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ABSTRACT
We study combinatorial prediction markets where agents bet on the
sum of values at any tree node in a hierarchy of events, for example
the sum of page views among all the children within a web sub-
domain. We propose three expressive betting languages that seem
natural, and analyze the complexity of pricing using Hanson’s log-
arithmic market scoring rule (LMSR) market maker.Sum of ar-
bitrary subset (SAS)allows agents to bet on the weighted sum of
an arbitrary subset of values.Sum with varying weights (SVW)al-
lows agents to set their own weights in their bets but restricts them
to only bet on subsets that correspond to tree nodes in a fixed hi-
erarchy. We show that LMSR pricing is NP-hard for both SAS
and SVW.Sum with predefined weights (SPW)also restricts bets
to nodes in a hierarchy, but using predefined weights. We derive a
polynomial time pricing algorithm for SPW. We discuss the algo-
rithm’s generalization to other betting contexts, including betting
on maximum/minimum and betting on the product of binary val-
ues. Finally, we describe a prototype we built to predict web site
page views and discuss the implementation issues that arose.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Economics, Theory

Keywords
Combinatorial prediction markets, logarithmic market scoring rule
market maker, computational complexity

1. INTRODUCTION
Prediction markets are powerful mechanisms for eliciting prob-

ability estimates of future events. The markets’ assessment can
be remarkably accurate [12, 13]. The Iowa Electronic Markets
(IEM), a real-money based prediction market maintained by the
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University of Iowa, significantly outperforms the traditional polls
over the past five US presidential elections [1, 5, 6, 10]. The
Foresight Exchange (http://www.ideosphere.com) and Hollywood
Stock Exchange (www.hsx.com), two play-money based prediction
markets, have been successful in predicting the probabilities of var-
ious events on a large range of topics, such as unresolved scientific
questions and Oscar award winners [11].

In a typical prediction market, agents trade securities with each
other or with a central market maker. An example security would
be “$1 on Duke to win the 2009 NCAA men’s basketball champi-
onship”. Such a security pays off $1 if Duke indeed wins the title,
and $0 otherwise. If the market price for this security is $0.2, then
it means that the consensus estimated probability of Duke winning
the title is 20 percent at the time of the quote. The market price
changes along with the trading activities: more demand results in
higher price and vise versa.

From Las Vegas to Wall Street, nearly all operating prediction
markets are single dimensional. That is, securities of different
kinds are being traded in separate markets, even if they may be
logically related. For example, the price of one security of Duke
winning the 2009 NCAA men’s basketball championship should
be related to the price of another security of Duke getting into the
Final Four. When related securities are handled separately, esti-
mate discrepancies and undesirable arbitrage opportunities arise.
To capture the underlying relationship among different securities,
we need a combinatorial market in which all allowable securities
are being traded, and the market must maintain a consistent set of
prices for all the securities.

Let us consider a combinatorial prediction market on the state-
by-state results of the US presidential election. The outcome space
for such a combinatorial market is extremely large (251, consider-
ing District of Columbia). Low liquidity becomes a problem, as
the agents’ attention gets divided among exponentially many out-
comes. Generalization of standard double auctions may simply fail
to find any trades [7, 3]. A better idea is to implement a market
maker that is willing to buy or sell any security at any time. When
an agent comes in, she asks for a quote of the security of her inter-
est. If the quoted price is lower than the price in the agent’s mind,
the agent can start buying the security, until the price grows to a
point that is close to the agent’s estimation. On the other hand, if
the price is considered too high, the agent can start selling the se-
curity (equivalent to buying the negation of the event). When the
market gets stable, the market prices reflect the agents’ consensus
probability estimations.

In this paper, we will be focusing on a specific type of combi-
natorial market maker – Hanson’s logarithmic market scoring rule
market maker (LMSR) [8, 9]. A prediction market based on LMSR
requires only bounded subsidy and it has in some sense infinite



liquidity. LMSR is becoming the standard market maker for com-
binatorial setting, and it has been the subject of interest in a number
of research papers [4].

In principle, agents should be allowed to bet on (buy/sell secu-
rities of) any event (subset of outcomes). However, when the out-
come space is large, pricing (computing the exact “price quote”)
may take exponential time for some securities. Therefore, as a trade
off, we can restrict the set of events that are allowed to be bet on,
usually through restricting the betting language. Several papers ex-
amine the balance between expressiveness and computational com-
plexity [7, 4, 2, 3]. This line of research was initiated by Fortnow
et al. [7], followed by Chen et al. [3], in which the authors study
betting languages on Boolean combinatorics and permutations for
market clearing problems. In Chen et al. [2], the authors analyze the
computational complexity of LMSR pricing for permutations and
Boolean combinatorics. The authors show that for subset betting,
pair betting, and betting on conjunctions and disjunctions, pricing
for LMSR market maker is #P-hard. The work closest to our own
is that of [4]. The authors study a special case of Boolean com-
binatorics in which the agents bet on how far a team goes in a
single-elimination tournament. They propose a polynomial-time
algorithm for the problem of LMSR pricing in the tournament con-
text. The authors also show that the pricing problem is NP-hard for
some more general betting languages.

In this paper, we will follow this line of research. We study com-
binatorial prediction markets in which the agents can bet on the
weighted sum of values that are associated with future events. Be-
low we give two detailed example application contexts that involve
betting on sum. We will be referring to these two example contexts
throughout the paper.

