U_,L‘_rg (Bailey-
Cavallo mechanism). The total redistributiondd , r; = 5v3 + 3v,. The expected
amount that fails to be redistributedB2v; — 2v3 — 2vy) = 3E(v3 — vy) = .

The other optimal solution is given by = 2, ¢, = —15, ¢5 = 5, ande; = 0 for
otheri. Hence this expectation optimal linear redistribution heedsm is defined by
T, = %’l}_i,gf%v_i_’4+%v_i75. The total redistribution |E?=1 T, = 2237%054’%1)6.

The expected amount that fails to be redistributed(§ (vs — vg)) = .

3.2 Propertiesof the OEL mechanism

In the remainder of this section, we present some propesfitse OEL mechanism.
First, we have that there cannot be another redistributiech@anism that always redis-
tributes at least as muéh total as OEL, and strictly more in at least one case. That is,
the OEL mechanism igelfare undominatefll].®

Proposition 1 ([1]). For anym,n and any prior distribution, there does not exist any
redistribution mechanism that, for every multiset of bidslistributes at least as much
in total as OEL, and redistributes strictly more in at leasieccase.

The above proposition was shown in [1]. More precisely, tregter shows that
the OEL mechanisms characterized in Theorem 1 are the orffar@@indominated
redistribution mechanisms that are anonymous and linearuli-unit auctions with
unit demand.

It should be noted that Proposition 1 only applies to the OEchanism, as defined
in Theorem 1. Under certain circumstances (as detailed@oiiém 1), this mechanism

6This immediately implies that there cannot be another redigion mechanism that always redistributes
at least as mucfor every agenas OEL. That is, the OEL mechanism is alsalominated15].



is not uniquely optimal; and the other optimal mechanismsidbalways have the
property of Proposition 1.

The next proposition shows that, if the prior distributiaed not distinguish among
agents, OEL igx-interimindividually rational—that is, in expectation, agents biéne
from participating in the mechanism (they receive nonriegaxpected utilities).

Proposition 2. If the prior distribution is symmetric across agents (foample, the
agents’ values are independent and identically distridytehen the OEL redistribution
mechanism is ex-interim individually rational.

Proof. The original VCG mechanism (redistributing nothing) iscaéslinear redistri-
bution mechanism (correspondingdo= 0 for all 7). Hence, the OEL mechanism will
always redistribute a nonnegative amount in expectatioat ®,£(> ", r;) > 0. If

the distribution is symmetric across agetligr;) = E(r;) for anyi andj (E(r;) is the
expected redistribution received by ageémvhich is independent of her own report).
So E(r;) > 0 for all i. However, the VCG mechanism is well-known to be ex-interim
(in fact, ex-post) individually rational in this settingy that even ifE(r;) = 0, agents’
expected utility from participating in the mechanism is negative. It follows that
OEL must also be ex-interim individually rational. O

As an aside, if the prior is not symmetric across agents, Weenan explicitly add
the ex-interim individual rationality constraint (or theangerex-postndividual ratio-
nality constraint) into our optimization model. This still results in a lingaogram
(but it does not admit an elegant analytical solution).

In Theorem 1, we gave an expression for the expected amoanOtEL fails to
redistribute, which depended on the prior. In the next pstfmm, we give an upper
bound on this that does not depend on the prior.

Proposition 3. For any prior, the OEL mechanism fails to redistribute at mos

C=Dm(,) 2 ()

1=0,1,...,n;i—m od
in expectation. This bound is tight.

Proof. Given a prior distribution (and therefore, given th§ the expected amount that
fails to be redistributed is;m (™~ ") /(}) for anyk € arg min;{o;/(?)|i —modd i =
0,...,n}. Ifadistribution is constructed such that= (U—L)("})/ > @)

1=0,..., n;t—m 0
for all  with  —m odd, andb; = 0 for all other: (this is in fact a feasible setting of the
0;—Wwe can just use a degenerate distribution where the ageitsitions are not inde-
pendent), thearg min;{o;/(7})|i—modd i =0,...,n} = {i|0 < i < n,i—modd}.
So k can be anyi as long asi — m is odd. In this case, the expected amount not
redistributed is exactlyy — L)ym(" ")/ S (™).

m . y i
i=0,...,n;i—m od

Now suppose that there is another distribution under whiehmtechanism fails to
redistribute strictly more in expectation. Then, the netwode; must satisfy

dm () /G) > () S () = omn(",1)/(2) for anyiwith i~

1=0,...,n;i—m 0

7A mechanism is ex-post individually rational if every agestteives nonnegative utility f@ny bids.



odd. It follows thatb) > o, for any: with i —m odd. Since > 0 =U-1L
1=0,...,n;2—m odd
ando > 0 for anyi with ¢ — m even, we have > o, > U — L, which is a
1=0,...,n

contradiction. O

For Example 1, Proposition 3 gives an upper bound on the ¢éegh@mount that
fails to be redistributed od.5 (we recall that the actual amount33. For Example 2,
Proposition 3 gives an upper bound on the expected amoutiatisao be redistributed
of 0.3281 (we recall that the actual amountfg,).

The next proposition shows that for fixed, asn goes to infinity, the expected
amount that fails to be redistributed goesdtchence OEL is asymptotically optimal
for fixed number of units.

Proposition 4. For fixedm, asn goes to infinity, the expected amount that fails to be
redistributed by OEL goes @

Proof. By Proposition 3, we only need to show that for fixeqd asn goes to infinity,

(U - Lym(™ ")/ > (") goes ta.
i=0,1,...,n;i—m odd
We have thatU — L)m("")/ S () <WU=Lym(" 1)/ (,0h0) =
i=0,1,...,n;i—m odd

(U — p)mln= DIt OI—m 1! _ (17 — ) (m + 1)m,/n. The right-hand side goes to

m!(n—m—1)In!

0 asn goes to infinity. O

On the other hand, if we increase bottandm, and keep their difference within
constant’, then the expected amount fails to redistributed by OEL gtss to0: for
largen, the expected amount fails to be redistributed by OEL is attmo

C-Dm(Y)/ X ()S@-Dn@-1°Y % (1)

1=0,1,...,n;i—m O i=0,1,...,n;i—m odd
= (U~ L)n(n = 1H)°1/( > D+ + = )
i=1,2,...,n—1;i—m odd i=0,n;i—m odd
Basically, the denominator is exponentiakipwhile the numerator is polynomial in
Therefore, as increases, the amount fails to be redistributed by OEL aggires).

So far, we have only considered anonymous redistributioohamgisms (that is,
mechanisms with the same redistribution functigr) for each agentj. If we allow
the redistribution mechanism to be nonanonymous, then wesadifferent; for dif-
ferent bidders. Moreover, even for the same bidder, we carifferentc; depending
on the order of the other bidders (in terms of their bids), #nedte are(n — 1)! such
orders. Thus, it is clear that to optimize among the classoononymous linear re-
distribution mechanisms, we need significantly more védemand analytical solution
of the linear program no longer seems tractable. Howeverdavbave the follow-
ing proposition, which shows that the OEL mechanism remaptsnal even among
nonanonymous linear redistribution mechanisms, if therpsi symmetric.

Proposition 5. If the prior distribution is symmetric across agents (foample, the
agents’ values are independent and identically distriditéhen no nonanonymous

8An exception is Proposition 1, which shows that there is mehea nonanonymous mechanism that
always redistributes at least as much in total as OEL, anctigtmore in at least one case.
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linear redistribution mechanism can redistribute stryathore than the OEL mechanism
(which is anonymous) in expectation.

Proof. Let us define the average of two (not necessarily anonymaas3tribution
mechanisms as follows: for any multiset of bids, for any ageif one redistribution
mechanism redistributes to agent:, and the other redistribution mechanism redis-
tributesy to 4, then the average mechanism redistributest y)/2 to i. It is not
difficult to see that if two redistribution mechanisms bo#ver incur a deficit, then the
average of these two mechanisms also satisfies the nontgediperty. This averaging
operation is easily generalized to averaging over threeasemmechanisms.

Now let us assume thatis a nonanonymous linear redistribution mechanism, and
thatr redistributes strictly more than the OEL mechanism in etad@m when the prior
distribution is symmetric across agents. kebe any permutation af elements. We
permute the way treats the agents accordingtpand denote the new mechanism by
r™. That is,r™ treats agentr(i) the wayr treatsi. Since we assumed that the prior
distribution is symmetric across agents, the expected dotaunt redistributed by™
should be the same as that redistributed-byNow, if we take the average of th€
over all permutations, we obtain an anonymous linear redistribution mechanish th
redistributes as much in expectationra@nd hence more than the OEL mechanism).
But this contradicts the optimality of the OEL mechanism amanonymous linear
redistribution mechanisms. O

4 Discretized Redistribution M echanisms

In the previous section, we only considered linear redistion mechanisms. This re-
striction allowed us to find the optimal linear redistrilmtimechanism by analytically
solving a linear program. In this section, we consider adadpmain of eligible mech-
anisms, and proposkscretized redistribution mechanisymghich can be automatically
designed [7] and can outperform the OEL mechanism. (In #tien, for simplicity
and to be able to compare to the previous section, we onlyidensnonymous mech-
anisms, and we do not impose an individual rationality aamst. However, all of the
below can be generalized to allow for nonanonymous mechenénd an individual
rationality constraint.)

We study the following problem: given a prior distributigh(the joint pdf of
v1, U2, ..., Uy), We try to find a redistribution mechanism that redistrédsuthe most in
expectation among all redistribution mechanisms that eacharacterized by contin-
uous functions. For simplicity, we will assume thais continuous. The optimization
model is the following:

Variable function: » : R*~! — R, r continuous
Maximize

St (o) f(vi,v2,. .., vp)dvidus . . do,
U>vi2>...2v,>L
Subject to:
For every bid vectot/ > vy > v, > ... > v, > L

Yo r(v=i) < mumaq
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Let R* be the optimal objective value for this model. (To be precmse have not
proved that an optimal solution exists for this model: iticdoe that the set of feasible
solution values does not include its least upper bound. itndéise, simply leR* be
the least upper bound.) Since we are not able to solve thighanalytically, we try to
solve it numerically.

We divide the intervalL, U] (within which the bids lie) intaV equal parts, with
step sizéh = (U — L)/N. Letk denote the subintervali(k) = [L + kh, L + kh + h]
(k = 0,1,...,N —1). Definer"” : R*~! — R as follows: for allU > z; >
To > ... > xp_1 > L, ’I‘h(l‘l,zg, - ,In_l) = Zh[kl, kg, - 7kn—1] Whereki =
|(z; — L)/h] (exceptthak; = N — 1if 2; = U). Here, thez" [k, ko, ..., k,_1] are
variables. We call such a mechanism a discretized redisiwito mechanism of step
sizeh.

Proposition 6. A discretized redistribution mechanism satisfies the naficid con-
straint if and only if

E?:l Zh[ktha---;ki—l7ki+l7"' 7kn} S m(L+km+1h)
foreveryN —1>ky > ko> ... >k, >0.

Proof. ForeveryN —1 > ky > ko > ... > k, > 0,if v; = L + k;h for all 4, then
S 2k ko, oo kis1, kiya, - - -, k] IS the total redistribution anch (L + &y, 41 h)

is the total VCG payment. It follows that if the mechanismisas the non-deficit
property, the inequalities in the proposition must holdn@sely, if all the inequalities
in the proposition hold, then the total redistribution oé tnechanism is never more
thanm(L + k,,+1h), which is less than equal to the total VCG payment,,, 1. So
the mechanism never incurs a deficit if all the inequalitrethe proposition hold. [

The following linear program finds the optimal discretizedlistribution mecha-
nism for step sizér. The variables are”[k;, ko, ..., k,_1] for all integersk; satis-
fying N —1>ky > ky > ... > k,—1 > 0. The objective is the expected total

redistribution, where|[k1, ko, ..., kn] = P(v1 € I(k1),v2 € I(ks),...,v, € I(ky))
(we note that the[k4, ko, . . ., k,] are constants).

Variables: 2"].. ]
Maximize
ZNflzhzkzZmanZOp[k)l’ k‘g, ey kn] Z?:l Zh[kl, kjg, ey k‘z;l, k}iJrl, ey k‘n]
Subject to:

ForeveryN — 1>k > ks > ... >k,
Sy 2k oy ki ki,

>
< m(L + kmy1h)

Letz*"[...] denote the optimal solution of the above linear program leind” de-
note the corresponding optimal discretized redistributiechanism. LeR*" denote
the optimal objective value. The next proposition shows tlecretized redistribution
mechanisms cannot outperform the best continuous rdaititth mechanisms.

Proposition 7. R*" < R*.

12



Proof. For anye > 0, we will show how to construct a continuous functignso that
r’ < r*" everywhere, and the measure of the{get' # r’} is less than.

Let B be the greatest lower bound of” (r* is bounded below because it is a
piecewise constant function with finitely many pieces). gwenU > z; > zo >

ce.>Tp_1 > L, letd(xy,...,z,-1) be the minimal distance from amy — L to the
nearest multiple oh. For anys > 0, letrs(xy,..., 2 1) = r**(z1,..., 2, 1) if
d(x1,. .., Tpn1) > 6, andrs(zy, ..., 20 1) = 7" (21, ..., T0_1)
— (6 —d(xy,...,20_1)) (" (21,...,2,_1) — B)/J otherwise.

Itis easy to see that the functiogis continuous at any point whed¢zx, . .., z,—1)
> §, because at these points? is continuous. Furthermore, the function is continuous
at any point wheré > d(z1,...,z,_1) > 0, because*” andd are both continuous at
these points. Moreover, it is also continuous at any poirereti(z1,...,z,-1) =4,
because atsuch a point* (z1, ..., z,_1)—(5—d(z1, ..., 2n_1)) (" (21, ..., 2p_1)—

B)/§ = r*"(xy,...,2,_1). Finally, at any point wheré(zy,...,z,_1) = 0, the
function is continuous because on any paifif..., 2] _, at distance at most > 0
from z1,...,x,_1, the function will take value at most(H — B)/d, whereH is an
upper bound on*" (H is finite).