Betting on page views:The total page views or impression of a
subdomain of a web site (e.g. www.conferences.hu/AAMAS2009
is a subdomain of www.conferences.hu) is the number of visits to
this subdomain (for a given period of time). Page views is a stan-
dard metric for Internet advertising as it captures quantity of adver-
tisements that can be supplied to the advertisers. If we can predict
the page views of a subdomain for the coming month, that is, if we
can predict the quantity of supply of the coming month, then we
can set better prices for advertisements. Traditionally, the predic-
tion has been solely based on machine learning algorithms. Pre-
diction market improves upon the traditional approach by adding
an extra “tweaking/correcting” stage to the predicting process: We
initialize the market according to the best algorithm available, then
leave it for the invisible hand to figure out the rights and wrongs.
(We have implemented a prototype to predict web site page views.
More details are in Section 8.)

A subdomain is called aleaf subdomain, if it contains no child
subdomains under it. For example, www.conferences.hu is not a
leaf subdomain because it contains the child subdomain
www.conferences.hu/AAMAS2009. The total page views of a non-
leaf subdomain is thesumof the page views of its child subdo-
mains. For example, a subdomain about NCAA contains a list of
child subdomains: NCAA homepage, NCAA basketball, NCAA
football, etc. Betting on the page views of a non-leaf subdomain
is essentially betting on the sum of the page views of all its child
subdomains.

A natural bet (security) in this context would be “the page views
of subdomain x is betweenv1 andv2 (for the coming month)” =
“the sum of page views of all the child subdomains of x is between
v1 andv2 (for the coming month)”.

Betting on electoral vote count:1 In the US presidential elec-

1For simplicity, we assume all states are winner-takes-all and we

tion, if a party wins the popular vote of a state, then it wins all the
electoral votes of that state (winner-takes-all). We can use a binary
variable to denote the election result of a state: it takes value 1 if
the Democrats win, and it takes value 0 if the Republicans win.
The total number of electoral votes won by the Democrats is then
theweighted sumof all the binary variables, where the weights are
the number of electoral votes of different states (e.g. Ohio has 20
electoral votes – its weight is 20). Betting on the number of elec-
toral votes won by the Democrats from a set of states is essentially
betting on the weighted sum of the binary variables representing
those states.

A natural bet (security) in this context would be “the total num-
ber of electoral votes won by the Democrats is betweenv1 andv2”
= “the weighted sum of states won by the Democrats is betweenv1

andv2”.
Our paper is organized as follows: In Section 2, we review the

preliminaries of Hanson’s logarithmic market scoring rule market
maker. In Section 3, we propose three expressive betting languages
that seem natural. The first betting language (SAS) allows agents to
bet on the weighted sum of an arbitrary subset of values. The sec-
ond betting language (SVW) allows agents to set their own weights
in their bets but restricts subsets to form a hierarchy. In Section 4
and Section 5, we show that LMSR pricing is NP-hard for both SAS
and SVW. The third betting language (SPW) allows the agents to
bet on the weighted sum of selected subsets of values, where the
weights are predefined and subsets form a hierarchy. We derive a
polynomial time pricing algorithm for SPW in Section 6. In Sec-
tion 7, we discuss the algorithm’s generalization to other betting
contexts, including betting on maximum/minimum and betting on
the product of binary values. Finally, in Section 8, we describe a
prototype we built to predict web site page views and discuss the
implementation issues that arose.

2. LOGARITHMIC MARKET SCORING
RULE MARKET MAKER (LMSR)

Logarithmic market scoring rules [8, 9] are sequential versions
of logarithmic scoring rules. Scoring rules map probability distri-
butions and results of future events into amounts of reward. Loga-
rithmic scoring rules areproper in the sense that when facing such
rules, risk-neutral agents will reveal their true subjective probabil-
ity distributions of the future events to maximize their expected
reward.

Logarithmic market scoring rules can be interpreted as follows:
The market starts with some initial distribution over the outcome
space. When an agent comes in, she can modify the current market
distribution at her will. Her reward is then the reward, under a spe-
cific logarithmic scoring rule, for the modified distribution, minus
the reward for the distribution before modification. At any time, for
any agent, since the reward for the distribution before modification
is beyond the agent’s control, essentially, the agent can only focus
on maximizing the reward for the modified distribution. That is,
the agents always face a (proper) logarithmic scoring rule. There-
fore, it is a dominant strategy for a myopic agent to reveal her true
beliefs under LMSR.

LMSR is usually implemented as a market maker. That is, in-
stead of asking the agents to directly modify the market distribu-
tion, there is a market maker that is in charge of maintaining a con-
sistent set of prices (probabilities) for all the allowable securities,
and the agents modify the market distribution through buying or
selling securities. For example, selling securities of an outcome
is equivalent to marking down the probability of that outcome in

ignore all third parties.



the market distribution. Obviously, trading securities is more nat-
ural than playing with distribution over an outcome space that is
usually exponential in size.

A generic LMSR offers securities corresponding to all outcomes.
A security on outcomeω pays off $1 ifω happens, and $0 other-
wise. At any moment, the market maker keeps track of a vector
q = (qω)ω∈Ω, which indicates the number of outstanding shares
of all outcomes. That is, the number of (active) securities covering
outcomeω is denoted byqω. Ω is the set of all outcomes.

The instantaneousprice for securityω under LMSR is

pω(q) =
eqω/b

P

τ∈Ω eqτ /b

b is a positive parameter. Whenb is small, purchasing or shorting
a few securities can significantly change the market distribution.
When b is large, the effect of buying or selling a few securities
is less noticeable, meaning the effective liquidity of the market is
large.