As § goes to0, so does the measure of the $et” # r;}. Moreover,rs < r**
everywhere. Hence we can obtajrnwith the desired property by letting it equal for
sufficiently smalld.

Now, r/ is a feasible redistribution mechanism, because it alwegistributes less
thanr*". Moreover, becausgis a continuous pdf on a compact domaing as 0, the
difference in expected value betwe€nandr*" goes tod. Hence, we can create con-
tinuous redistribution functions that come arbitrarilps# toR*" in terms of expected
redistribution, and hencB* (the least upper bound of the expected redistributions that
can be obtained with continuous functions) is at lg&st. 0

The next proposition shows that if we make the discretirefiimer, we will do no
worse.

Proposition 8. R* < R*"/2,

Proof. Forall2N — 1 > ky > ke > ... > k,—y > 0, let 2"k ko, ... k1] =
2P| k1 /2], [k2/2],- .., |kn_1/2]]. The discretized redistribution mechanism corre-
sponding toz"/2[.. ] is exactlyr*". The discretized redistribution mechanigrit
satisfies the non-deficit property. Hence the variablég|. . .] form a feasible solution
of the linear program corresponding to step $iZ2, so its expected redistribution must
be less than or equal to that of the optimal solution of thedirprogram corresponding
to step sizeh/2. Thatis,R*" < R*"/2, O

The next proposition shows that as we make the discretizditier and finer, we
converge to the optimal value for continuous redistributizechanisms.

Proposition 9. limj,_.o R*" = R*.

Proof. For anyy > 0, there exists a continuous redistribution mechani$rsuch that
its expected redistribution is at led®t — ~. r* is continuous on a closed and bounded
domain, sa* is uniformly continuous. Hence for ary> 0, there exist$ > 0 so that
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[r*(z1, 22, ...y @p—1) — ™ (2h, b, ..., 2] _1)| < easlong asnax; {|z; — |} < 0.
Chooseh < §, and define” [ky, ko, ..., kn_1] by r*(L+kih, L+koh, ..., L+k,_1h)
foral N — 1>k > ky > ... > k,_1 > 0. 2"[...] corresponds to a feasible
discretized mechanisnt. In addition,”” > r* —e. Hence, the expected redistribution
of the optimal discretized mechanism with step size (at )lost R*" > R* — v —
ne. Sincey ande are both arbitrarily smalllim;_.o R** > R*. By Proposition 7,
limy,_o R*" < R*. O

We note that a discretized redistribution mechaniéris defined by a finite number
of real-valued variables: namely, one variablék, , ko, ..., k,_1] for everyN — 1 >
ki1>ky > ... > k,_1 > 0. Because of this, we can use a standard LP solver to solve
for the optimal discretized redistribution mechanistn(for givenm, n, h and prior).
In general, this linear program involves exponential nundfevariables and does not
scale. However, at least for small problem instances, wesetnto very small values,
and by Proposition 9, we expect the resulting mechanism tddse to optimal.

But how do we know how far from optimal we are? As it turns ohg tiscretiza-
tion method can also be used to find upper bound&bnHere, we will assume that
agents’ values are independent and identically distrihufehe following linear pro-
gram gives an upper bound @i

Variables: z"[.. ]

Maximize

ZNflzlﬁzkzz...anZO p[kla ko, ..., kn] Z:L:l Zh[kh ko, kizt, kige, .o kn]
Subject to:

ForeveryN —1>ky > ko > ... >k,
Z?:l Zh[klv k27 LR ki*h ki+17 LR kn
ME(Vmyilvr € I(k1),vs € I(ka), ... v, € I(ky))

The intuition behind this linear program is the followingn the previous linear
program, the non-deficit constraints were effectively settfie lowestvalues within
each discretized block, which guaranteed that they would fow every value in the
block. In this linear program, however, we set the non-defiohstraints by taking
the expectatiorover the values in each block. Generally, this will resulti&iicits for
values inside the block, so this program does not produsgfieamechanisms.

Let 2[.. ] denote the optimal solution of the above linear program, lahd”"
denote the (not necessarily feasible) corresponding @ptitiscretized redistribution
mechanism. Lefz” denote the optimal objective value. We have the followingpor
sitions:

Proposition 10. If the bids are independent and identically distributertk™ > R*.
Proof. Letr be any feasible continuous (anonymous) redistributionhaeism. Now,
consider the conditional expectation of a bidder’s reitigtion payment under, given

that, for eachi € {1,...,n — 1}, theith highest bid among other bidders is in
I(k;) = [L + kih, L + k;h + h]. Let 2"[ky, ko, ..., k,_1] denote this conditional
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expectation. (We emphasize that this does not depend oralient we choose, due
to the i.i.d. assumption.)

Now, thesez"|...] constitute a feasible solution of the above linear progréam,
the following reason. The left-hand side of the constrairthie above linear program
is now the expected total redistribution of given that for each € {1,...,n}, the
ith highest bid is i/ (k;); and the right-hand side is the expected total VCG payment,
given that for eachi € {1,...,n}, theith highest bid is in/ (k;). Because- satisfies
non-deficit by assumption, the constraint must be met by the .].

Moreover, the objective value of the feasible solution defiby thez"|. . ] is iden-
tical to the expected total amount redistributedrbyHence, for every expected total
amount redistributed by a feasible continuous mechanisenetexists a feasible solu-
tion to the above linear program that attains that valuellofs thatR" > R*. O

So, we have thak*" is a lower bound om?*, and 2" is an upper bound. The next
proposition considers how close these two bounds are,rimstef the step sizé.

Proposition 11. If the bids are independent and identically distributecerttiz” <
R*" + mh.

Proof. Consider the right-hand side of the constraints of the abioear program. We
havemFE (vy,11]v1 € I(k1),v2 € I(ka),...,v, € I(ky)) < m(L+kn+1h+h), since
Umt1 € I(kme1) implies thatw,,+1 < L+k,,+1h+h. Consider an optimal solution of
the linear program for determining”. Now, from every variable” [k, ko, ..., kn_1],
subtractnh/n. This results in a feasible solution of the linear programdfetermining
R*", and the decrease in the objective valuesish/n = mh. Hence,R" < R*" +
mh. O

Hence, by solving the linear program for determiniRy’, we get a lower bound
on R* and a discretized redistribution mechanism that comee ¢tois. If we also have
that the bids are independent and identically distributgdsolving the linear program
for determiningiz™, we get an upper bound di* that is close ta?*".

5 Experimental Results

We now have two different types of redistribution mecharisvith which we can try to
maximize the expected total redistributed. The OEL medmathias the advantage that
Theorem 1 gives a simple expression for it, so it is easy teedodarge auctions. In
addition, it is optimal among all linear redistribution nh@nisms, although nonlinear
redistribution mechanisms may perform even better in egpiet despite not being
able to welfare dominate the OEL mechanism. On the other ,hi#dreddiscretized
mechanisms have the advantage that, as we decrease thizstiepage will converge
to the maximum amount that can be redistributed by any coatia redistribution
mechanism. The disadvantage of this approach is that itiessale to large auctions.
Fortunately, the experimental results below show that émtians with many bidders,
the OEL mechanism redistributes almost everything, wiefeaauctions with few
bidders, we can solve for the optimal discretized redistidn mechanism with a very
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small step size. That is, the two types of redistribution na@ésms are in some sense
complementary.

In the following table, for different. (number of agents) ana (number of units),
we list the expected amount of redistribution by both the Qf¢chanism and the
optimal discretized mechanism (for specific step sizes)e Bids are independently
drawn from the unifornj0, 1] distribution.

nm | VCG BC OEL R*h R %

3,1 | 0.5000 | 0.3333| 0.3333| 0.4218 (N=100)| 0.4269 | 84.4
4,1 [ 0.6000 | 0.5000 | 0.5000 | 0.5498 (N=40) | 0.5625 | 91.6
51 | 0.6667 | 0.6000| 0.6000| 0.6248 (N=25) | 0.6452 | 93.7
6,1 | 0.7143| 0.6667 | 0.6667 | 0.6701 (N=15) | 0.7040 | 93.8
3,2 | 0.5000 | 0.0000 | 0.3333] 0.4169 (N=100)| 0.4269 | 83.4
4,2 ] 0.8000 | 0.5000 | 0.5000 | 0.6848 (N=40) | 0.7103 | 85.6
5,2 | 1.0000 | 0.8000 | 0.8000 | 0.8944 (N=25) | 0.9355| 89.4
6,2 | 1.1429 | 1.0000 | 1.0000| 1.0280 (N=15) | 1.0978 | 89.9

Expected redistribution by VCG, BC, OEL, and discretized hagisms, for small numbers of agents.

In the above table, the column “VCG” gives the expected tgaG payment; the
column “BC” gives the expected redistribution by the Baifégvallo mechanism; the
column “OEL” gives the expected redistribution by the OELam&nism; the column
“ R*M" gives the expected redistribution by the optimal disaediredistribution mech-
anism (step sizé/N); the column ‘R gives the upper bound on the expected redis-
tribution by any continuous redistribution mechanism (satep size as that dt*").
The last column gives the percentages of the VCG paymenttieatedistributed by
the optimal discretized redistribution mechanisms (rangdo the nearest tenth).

Finally, when the number of agents is large, the OEL mechaigsvery close to
optimal, as shown below:

n,m VCG BC OEL % n,m VCG BC OEL %

10,1 | 0.8182 | 0.8000 | 0.8143 | 99.5 20,1 | 0.9048 | 0.9000 | 0.9048 | 100.0
10,3 | 1.9091 | 1.8000 | 1.8000 | 94.3 20,5 | 3.5714 | 3.5000 | 3.5564 | 99.6
10,5 | 2.2727 | 2.0000 | 2.0000 | 88.0 || 20,10 | 4.7619 | 4.5000 | 4.5000 | 94.5
10,7 | 1.9091 | 1.4000 | 1.8000 | 94.3 || 20,15 | 3.5714 | 3.0000 | 3.5564 | 99.6
10,9 | 0.8182 | 0.0000 | 0.8143 | 99.5 || 20,19 | 0.9048 | 0.0000 | 0.9048 | 100.0

Expected redistribution by VCG, BC, and OEL for large numtméragents.

The fifth and tenth columns give the percentages of the VCGneay that are
redistributed by the OEL mechanisms (rounding to the néteath).

6 Multi-Unit Auctionswith Nonincreasing Marginal

Values
In this section, we consider a more general setting in whggmes do not necessar-
ily have unit demand, that is, they may value receiving uinitaddition to the first.

However, we assume that the marginal values are noninoggdbat is, they value the
earlier units (weakly) more. (Units remain indistinguibtea) We still usen andm to
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denote the number of agents and the number of available botta/e no longer require
thatm < n. An agent’s bid is now a nonincreasing sequencexalements. We de-
note agent’s bid by B; =< b;1, b2, .. ., bim, >, Whereb;; is agent’s marginal value
for getting herjth unit (so thab;; > b;(;4.1)). That is, agent’s valuation for receiving

j units isZi:1 b;r. A bid profile now consists of vectorsB;, with 1 < i < n, or
equivalentlymn elements;;, with 1 < <n andl < j <m. We represent thg; in
matrix form as follows:

bim bom ... bpm
b12 b22 . bnz
bir b ... by

Without loss of generality, we assume tihhat > by > ... > b,;. Thatis, the
agents are ordered according to their marginal values foniwg their first unit. We
denote the:th highest element among all thg by v, (1 < k < mn).

We assume that we know the joint distribution of the(and hence we also know
the joint distribution of they;). We continue to us& to denote the known upper bound
on the values that this; can take U/ is also the upper bound on thg). In this part
of the paper, we will not consider the case where there is adoundL > 0 on all
theb;; (vi); that is, we assume the lower boundig(In fact, if there is a lower bound
L > 0, we can simply require the agents to bid how far abbweeir marginal values
are, that is, require them to subrbjt = b;; — L, in which case we arrive at the case
that we study below. The VCG payments under these modifies Wwitll always be
mL less than under the original bids, but we can easily retiggithis additionatn L.
Hence, the restriction thdt = 0 comes without loss of generality.)

Let B be a bid profile. We denote the set of bids other tBarfagenti’s own bid)
by B_;. B_; consists ofmn — m elements. We can writ&_; in matrix form as
follows:

blm e bifl,m bi+1,m oo bnm
b12 o bi—1,2 bi+1,2 s bn2
bll cee bi—l,l bi+1,1 cee bnl

We denote théth highest element ii8_; by v_; , (1 < k < mn —m).

Our definition for VCG redistribution mechanisms in thisteet is similar to our
earlier definition. Namely, in a VCG redistribution mechsamnj we first allocate the
units efficiently, according to the VCG mechanism; thenhesgent receives a redistri-
bution payment that is independent of her own bid. An effica@iocation is obtained
by accepting then highest marginal values{, vs,...,v,). Thatis, ifx elements
amonguy, v, . . ., v, COMe from agent's bid, then agent wins x units. Agent’s re-
distribution equals(B_;), wherer is the function that characterizes the redistribution
rule.

We now need a definition dinear redistribution mechanisms in this setting. We
could define linear redistribution mechanisms as follows:

T(B—i) =co+ C1V—41 + C2U—; 2 +...+ Cmn—mV—imn—m
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We will study this particular definition later in the papeovever, it should imme-
diately be noted that this definition ignores some potdgtiadluable information in
B_;, as shown by the following example.

Example 3. Letn = 3 andm = 2.