Suppose an agent wants to purchase/short one security ofω.
The current outstanding shares are denoted byq, and after pur-
chasing/shortingω, the set of outstanding shares becomeq̂. Then
the cost of the transaction equals the integral of the instantaneous
price following any path fromq to q̂. The cost can be written as
C(q̂)−C(q), where functionC is a cost function with the follow-
ing form:

C(q) = b log
X

τ∈Ω

eqτ /b

FunctionC has another meaning. At any moment, the worst-
case subsidy required to run the market maker is at mostC(q). If
the market starts with 0 shares on all outcomes (which is an usual
assumption), then the worst-case subsidy isb log |Ω|.

In most cases, it is natural to only bet on compound securities on
collections of outcomes. For example, the compound security “It
will rain on exactly one day in the next week” is a collection of 7
securities on single outcomes: “It will rain on day x only”, for all
choices of x. A compound security’s instantaneous price is just the
sum of the instantaneous prices of all the outcomes covered by the
compound security.

3. BETTING LANGUAGES
In this paper, we consider combinatorial prediction markets in

which the final outcomes can be represented as tuples of values.
Specifically, we consider outcome spaceΩ whose elements are

ω = (x1, x2, . . . , xn)

wherexi ∈ {0, 1, . . . , N} for all i. 2

It is easy to see that the size of the outcome space is(N + 1)n.
For betting on page views,n is the number of leaf subdomains, and
N is the upper bound on the page views of the leaf subdomains.
For betting on electoral vote count,n is the number of US states,
andN = 1 (recall that the result of a state is denoted by a binary
variable).

We propose three expressive betting languages that seem natural
for betting on sum. They offer different levels of expressiveness,
2It is without loss of generality to restrict the values of thexi to
integers from0 to N , as long as thexi take their values from a
finite set of rational numbers. For example, ifx1’s value is either
1/7 or 2/3, then(21x1 − 3)’s value is either0 or 11, which is in
{0, 1, . . . , N} for N ≥ 11. We can simply bet on the values of the
xi after certain linear transformation.

and face different levels of computational difficulty. We first in-
troduce the SAS betting language, which is the most general one
among the three.

Sum of arbitrary subset (SAS)– betting on sum of arbitrary
subset of thexi.

A security under SAS has the following form:

v1 ≤
X

i∈S

cixi ≤ v2

whereS ⊂ {0, 1, . . . , n}, v1, v2 and theci are all nonnegative
integers.3 We also allow bets that specify only one end of the
triple inequality.

In Section 4, we will show that LMSR pricing is NP-hard even
for a restricted version of SAS in which all theci are required to
be constant1 (unit weights). Allowing betting on arbitrary subsets
makes LMSR pricing computationally infeasible. Therefore, we
need to sacrifice some expressiveness. A natural step is to make
certain restrictions on the subsets that are allowed to be bet on. Ac-
tually, this is not necessarily a bad thing because chances are our
interests are focused on selected subsets anyway. We notice that
natural events sometimes formevent hierarchies– events of inter-
ests (what we are interested in betting on) correspond to nodes of a
tree, and the event corresponding to a non-leaf node is determined
by its child nodes. For both example contexts mentioned in the
introduction, we see such hierarchies.

Event hierarchy for betting on page views:The following tree
describes a typical subdomain hierarchy.

Sports

NCAA

Homepage Basketball Football . . .

. . .

The page views of NCAA is the sum of the page views of its child
subdomains. A bet on the page views of NCAA is a bet on the sum
of the page views of its child subdomains, that is, the sum of the
page views of all the leaf subdomains whose ancestor is NCAA.

Event hierarchy for betting on electoral vote count:In the US
presidential election, the state-by-state results, as well as the overall
election result, form the following hierarchy:

Overall Election Result

Alabama Alaska Arizona Arkansas . . .
The overall election result depends on its children. The number

of electoral votes received by the Democrats in the election is the
weighted sum of the results of all states. (Recall that we use bi-
nary variables to denote the result of a state: it takes value1 if the
Democrats win, and0 otherwise.)

The tree structure of an event hierarchy determines which sub-
sets are allowed to be bet on (these subsets correspond to the tree
nodes). For example, for the tree below, we are allowed to bet on
(the weighted sum of) the following subsets:{x1}, {x2}, {x3},
{x4}, {x5}, {x1, x2, x3}, {x4, x5}, {x1, x2, x3, x4, x5}.

3Again, it is without loss of generality to restrict the values ofv1,
v2 and theci to integers, as long asv1, v2 and theci are rational
numbers. For example, a bet on2/5 ≤ 1/5x1 + 1/2x2 ≤ 3/7 can
simply be rewritten as28 ≤ 14x1 + 35x2 ≤ 30.



x1 x2 x3
x4 x5

Now we are ready to introduce SVW and SPW.
Sum with varying weights (SVW) – betting on the weighted

sum of selected subsets of thexi. Only subsets corresponding to
tree nodes are allowed to be bet on. The agents can set their own
weights in their bets.

A security under SVW has the following form:

v1 ≤
X

i∈S

cixi ≤ v2

whereS corresponds to a tree node,v1, v2 and theci are integers
specified by the agents.v1 and v2 are nonnegative. Theci are
positive.4 We also allow bets that specify only one end of the triple
inequality.

In Section 5, we will show that LMSR pricing is NP-hard for
SVW for any event hierarchy (tree structure).