0 0
e Case l: LeB_; be{ U U }

e Case 2: LeB_; be{ v-0 }

U 0

In both cases, we have.; ; = U,v_;» = U, v_; 3 = 0, andv_; 4 = 0. Hence, if we
define the linear redistribution mechanisms as above, temnedistribution payment
must be the same in both cases.

We can see that the above definition loses some informationtaghe ordering
of the elements in the matrix. We will show later that thisormhation loss can in
fact come at a cost (less payments can be redistributed)outdabe good if we can
incorporate the information about the order of thein B_; in the definition of linear
redistribution mechanisms. This is what we will do next.

Let B and B’ be two bid profiles. The elements i and B’ are denoted by, ;
andb;j, respectively, forl < i < nandl < j < m. We sayB and B’ areorder
consistent, denoted byB ~ B’, if for any i1, j1, 42, jo, we have thab; ;, > b;,;,
implies b}, ; > b;,,,, andb; ; > b . impliesb;, j, > b;,j,. An order consistent
classof bid profiles consists of bid profiles that are all pairwisder consistent. The
set of all allowable bid profiles can be divided into a finiterher of maximal order
consistent classes (that is, order consistent classearthabt proper subsets of other
order consistent classes). (Specifically, we have one dash for every strict ordering
< on the ordered pairg, j) (1 < i < mandl < j < n)such thati,j + 1) < (4, 5)
and(i + 1,1) < (i,1) everywhere. We note that some bid profiles are part of more
than one of these maximal order consistent classes: for@eathe bid profile with
all 0 elements belongs to all the classes.) We can apply the safingidas of order
consistency and (maximal) order consistent classes torthfdgs of other bids, the
B_;. LetI(B_;) denote the maximal order consistent class that confains’

The following definition of linear redistribution mechanmis successfully captures
the ordering information oB_;, by having separate coefficients for every maximal
order consistent class.

r(B_i) = cr(B_,),0 + Cr(B_)aV—i1 + - F CI1(B_,) mn—mV—imn—m

Since 2 3 and g 8 are not order consistent, they can result in differ-
ent redistribution payments in this class of redistribotisechanisms.
Of course, this set of coefficients is unwieldy. As it turns,aue can simplify the

representation of these mechanisms if we assume that tepatinuous.

9If B_; belongs to multiple maximal order consistent classes, fli&h_;) is the class with the smallest
index in any predetermined order of all the classes. If werasstontinuity of the redistribution function, as
we will do below, then in fact it does not matter which maximalardonsistent class we choose #8r ;.
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Let r be a linear redistribution mechanism (as just defined).7l{@_,, k) be the
result of changing the largestelements ofB_; into U, and changing the remaining
elements ofB_; into 0. (We assume that ties for the t@pvalues are broken in a
consistent way.) We note tha@t(B_;,k) ~ B_; forall 0 < k < mn — m. For

1 2 0 O 1 2 0 O
example,T({ 4 3 } ,1) = { U oo } andT({ 4 3 ],2)_ { U U ]

We define the following function’:

r(T(B_;, 1)) — r(T(B_;,0))
U

r(T'(B-;,mn—m)) —r(T(B_;,mn —m — 1))

V—i,mn—m
U ’

r'(B_i) = r(T(B-4,0)) +

Vi1t ...+

Proposition 12. If r is continuous, then = 1.

Proof. We first restrict our attention to profild3_; in a specific (but arbitrary) maxi-
mal order consistent class; moreover, we only considerlpsafl_; in which no two
elements are equal. For aBy ; in this class, we use the same —m + 1 coefficients
of r, andT(B_;, k) (and hence:(T(B_;, k))) depends only ofk. That is, both the
coefficients and’(B_;, k) are constant iB_;.

If r is continuous, then wheB_; approached'(B_;, k), we have that(B_;) ap-
proaches (T(B_;, k)). By the definition of’, we also have that wheB_; approaches
T(B_;, k), thatis, when the first elements ofB_; approach/ and the remaining el-
ements ofB_; approach), we have that’(B_;) approaches(T(B_;,k)). That is,
r(T(B_i,k)) = r'(T(B_;,k)) for 0 < kE < mn — m; that is, the functions agree in
mn —m+ 1 different places. Sinceandr’ are both linear functions withhn —m +1
constant coefficients, andr’ must be the same function whéh ; is restricted to one
class. Since the choice of class was arbitrary, we have-that’. O

From now on, we only consider continuotis Hence, we can characterizeby
the values it attains at all possibll& B_;, k). T(B_;, k) consists of only the numbers
U and0. We represeni’'(B_,;, k) by an integer vector of length, where theith
coordinate of the vector is the numberi$ in theith column of I'(B_;, k).

For example,

T([4 2],2):[[] O}—><2,0>

5 3 U 0
1 2 0 U
T( 13 ,3) = U U —< 1,2 >
Using this,r(T(B_;, k)) can be rewritten as[z1, 23, . .., z,_1], Where
< x1,%9,...,Tn—1 > IS the vector representinf(B_;, k) (with for eachi, 0 < z; <

m, and>_ x; = k). Moreover, because we have, for example, thj{t 0 v }) =

U U
U 0 . .
7( U U ), we can assume without loss of generality that> zo > ... > x,,_1.
The following is an example of how to compute an agent’s tebigtion payment
based on the values ofxy, z2, ..., x,—1].
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U
r(T(B—;;mn —m)) —r(T(B_;,mn—m — 1))1) ‘
U —i,mn—m
0 0 0 0 U 0 0 0
oo eobea) v oo o),
=0 o PF U * U
U 0 U 0 U U U 0
+r<[ coo o) 2+r([ AR 1
U U
B r[1,0] —r[0,0]  r[2,0] —r[1,0] _ r[2,1] —7[2,0] . r[2,2] —r[2,1]
= r[0,0]+ i 4+ i 3+ i 2+ i 1
Since the values of thgz, 5, . . ., 2,,—1] completely characterize the continuous
linear redistribution mechanism, we can solve for valueshefr(z,,xs, ..., z,_1]

for which the corresponding linear redistribution meckanisatisfies the non-deficit
property and produces the least waste in expectation uhidezdnstraint.

The following proposition characterizes the non-deficielr redistribution mech-
anisms.

Proposition 13. A linear redistribution mechanism satisfies the non-deficiperty

if and only if the corresponding[z1, 2, . . ., x,—1] Satisfy the following inequalities:
Forallm>ay > a0 > 23> ... > 2 >0, 0 7[T1, oy T 1, Tig 1y oo o5 T) <
U-(3 ey min{ (327, @) —ai, my—(n—1) min{3°7_, x;,m}). (The right-hand side
of the inequality corresponds to the total VCG payment ferptiofile< xq, zo, ..., 2, >.)

Proof. To see why the right-hand sidé - (3-/_, min{(3_7_, z;) — 5, m} — (n —

1) min{Z?zl xj,m}) corresponds to the total VCG payment, we note that

U - min{(Z?:l xj) — x;,m} is the total efficiency when is removed, so that/ -

> iy min{(3°7_, x;) — x;,m} is the sum of all the terms corresponding to efficien-
cies when one agent is removed.- (n — 1) min{Z?:1 xj,m}) corresponds to the
sum of the basic Groves terms in the payments from the agéntis term, each
agent receives the total efficiency obtained by the othentagevhen the agent is not
removed), and if we sum over all the agents, that means eagtt Egcountech — 1
times.