Sum with predefined weights (SPW)– betting on the weighted
sum of selected subsets of thexi. Only subsets corresponding to
tree nodes are allowed to be bet on. The weights are predefined.

A security under SPW has the following form:

v1 ≤
X

i∈S

cixi ≤ v2

whereS corresponds to a tree node,v1, v2 are nonnegative integers
specified by the agents, and theci are predefined constant integers.
We also allow bets that specify only one end of the triple inequality.

In Section 6, we derive a polynomial time pricing algorithm for
the SPW betting language.

4. COMPLEXITY OF SAS
In this section, we analyze the complexity of pricing using LMSR

for the SAS betting language. We show that LMSR pricing is NP-
hard even for a restricted version of SAS in which all the weights
are required to be1 (unit weights).

CLAIM 1. LMSR pricing for the SAS betting language is NP-
hard.

PROOF. Recall that a security under SAS has the following form:
v1 ≤

P

i∈S cixi ≤ v2, whereS is an arbitrary subset of{0, . . . , n},
v1, v2 and theci are nonnegative integers. In this proof, we will
only need to consider securities with the following form:v1 ≤
P

i∈S xi ≤ v2. That is, we only consider securities in which all
the ci are equal to constant1. We will show that even if agents
only bet on these restricted securities, pricing using LMSR is still
NP-hard.

Let us consider an arbitrary 3-SAT expression withnv binary
variablesz1, z2, . . . , znv andnc clauses. E.g.

(z1 ∨ ¬z2 ∨ znv ) ∧ (z5 ∨ ¬z6 ∨ znv ) ∧ . . . ∧ (z1 ∨ ¬z1 ∨ z7)
| {z }

nc

We will show that LMSR pricing for SAS involves solving the
satisfiability problem of the above 3-SAT expression.

Recall that the outcome spaceΩ is the set of alln tuples
ω = (x1, x2, . . . , xn), wherexi ∈ {0, 1, . . . , N} for all i. Let us
consider a LMSR market marker for whichn = (2nv + 2)nc. For
presentation purpose, we rename thexi so that the outcomes are
nown tuples as follows:

4If the ci are allowed to be zeros, then it reduces to the case of
betting on arbitrary subsets.

(z11, z̄11, z21, z̄21, . . . , znv1, z̄nv1, u1, v1
| {z }

2nv+2

,

z12, z̄12, z22, z̄22, . . . , znv2, z̄nv2, u2, v2
| {z }

2nv+2

,

...
z1nc , z̄1nc , z2nc , z̄2nc , . . . , znvnc , z̄nvnc , unc , vnc
| {z }

2nv+2

)

(altogethernc rows)

zij , z̄ij , uj andvj are in{0, 1, . . . , N} for i from 1 to nv andj
from 1 to nc.

Basically, we want to link the value ofzij to the value ofzi in
the j-th clause of the 3-SAT expression under consideration. (For
eachi, we need to make sure that the values of thezij are the same
over differentj, sincezi’s value should be the same in all clauses.)
We want to link the value of̄zij to the logical negative ofzi. The
uj andvj are auxiliary variables.

Suppose the following securities have been purchased. (We as-
sume that there were no outstanding securities when the market
started. That is, the following securities are the only outstanding
securities.)

1. P securities on0 ≤ zij ≤ 1 for all i from 1 to nv and allj
from 1 to nc

2. P securities on0 ≤ z̄ij ≤ 1 for all i from 1 to nv and allj
from 1 to nc

3. P securities on0 ≤ uj ≤ 1 for all j from 1 to nc

4. P securities on0 ≤ vj ≤ 1 for all j from 1 to nc

5. P securities on
Pnc

j=1 zij = 0 for all i from 1 to nv; P

securities on
Pnc

j=1 zij = nc for all i from 1 to nv

6. P securities onzij + z̄ij = 1 for all i from 1 to nv and allj
from 1 to nc

7. P securities on0 ≤ wj + uj + vj ≤ 3 for all j, where
wj is the sum of three selected variables amongzij andz̄ij

that correspond to the three literals in thej-th clause of the
3-SAT expression under consideration. For example, if the
j-th clause of the 3-SAT expression is(z1 ∨ ¬z2 ∨ z3), then
wj = z1j + z̄2j + z3j

8. Q securities onwj + uj + vj = 3 for all j, wherewj is
defined the same as above

P = (nc + 1)(2nv + 2)nc log(N)b
Q = (2nv + 2)nc log(N)b

If there exists a satisfactory assignment of the 3-SAT expression,
then there exists one outcome that satisfies all the above groups
of securities5. (Let thezi be any satisfactory assignment. The
following outcome satisfies all the groups:zij = zi for all i andj;
z̄ij = z̄i for all i andj; If wj = 1, thenuj = vj = 1; If wj = 2,
thenuj = 1 andvj = 0; If wj = 3, thenuj = vj = 0.)

If there exists one outcome that satisfies all the above groups of
securities, then it corresponds to a satisfactory assignment of the
3-SAT expression. One satisfactory assignment is simplyzi = zij

for arbitrary j. (All the variables are binary according to the first
four groups of bets. For specifici, the values of thezij are the same
5We say an outcome satisfies the fifth group of securities if it satis-
fies half of them (nv out of2nv).



over allj (either all0 or all 1) according to the fifth group of bets.
The value ofzij andz̄ij are different according to the sixth group
of bets. That is,¬zi corresponds tōzij for all j. All the clauses of
the 3-SAT are satisfied by thezi according to the eighth group of
securities, sincewj + uj + vj = 3 implieswj ≥ 1.)

That is, there exists one outcome that satisfies all the above groups
of securities if and only if the 3-SAT expression has a satisfactory
assignment.

Consider the pricing problem of the following security:

ncX

j=1

(wj + uj + vj) = 3nc

This security is allowed by the SAS betting language, since it is the
sum of a subset of variables with unit weights. From now on, we
refer to this security as the objective security.

We first assume that the 3-SAT expression is satisfiable. There
exists at least one outcome that satisfies all the above groups of se-
curities, and it must be covered by the objective security according
to the eighth group of existing securities. Recall that the instan-

taneous price for outcomeω is pω(q) = eqω/b
P

τ∈Ω
eqτ /b , whereqω

is the number of outstanding shares for outcomeω. The number
of outstanding shares for an outcome that satisfies all the existing
groups of securities isP (2nvnc +2nc +nv +nvnc +nc)+Qnc.
The instantaneous price for such an outcome is

e(P (3nvnc+3nc+nv)+Qnc)/b

P

τ∈Ω eqτ /b

Since a compound security’s instantaneous price is the sum of the
instantaneous prices of all the outcomes covered by the compound
security, we have that the price of the objective security is greater
than or equal to the above expression.

If an outcome is not covered by the objective security, then it
makeswj + uj + vj 6= 3 for at least onej. The number of out-
standing shares for such an outcome is at mostP (2nvnc + 2nc +
nv + nvnc + nc) + Q(nc − 1). Therefore, the instantaneous price
for such an outcome is at most

e(P (3nvnc+3nc+nv)+Q(nc−1))/b

P

τ∈Ω eqτ /b

There are at mostNn−1 = N (2nv+2)nc−1 such outcomes (Nn is
the size of the outcome space, and there is at least one outcome that
is covered by the objective security according to our assumption).
So the sum of the instantaneous prices of all outcomes that are not
covered by the objective security is at most

(N (2nv+2)nc − 1)e(P (3nvnc+3nc+nv)+Q(nc−1))/b

P

τ∈Ω eqτ /b

<
e(2nv+2)nc log(N)+(P (3nvnc+3nc+nv)+Q(nc−1))/b

P

τ∈Ω eqτ /b

=
e(P (3nvnc+3nc+nv)+Qnc)/b

P

τ∈Ω eqτ /b

That is, the price of the objective security is greater than the total
price of all the outcomes that are not covered by it. Hence, if the 3-
SAT expression is satisfiable, then the price of the objective security
is greater than1

2
.

Now we assume that the 3-SAT expression is not satisfiable.
There does not exist an outcome that satisfies all the existing groups
of securities. If an outcome is covered by the objective security

and satisfies the first seven groups of existing securities, then it
also satisfies the eighth group of securities, which is contrary to the
fact that the 3-SAT expression is not satisfiable. That is, all out-
comes covered by the objective security must violate some of the
first seven groups of securities.

The number of outstanding shares for any outcome that is cov-
ered by the objective security is at mostP (2nvnc + 2nc + nv +
nvnc +nc −1)+Qnc. Therefore, the instantaneous price for such
an outcome is at most

e(P (3nvnc+3nc+nv−1)+Qnc)/b

P

τ∈Ω eqτ /b

There are at mostNn = N (2nv+2)nc such outcomes. So the sum
of the instantaneous prices of all the outcomes that are covered by
the objective security is at most

N (2nv+2)nce(P (3nvnc+3nc+nv−1)+Qnc)/b

P

τ∈Ω eqτ /b

=
e(2nv+2)nc log(N)+(P (3nvnc+3nc+nv−1)+Qnc)/b

P

τ∈Ω eqτ /b

=
e(P (3nvnc+3nc+nv−1)+Q(nc+1))/b

P

τ∈Ω eqτ /b

Now consider an outcome that corresponds to an arbitrary as-
signment of the 3-SAT expression. (E.g.zij = zi andz̄ij = ¬zi

for all i andj; uj = 0 andvj = 0 for all j.) The outcome satisfies
the first seven groups of existing securities, and does not satisfy the
objective security. Its instantaneous price is at least

eP (3nvnc+3nc+nv)/b

P

τ∈Ω eqτ /b

≥
e(P (3nvnc+3nc+nv−1)+Q(nc+1))/b

P

τ∈Ω eqτ /b

That is, if the 3-SAT expression is not satisfiable, then the price
of the objective security is less than or equal to1

2
.

If there exists a LMSR pricing algorithm for SAS that takes
only P (n) time, then there exists an algorithm that solves any 3-
SAT satisfiability problem withnv variables inP (n) time. Since
n = (2nv + 2)nc ≤ (2nv + 2)

`
2nv
3

´
, the algorithm solves any 3-

SAT satisfiability problem withnv variables inP (nv) time. This
is impossible unless P=NP. Therefore, LMSR pricing for the SAS
betting language is NP-hard.

5. COMPLEXITY OF SVW
In this section, we analyze the complexity of pricing using LMSR

for the SVW betting language. The proof of Claim 1 tells us that
if agents are allowed to bet on arbitrary subsets of thexi, then the
pricing problem is NP-hard even if we require unit weights. SVW
restricts the set of subsets that are allowed to be bet on (only subsets
corresponding to tree nodes are eligible), but on the other hand, it
still allows agents to set their own weights in the their bets. It turns
out that the result is still negative: LMSR pricing is NP-hard for
SVW for any event hierarchy.