Now we can prove the main part of the proposition. If the nefieit property is
satisfied for all bid profiles, then it should also be satisfidebn the marginal values
are restricted to be eithéf or 0. This proves the “only if” direction. Now we prove
the “if” direction. Let B be any bid profile from a fixed maximal order consistent
class. This implies that the maximal order consistent aéds_; is fixed as well, for
everyi. The total VCG payment equals the sum over;af the m highest elements
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in B_;, minusn — 1 times the sum of then highest elements if. In either case,
because we are restricting attention to a fixed classpth@ghest elements are the
same ones for anig in the class. Because of this, the VCG payments are line&ein t
v;. Additionally, again because we are restricting attentibane particular class, the
redistribution payments are also linear in the

Now, if the inequalities hold, that means that the total VC&yment minus the
total redistribution is nonnegative when the marginal galare restricted to eithéf
or 0. That is, the non-deficit constraints hold for these extreases. But by Lemma 1,
if a non-deficit constraint is violated anywhere, then a defieit constraint must be
violated for one of these extreme cases. It follows that the deficit constraints hold
everywhere in the class that we were considering, and bedchissclass was arbitrary,
the non-deficit constraint must hold everywhere. O

Let z be the total number of maximal order consistent classesZl & an arbi-
trary bid profile that is (only) in thgth class. LetP(B € 1(Z7)) be the probability
that a bid profile is drawn that is (only) in théh class, and leE(v_; x| B € I(Z7)) be
the expectation of theth-highest marginal value amorig)_;, given thatB is (only) in
the jth class. We assume that the probability that we draw a bitbwéitat is in more
than one class is zero (this would require that two valuessaetly equal).

Now we are ready to introduce a linear program that solvegHeroptimal-in-
expectation linear redistribution mechani$ This linear program is based on the
alternative representation of linear redistribution medgbms, whose correctness was
established by Proposition 12, and on the characterizafitive non-deficit constraints
established for this representation by Proposition 13.

Variables: r[z1,zo,...,2,-1] forallintegerm > 21 >z > ... > 2,1 >0

Maximize:

S, P(B € 1(Z) S, r(T(Z,,0) + TED TN B e
. T(T(Zii,nzn—771))—r(T(Zii,mn—m—l)) ;

HZ)+...+ 7 E(w_imn—m|B € I1(Z7))]

Subject to:

Forallm>xz1 > a0 > 23> ... > 2, >0,

S TEL, i1, i1, ] <

U - (i min{(j_y @) —wi,m} — (n— )min{3°7_ x;,m})

We do not have an analytical solution to this linear prograththat we can do is
solve for the optimal mechanism for specific valuesodndn. More problematically,
in general it is not easy to compute the constait® € 1(Z7)) and E(v_; x| B €

19ncidentally, we can give a similar linear program for findihg linear redistribution mechanism that is
worst-case optimal, that is, it maximizes the fraction of th@&lG payment redistributed in the worst case. In
previous work [16], we have already identified a worst-cgstémal linear mechanism for the nonincreasing
marginal values case; however, that mechanism is only optinadgnthe requirement of ex-post individual
rationality. The linear programming technique here can be tséind the worst-case optimal mechanism
when individual rationality is not required. For the sakealierence of this paper, we will not go into further
detail on this here.
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1(Z7)). One way to work around this problem is to approximate thd fiegult. That
is, instead of computing an exact optimal linear redistidtumechanism, we can draw
a few sample bid profiles, and solve for a linear redistridoutnechanism that is op-
timal for the samples. This way, we do not need to compute aolygbilities or con-
ditional expectations; we simply sum over the profiles ingheple in the objective.
(However, we still enforce the constraints everywhere,just on the samples.) Be-
cause the linear redistribution mechanisms are continandsve assume continuous
and bounded prior distributions for the valuations, itdals that as the number of
samples grows, we approach an optimal mechanism.

We now return to the original idea for the definition of lingadistribution mech-
anisms: what if we ignore the ordering information and jus¢ goefficients:;, for
0 < k < mn — m, which do not depend on the maximal order consistent clags® T
will be a more scalable approach, although it will come atssloTo find an optimal
mechanism in this class, we can take a similar approach asdnahdve for the more
general definition of linear redistribution mechanismsdi(éns approach is correct for
similar reasons). We consider the extreme bid vectors wakkraarginal values are
U or 0, represented by vectors of integers z-, .. ., z,, as before. The fact that we
ignore the ordering information now implies that we reqtiv@tr [z, 22, ..., z,—1] =
Y1, y2, - Yn_1] Wheneved "' z; = 77 ;. So, we can rewrite[z:, .. ., x, 1]
asr[>.1"' x;]. Thatis, the variables now arék] for k = 0,1,...,mn — m. The re-
distribution function now becomes:

r[1] — r[0] rlmn —m| —r[mn —m — 1]

T(B_i) = T’[O] + U U—i,l +...+ U U—i,mn—m

The linear program for finding an optimal mechanism becomes:

Variables: r[k] for integer0 < k < mn —m
Maximize:

Sulr[o) + PO By ) + 4 Al m U gy )]

Subject to:
Forallm>xy >ay > 23> ... >x, >0,

iy (o ) — ] <
U - (i min{(35_y @) —wi,m} — (n — )min{375_ x;,m})

While this linear program is much more manageable, it may teadorse results
than the earlier linear program, which optimizes over theengeneral class of linear
redistribution mechanisms that take the ordering infoiomainto account. We now
study some example solutions to this linear program, ancdaoathem to the Bailey-
Cavallo redistribution mechanism [2, 3]. We recall that Baéley-Cavallo mechanism
redistributes to every ageé{t times the VCG payment that would result if this agent
were removed from the auction. If we only consider bid preffltem a specific maxi-
mal order consistent class, then for anthe VCG payment that would resultiifs re-
moved is a linear combination of the ; ;. Therefore, the Bailey-Cavallo mechanism
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belongs to the family of linear redistribution mechanisinattconsider the ordering
information (and hence, the optimal solution to the eatiiegar program will do at

least as well as the Bailey-Cavallo mechanism). The Bdllayallo mechanism does
not belong to the family of linear redistribution mechanésthat ignore the ordering
information: in fact, we will see that it sometimes perforbetter than the optimal
mechanism among linear redistribution mechanisms thatrethe ordering informa-
tion. Hence, ignoring the ordering information in genei@hes at a cost.

For these examples, let us recall that ag&ribid vectorB; consists ofn elements
bi1, b2, - -, bim. IN both examples, we assume that the valudgQb;s, . . ., by, are
drawn independently from the uniforify, 1] distribution, withb;; being thejth highest
among then drawn values. We also assume tiiat B, . . ., B,, are independent.