CLAIM 2. LMSR pricing for the SVW betting language is NP-
hard for any event hierarchy.

PROOF. Recall that a security under SVW has the following
form: v1 ≤

P

i∈S cixi ≤ v2, whereS corresponds to a tree node,



v1, v2 and theci are integers specified by the agents.v1 andv2 are
nonnegative. Theci are positive.

For any event hierarchy, the following subsets are always al-
lowed to be bet on:{xi} for i = 1, 2, . . . , n, and{x1, x2, . . . , xn}
(they correspond to the leafs and the root). We will construct our
proof based on securities only on these subsets. Therefore, our re-
sult applies to any event hierarchy.

Suppose the following securities have been purchased. (We as-
sume that there were no outstanding securities when the market
started. That is, the following securities are the only outstanding
securities.)

n log(N)b securities onxi = 1 (cixi = ci) for all i from 1 to n.
n log(N)b securities onxi = 0 (cixi = 0) for all i from 1 to n.

Consider the pricing of the following two securities:
Pn

i=1 cixi = I (security A) and
Pn

i=1 cixi = 0 (security B).
I is a specific positive integer.
If there exists a subset of theci that sum to exactlyI, then there

exists one outcome(t1, t2, . . . , tn) whose number of outstanding
shares isn2 log(N)b, by settingti = 1 if ci is in the subset of
numbers that sum toI, and ti = 0 otherwise. This outcome is
covered by security A. For security B, the only outcome it cov-
ers is (0, 0, . . . , 0), whose number of outstanding shares is also
n2 log(N)b. Therefore, the price of security A is at least as great
as the price of security B, if there exists a subset of theci that sum
exactly toI.

If there does not exist a subset of theci that sum toI, then all
outcomes covered by security A have at mostn(n − 1) log(N)b
outstanding shares. There are at mostNn − 1 such outcomes. The
instantaneous price of security A is then at most

(Nn − 1)en(n−1) log(N)

P

τ∈Ω eqτ /b

<
Nnen(n−1) log(N)

P

τ∈Ω eqτ /b
=

en2 log(N)

P

τ∈Ω eqτ /b

We notice that the right-hand side of the inequality is exactly the
instantaneous price of security B. That is, the price of security A is
less than the price of security B, if there does not exist a subset of
theci that sum exactly toI.

Therefore, LMSR pricing for the SVW betting language is at
least as difficult as the Subset-sum problem withn positive inte-
gers, which is NP-complete.

6. A POLYNOMIAL-TIME PRICING
ALGORITHM FOR SPW

The SPW betting language allows agents to bet on the weighted
sum of selected subsets of thexi. These subsets correspond to
events that form a tree. The weights are predefined. For example,
for the following event hierarchy (values in the parenthesis are the
predefined weights of the nodes):

r

rL

x1(3) x2(1) x3(5)

rR

x4(1) rRR

x5(7) x6(2)
The agents are allowed to bet on the values ofx1, x2, . . . , x6, rL

(3x1 + 1x2 + 5x3), rRR (7x5 + 2x6), rR (1x4 + 7x5 + 2x6), and
r (3x1 + 1x2 + 5x3 + 1x4 + 7x5 + 2x6).

Before introducing our algorithm, we first propose the following
lemmas.

LEMMA 1. Let y be a random variable associated with any
event. The distribution ofy is characterized by the outstanding
securities in the market. Letv be an arbitrary constant. IfP (y =
v) = p, then after introducing one extra security ony = v, we

haveP (y = v) = pe1/b

pe1/b+(1−p)
.

One way to interpret the above claim is that, after introducing
one extra copy of securityy = v, the probability ofy = v is first
magnified by a factor ofe1/b, then the distribution vector ofy is
normalized (multiplied by some value so that the sum of all the
elements is back to1).

PROOF. We useq = (qτ )τ∈Ω to indicate the number of out-
standing shares of all outcomes before introducing the extra secu-
rity. We have

p =

P

τ∈{τ |y=v} eqτ /b

P

τ∈Ω eqτ /b

=

P

τ∈{τ |y=v} eqτ /b

P

τ∈{τ |y=v} eqτ /b +
P

τ∈{τ |y 6=v} eqτ /b

After introducing the extra security, we have

P (y = v) =

P

τ∈{τ |y=v} e(qτ +1)/b

P

τ∈{τ |y=v} e(qτ +1)/b +
P

τ∈{τ |y 6==v} eqτ /b

=
pe1/b

pe1/b + (1 − p)

LEMMA 2. Lety, z be two random variables that represent the
values of two arbitrary events. The distribution ofy is character-
ized by the outstanding securities in the market. Letvy, vz be two
arbitrary constants. Letp = P (y = vy), p′ = P (y = vy|z = vz)
andp′′ = P (y = vy|z 6= vz).

1. If we introduceM copies of securityz = vz into the market,
then we havelimM→∞ P (y = vy) = p′.

2. If we introduce negativeM copies of securityz = vz (both
M copies ofz > vz and M copies ofz < vz) into the
market, then we havelimM→∞ P (y = vy) = p′′.

PROOF. Due to space constraint, we will only present the proof
of statement 2.