Example5. Suppose that = 3 andm = 2. By solving the above linear program (the
one that ignores the ordering information), we get the faihg linear redistribution

mechanism that ignores ordering informatiofB_;) = %v,i,g. That is, an agent’s

redistribution is equal to two thirds of the third highestrgiaal value among the set of
other bids. The expected waste of this mechanist2s71. In contrast, the expected
waste of the Bailey-Cavallo mechanisn®ig571. (The expected total VCG payment is
1.0571.) So, for this example, the optimal linear redistributioaghanism that ignores

the ordering information outperforms the Bailey-Cavalleahanism.

Example 6. Suppose that = 7 andm = 2. By solving the above linear program (the
one that ignores the ordering information), we get the foitg linear redistribution
mechanism that ignores ordering informatioffB_;) = tv_;3 + v_;4. Thatis,

an agent’s redistribution is equal g)times the third highest marginal value among
the set of other bids, plu% times the fourth highest marginal value among the set of
other bids. The expected waste of this mechanist(i$23. In contrast, the expected
waste of the Bailey-Cavallo mechanisn®ig8671. (The expected total VCG payment is
1.5846.) So, for this example, the Bailey-Cavallo mechanism atitpens the optimal

linear redistribution mechanism that ignores the ordeirfigrmation.

In both of these examples (as well as in other examples foclwivie solved the
linear program, including examples with other distribog® the optimal linear re-
distribution mechanism that ignores the ordering infoiorats a special case of the
following more general mechanism.

Mechanism)M * is defined as follows, where= m + LWJ.

. r[k]:U%fork::m—i—l,m—&—l...,t
o r[k]=Ufork >t

The redistribution an agent receives is:

1 m t—m
r(B_;) = Z Uik + (g i JU—it41
m+1<k<t

We conjecture that there are some more general conditicshesr wvhich M * is the
optimal linear redistribution mechanism that ignores tradng information.
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7 Conclusion

The well-known VCG mechanism allocates the items efficieiglstrategy-proof, and
never runs a deficit. Nevertheless, the agents may have te laaje payments to a
party outside the system of agents, leading to decreaddy fdi the agents. Recent
work has investigated the possibility of redistributingreoof the payments back to
the agents, without violating the other desirable propsrtf the VCG mechanism.
Previous research on redistribution mechanisms has eésinlta worst-case optimal
redistribution mechanism, that is, a mechanism that maedmthe fraction of VCG
payments redistributed in the worst case. In contrast,ifpghper, we assumed that
a prior distribution over the agents’ valuations is avd#éaland studied the goal of
maximizing the expected total redistribution.

For the setting of multi-unit auctions with unit demand, westfconsideredinear
redistribution mechanisms. We gave an analytical soluiora redistribution mech-
anism that, among linear redistribution mechanisms, migsthe expected redis-
tribution, and gave conditions under which it is unique. W groved some other
desirable properties of this mechanism—it is asymptotiagitimal for fixed number
of units and welfare undominated. We then propadiedretizededistribution mecha-
nisms, which discretize the space of possible valuatiand determine redistributions
solely based on the discretized values (however, the giratmofness and non-deficit
constraints still hold over the non-discretized spaceye6ia discretization step size,
we showed how to solve for the optimal discretized rediatidn mechanism using a
linear program. We also showed that as the step size gdgsthe mechanism con-
verges to the optimal value for all continuous mechanisms (ge proved a bound
on how close to optimal we are). We presented experimergaltseshowing that for
auctions with many bidders, the optimal linear redistiifmutmechanism redistributes
almost everything, whereas for auctions with few biddelscan solve for the optimal
discretized redistribution mechanism with a very smalp size.

For the setting of multi-unit auctions with nonincreasingrginal values, we first
generalized the definition of linear redistribution medkars. We then introduced
a linear program for finding the optimal linear redistrilmtimechanism. Because
this linear program is unwieldy, we also introduced a sifigdi linear program that
produces relatively good (though not necessarily optiriadar redistribution mech-
anisms. We also conjectured an analytical solution to theali program, which we
expect to be correct for most reasonable distributions.

Future research on optimal-in-expectation redistributioechanisms can take a
number of directions. For the setting of nonincreasing maigitilities, one can try to
find subclasses of the linear redistribution mechanisnsaitteamore general than the
subclass we considered but still lead to more tractablenigdition problems. In gen-
eral, one can also try to solve for an optimal-in-expectatedistribution mechanism
that is not necessarily linear. Another direction is to agtéhe results of this paper to
more general settings, for example, combinatorial austi¢iinally, inefficient mech-
anisms sometimes achieve higher social welfare than effiorechanisms [14, 9] in
the worst case. It would be interesting to see whether agexpected social welfare
can also be improved by allocating units inefficiently, aihgbi, by how much.
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A Derivingan optimal linear redistribution mechanism

Here we derive the OEL mechanism and prove its optimality. @dbjective is to find an
linear redistribution mechanism that redistributes thestmoexpectation. To optimize
among the family of linear redistribution mechanisms, westraolve for the optimal
values of the;;. We want the resulting redistribution mechanism to be atrgiproof
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and efficient, and we want it to satisfy the non-deficit préype€rhe first two properties
are satisfied by all the mechanisms inside the linear faredythe only constraint is
the non-deficit property. The following optimization modsn be used to find the
linear redistribution mechanism (thg that redistributes the most in expectation, while
satisfying the non-deficit property.

Variables: C0yClyevvyCp—1
Maximize E(>"7, 7;)
Subject to:

For every bid vectot/ > vy > v, > ... > v, > L
Die1 Ti < MUm
Ti=0C F+C1V—51+CV_j2+ ...+ Crho1V—jn-1

Given the prior distributionE'(muv,,+1) is a constant, so the objective of the above
model may be rewritten adinimize E(muv,,+1 — zg;l ;).

SinCEn- =c+c1v_j1+tCU 2+ ...+ Cr1V_in-1, Where'l},i,j is thEJth
highest bid among bids other théa own bid, we have the following:

71 =Co+ C1V2 +C2U3 +C3V4 ... + Cr—2VUp—1 + Cn—1Vn
ro = Co+ C1V1 + C2U3 + C3V4 ... + Cp—2Un—1 + Cpn—1Vn
r3 =Co+ C1V1 + C2V2 +C3V4 ... + Cr—2Un—1 + Cpn—1Vn

Thn—1 = Cp + C1V1 + C2V2 + C3V3 ... + Cr—2Un—2 + Cp—1Vp
Tn = Co + C1V1 + C2V2 + C3V3 ... + Cp—2Un—2 + Cn—_1Un—1

We can writemuv,, 41 — >, 7; @Sqo + qiv1 + q2v2 + ... + gv,, Where the
coefficientsy; are listed below:

qo = —Nco
qi:—(i—l)ci_l—(n—i)cifori:1,2,...,m,m+2,...,n
Gm+1 =M — My — (n—m — 1)epy

(We note that we introduced a dummy variabjgin the above equations—since
there are onlyn — 1 other bids,c,, will always be multiplied by0, but adding this
variable makes the definition of thigmore elegant.) Given andm, qq, . . ., g, (n+1
values) are determined hy,...,c,_1 (n values). Conversely, ifg,...,q,_1 are
fixed, then we can completely solve for the valuesgf . ., ¢,_1 (and hence also for
q»)- This results in the following relation among the
0 -ty + (nfl)z(!n%) g3 — (n,l)(n;)(n,g) qit.. .+ (=11 %(Jn =

(_1)mm (n—l)(n—WQL‘)(n—m)

After simplification we obtain:

S DT e = () m ()
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Now, we can use theg as the variables of the optimization model, since from them
we will be able to infer the;. Becausenv,,+1 — > ., 7 = go + q1v1 + gav2 + ... +
gnvn, We can rewrite the non-deficit constraint by requiring tihat latter summation
is nonnegative. Also, the, must satisfy the previous inequality (otherwise there will
be no corresponding).

Variables: qo,q1,- .-, qn

Minimize E(qo + q1v1 + gav2 + ... + Gnvn)
Subject to:

For every bid vectot/ > vy > v, > ... > v, > L
go+q1v1 + qeu2+ ...+ gnvn 20

Y (D)) a = (1) m (")

In what follows, we will cast the above model into a lineargmam. We begin with
the following lemma[16]:

Lemma 1. The following are equivalent:
D) g0+ qv1 +gua+ ...+ quu, > 0forall U > vy >v9 > ... >v, > L

@q+LY" g+ (U—-L)YF ¢ >0fork=0,...,n

Proof. (1)=(2): (2) can be obtained from (1) by setting= v, = ... = v, = U and
Vk+1 :Uk+2:...:Un:L.

(2=(1): Letus rewritel’ = go+q1v1+q2v2+. ..+, 8Sqo+L > | gi+(v1—
02) Yy @i (v2 = 03) Yoy i o+ (O = 00) 7 4+ (v — D) i
If Zle q; > 0foreveryk = 1,...,n,thenT > gy + L) ., ¢ > 0 (because
vl — vg,V2 — VU3, ...,v, — L are all nonnegative). Otherwise, letbe the index so
thath:1 ¢; is minimal (hence negative). To ma{léminimal, we wanty — vg/ 41

(which is multiplied byZiil g;) to be maximal. So the minimal value f@tis gq +

LY ¢+ ({U-1L) Zle ¢; > 0, which is attained when, = vy = ... = v =U

andvy 11 = vgrao = ... = v, = L. HenceT is always nonnegative. O

Letzy, = (qo+L Y i, qi)/(UfL)Jer=1 g;fork =0,...,n. Thex, correspond
(one to one) to the;, so we can use the; as the variables in the optimization model.
The first constraint of the optimization model now becomgs> 0 for everyk. Since
rp —xE_1 = g fork =1,...,n, the second constraint becomes

EL )T L) @ wi) = (G (")
After simplification we get:
Z?:o(_l)i(wxi = (_1>m_1m(nn;1)

Letog = U — Evy,0; = Bv; — E’Ui+1 (’L =1,...,n— 1) andon = FEv, — L. The
o0; are all nonnegative constants that we know from the pridritigion. The objective
of the optimization model can be rewritten as follows:
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E(qo + q1v1 + @22 + ... + qnvp)
=qo + @1 Evi + @Evs + ... + g, Ev,
=zo(U — L)+ q(Evi — L) + q2(Ev2 — L) + ... + gn(Ev, — L)
=x0((U—-L)— (Evy — L))+ (zo+ q1)((Evy — L) — (Eva — L)) + (o + q1 +
@)((Eve—L)—(Bvs— L))+ ...+ (@xo+q1+ ...+ gn)(Evy, — L)
= 0pXg + 0121+ ... +0n,xp

We finally obtain the following linear program:

Variables: xg,x1,..., %,
Minimize opzg + 0121 + ... + opxy
Subject to:

Yimo(=1) ()i

) (y)

m

At this point, for any givem andm, for any prior distribution, it is possible to
solve this linear program using any LP solver; then, usirgabove, the resulting;
can be transformed back t@to obtain an optimal-in-expectation linear redistribatio
mechanism. However, this will not be necessary. The folhgunproposition gives an
analytical solution of this linear program.

Proposition 14. Letk be any integer satisfying
k € argmin;{o;/(7)|i —moddi=0,...,n}
The above linear program has the following optimal solution
z, =m("1)/(}), andz; = 0fori # k

The optimal objective value is

om(",")/ ;)

This solution is the unique optimal solution if and only i tthoice oft is unique
and there does not exist an eveand an oddj such thato; = o; = 0.

Proof. We can rewrite the second constraint as

S (=D)L ) /(") e = 1

This results in the program

Variables: xg,z1,...,%,

Minimize ogzg + 0121 + ... + 0,0
Subject to:

ZT; Z 0

(D)/(m (", )ws =

1=0...n;i—m odd

...m;i—m even

(7)/ (m(

nil))l‘i +1

m

29



Theo; are nonnegative. To minimize the objective, we want allitht® be as small
as possible. Itis not hard to see that it does not hurt to sat;tfor whichi —m is even
to zero: in fact, setting them to a larger value will only fethez; for whichi — m is
odd to take on larger values, by the last constraint. (It Ehibenoted that if there exists
an even; and an odd such thab; = o; = 0, then we can increase the corresponding
x; andz; at no cost to the objective without breaking the constréience the solution
is not unique in that case.) This results in the following#n program:

Variables: zg,21,...,2Z,
Minimize ogzg + 0121 + ... + 0,Tn,
Subject to:

(5)/ (" e =1
1=0...n;i—m odd

We want thex; to be as small as possible. However, the second constrakdgsma
it impossible to set all the; to 0. For eachr; with i — m odd, if we increase it by,
the left side of the second constraint is increasedty (m (™ '))é and the objective
value is increased by;5. We need the left side of the second constraint to increase to
1 (starting from0), while minimizing the increase in the objective value. Tosdb, we
want to find thex; (with i« — m odd) that has the minimal cost-gain ratio (where the
cost iso;d, and the gain ig”") /(m (™ "))d). It follows that for any integek satisfying
k € argmin;{o;/(7)|i — modd i = 0,...,n}, the linear program has the following
optimal solution:z, = m("")/(}) andz; = 0 for i # k. The resulting optimal
objective value im (" ~1)/(}).

In the above argument, there were only two conditions undeclwwe made a
choice that is not necessarily uniquely optimal: if (andyaf)l there exists an eveh
and an odd such thab; = o; = 0, then, as we explained, there exist optimal solutions
where somer; with m — i even is set to a positive value (in fact, it can be set to any
value in this case); and if (and only ifyg min;{o;/(%})[i —moddi = 0,...,n} is
not a singleton set, then there exists another optimalisaolutith anotherr;, setto a
positive value (in fact, in this case, multiple may simultaneously be set to a positive
value). O

By transforming thex; from Proposition 14 to the correspondiag we obtain the
OEL mechanism from Theorem 1.
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