We useq = (qτ )τ∈Ω to indicate the number of outstanding
shares of all outcomes. We have

p′′ = P (y = vy|z 6= vz) = P (y = vy ∧ z 6= vz)/P (z 6= vz)

=

P

τ∈{τ |y=vy∧z 6=vz}
eqτ /b

P

τ∈Ω eqτ /b
/

P

τ∈{τ |z 6=vz}
eqτ /b

P

τ∈Ω eqτ /b

=

P

τ∈{τ |y=vy∧z 6=vz}
eqτ /b

P

τ∈{τ |z 6=vz}
eqτ /b

After shortingM copies of securityz = vz, we haveP (y = vy)
equals

P

τ∈{τ |y=vy∧z=vz}
e(qτ−M)/b +

P

τ∈{τ |y=vy∧z 6=vz}
eqτ /b

P

τ∈{τ |z=vz}
e(qτ−M)/b +

P

τ∈{τ |z 6=vz}
eqτ /b



As M goes to infinity,e(qτ−M)/b goes to0 for anyτ . So

P (y = vy) =

P

τ∈{τ |y=vy∧z 6=vz}
eqτ /b

P

τ∈{τ |z 6=vz}
eqτ /b

= p′′

LEMMA 3. The outcome space consists of tuples ofn coordi-
nates. If then coordinates can be separated intok groups, and no
outstanding security mentions coordinates of different groups, then
coordinates of different groups are independent – the market can
be interpreted ask separate markets.

One simple example suffices to illustrate the idea behind the
above claim. Let the outcome space be{(x1, x2, x3)|x1 is the
number of states won by the Democrats in the election;x2 is the
number of states won by the Republicans in the election;x3 is
tomorrow’s temperature}. When the market starts (with no out-
standing securities), thexi are pairwise independent (property of
LMSR). Now suppose the securities are divided into two groups.
One group of securities are on election. They have some effect on
the distribution ofx1 or x2 or both. The other group of securities
are on temperature. They have some effect on the distribution of
x3. With these two groups of securities,(x1, x2) andx3 are still
independent. A detailed proof is omitted due to space constraint.

Now we are ready to introduce the LMSR pricing algorithm for
SPW. The algorithm takes as input the set of outstanding securities
and an objective security of the following form:r = v wherer is
an event (a tree node) andv is a constant integer. The algorithm
outputs the instantaneous price (probability) of the objective secu-
rity. (The price of a security on a range, e.g.v1 ≤ r ≤ v2, can be
computed as

Pv2

v=v1
P (r = v).)

The tree nodes are random variables that take integer values from
0 to CnN , whereC is the maximal weight (constant). We will use
array of sizeCnN + 1 as the data structure for storing distribution
of a random variable.

The algorithm is based on the following routinedist(r): it com-
putes the market distribution of the random variable corresponding
to tree noder, considering only outstanding securities onr andr’s
offspring (ignoring all other outstanding securities).

Outline of the algorithm
Let r0 be the root of the tree. To compute the price of secu-

rity r0 = v, we simply rundist(r0) (no securities ignored). To
compute the price of securityr = v where r 6= r0, we first
run dist(r0) to get the distribution ofr0. Then we recompute
dist(r0), considering an extra infinite copies of securityr = v.
By Lemma 2,dist(r0) returns the distribution ofr0 conditional on
r = v. Then we recomputedist(r0), considering an extra negative
infinite copies of securityr = v. By Lemma 2, we get the distri-
bution ofr0 conditional onr 6= v. SinceP (r0 = v0) = P (r0 =
v0|r = v)P (r = v) + P (r0 = v0|r 6= v)(1 − P (r = v)) for any
v0, we can solve for the value ofP (r = v) based on the computed
distributions.

Outline of the routine dist(r)
r is not a leaf node:Recall that when computingdist(r), we are

considering only securities onr andr’s offspring. We further ig-
nore all securities onr. The remaining securities are separated into
a few groups, with each group corresponding to a branch ofr’s off-
spring. Letr1, r2, . . . , rk ber’s children. According to Lemma 3,
the values ofr’s children are independent, and the distribution ofri

is justdist(ri). We computedist(ri) for all i. Then we compute
the distribution ofr by aggregating alldist(ri). We first compute
the distribution ofs2 = r1 + r2 by aggregating the distribution of
r1 andr2. We then compute the distribution ofs3 = r1 + r2 + r3

by aggregating the distribution ofs2 andr3. We are done ink − 1
steps. The time complexity of each step is at most the square of
the size of the distribution vector, which is polynomial inn andN .
Therefore, the whole aggregation process is polynomial time. Now
we have the distribution ofr. However, this is the distribution that
considers only securities onr’s offspring. To getdist(r), we need
to add back in all securities onr. According to Lemma 1, we only
need to magnify the probability ofr = v by a factor ofexv/b (xv

is the number of securities onr = v: securities having the form
of v1 ≤ r ≤ v2, with v1 ≤ v ≤ v2), and then normalize the
distribution vector.6

r is a leaf node:For leaf noder, computingdist(r) is much
easier. For any possible valuev, the probability ofr = v is propor-
tional toexv/b, wherexv is the number of securities onr = v.

Complexity of the algorithm
We only need to show that the routinedist(r) is polynomial

time. dist(r) is a recursive routine, but it visits any node at most
once. The number of nodes is polynomial inn (each non-leaf node
has at least two children). The non-recursive part ofdist(r) takes
polynomial time (inn andN ). Therefore,dist(r) is polynomial
time inn andN , so is our algorithm.

7. OTHER BETTING CONTEXTS
So far we have been only focusing on event hierarchies based

on weighted sum. In principle, the algorithm we proposed in the
previous section can be applied to any betting context, as long as the
events of interest form a tree structure. However, for some betting
contexts, the algorithm may not be polynomial time. A sufficient
condition for the algorithm to be polynomial time is that

• The size of the set of all possible values over all tree nodes is
polynomial ofn andN .

• Let r be an arbitrary non-leaf tree node. Letr1, r2, . . . , rk be
r’s children.r can be written asr1⊕r2⊕. . .⊕rk, where⊕ is
an associative binary operator (e.g. addition, multiplication).
That is,r = ((((r1⊕r2)⊕r3)⊕r4) . . .⊕rk). The operator
⊕ may be different for different tree nodes.7

In this section, we give two example contexts based on operators
other than sum – betting on maximum/minimum and betting on the
product of binary values. Both example contexts satisfy the above
sufficient condition. Hence for both contexts, our algorithm can be
applied (polynomial time).

Betting on maximum or minimum: Let us consider the fol-
lowing scenario. An electronic game company wants to predict
the earliest possible release date of its next generation game. The
game’s components are organized as follows:

Game

Graphics

Characters Background

Sound Network

We may run a combinatorial prediction market that allows people
to bet on the maximum number of days it takes from today to finish
a component. A bet (security) would be like “Background can be
6If xv = ∞, thenP (r = v) = 1. If xv = −∞, P (r = v) = 0.
7A more general version of this condition is thatr can be written
asf((((r1 ⊕1 r2)⊕2 r3) . . .⊕k−1 rk), where the⊕i are arbitrary
binary operators andf is an arbitrary function. (We assume that the
operators and the function can be evaluated in polynomial time.)



finished in 60 days”, or “The whole game can be finished in 100
days”. This is an event hierarchy based on the maximum operator
x ⊕ y = max(x, y): the number of days it takes to finish a (non-
leaf) component is the maximum of the number of days it takes to
finish any child component.

Betting on the product of binary values: Let us consider a
slightly modified scenario. The company wants to predict whether
the game can be released before some deadline. We may run a
combinatorial prediction market in which people bet on whether
a component can be finished on time. We use a binary value to
denote whether a component can be finished before the deadline.
A bet (security) would be like “Background can be finished before
the deadline”, or “The whole game can not be finished before the
deadline”. This is an event hierarchy based on the product of binary
values: a (non-leaf) component can be finished on time if and only
if all its child components can be finished before the deadline.

8. BETTING ON PAGE VIEWS:
IMPLEMENTATION ISSUES

Based on the algorithm proposed in Section 6, we implemented
a prototype to predict web site page views. The prediction market
we implemented is truly combinatorial with exponential-size state
space, yet the prices of the allowable securities can be computed
in real time. The prototype takes the form of a multi-user web
application. Below we briefly discuss a few issues we encountered
during the implementation.

The page views of a subdomain can be huge (in the magnitude
of billions). Our algorithm can not handle such a largeN from
a practical point of view. LetL andU be the lower bound and
upper bound on the page views of the subdomains. Recall that a
bet takes the form ofv1 ≤ r ≤ v2. Instead of allowingv1 and
v2 to be arbitrary integers in{0, 1, . . . , U}, we require them to be
taken from{L + i∆|i = 0, 1, . . . , (U − L)/∆}. Large (small)∆
leads to faster (slower) computation and lower (higher) precision.

Even though our aim is to build a combinatorial prediction mar-
ket where we can bet on the page views of all subdomains, we
choose to compromise on this idea of having a single market when
the page views of a subdomain is significantly less than that of its
siblings (judging from historical data). We simply ignore such sub-
domains or run separate markets for them, because activities on
these subdomains do not affect the market distribution (of their sib-
lings and ancestors) in a noticeable way, and by removing them we
speed up the computation.

Even when speed is not a concern, sometimes it is beneficial
to separate the market. Letr be a node deep down the tree. In
our algorithm, to compute the price ofr = v, we compute three
distributions: the distribution ofr0 (root), the distribution ofr0

conditional onr = v, and the distribution ofr0 conditional on
r 6= v. Then we solve for the value ofP (r = v) based on the fact
thatP (r0 = v0) = P (r0 = v0|r = v)P (r = v)+P (r0 = v0|r 6=
v)(1−P (r = v)) for anyv0. However, if the three distributions are
close (which is likely to be the case ifr is deep down the tree), then
the solution based on the above equation may contain a significant
numerical error (division by a value that is close to0). A better idea
is to pretend that the root is only a few levels abover. That is, we
only consider a branch of the market when dealing with nodes deep
down the tree.

9. CONCLUSION
We studied combinatorial prediction markets where agents bet

on the sum of values at any node in a hierarchy of events, for ex-
ample the sum of page views among all the children within a web

subdomain. We proposed three expressive betting languages that
seem natural, and analyzed the complexity of pricing using Han-
son’s logarithmic market scoring rule (LMSR) market maker.Sum
of arbitrary subset (SAS)allows agents to bet on the weighted sum
of an arbitrary subset of values.Sum with varying weights (SVW)
allows agents to set their own weights in their bets but only allows
bets on nodes in a hierarchy. We showed that LMSR pricing is NP-
hard for both SAS and SVW.Sum with predefined weights (SPW)
allows agents to bet on the weighted sum of subsets corresponding
to nodes in a hierarchy, where the weights are predefined. We de-
rived a polynomial time pricing algorithm for SPW. We discussed
the algorithm’s generalization to other betting contexts, including
betting on max/min and betting on the product of binary values.
Finally, we described a prototype we built to predict web site page
views and discussed the implementation issues that arose.
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