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ABSTRACT 1. INTRODUCTION

Many important problems in multiagent systems involve the allo- P : :
cation of multiple resources among the agents. For resource aIIo-l'l VCG Redistribution Mechanisms

cation problems, the well-known VCG mechanism satisfies a list ~Many important problems in multiagent systems involve the al-
of desired properties’ including efﬁciency‘ Strategy_proofness7 in- location of multlple resources among the agentS. For resource al-
dividual rationality, and the non-deficit property. However, VCG is location problems, the well-known VCG mechanism satisfies the
generally not budget-balanced. Under VCG, agents pay the VCG following list of desired properties:
payments, which reduces social welfare. To offset the loss of social
welfare due to the VCG payments, VCG redistribution mechanisms
were introduced. These mechanisms aim to redistribute as much
VCG payments back to the agents as possible, while maintaining ~ ® Strategy-proofnessfor any agent, reporting truthfully is a
the aforementioned desired properties of the VCG mechanism. dominant strategy, regardless of the other agents’ types.
We continue the search for worst-case optimal VCG redistri-
bution mechanisms — mechanisms that maximize the fraction of
total VCG payment redistributed in the worst case. Previously,
a worst-case optimal VCG redistribution mechanism (denoted by e Non-deficit the total paymerfromthe agents is nonnegative.
WCO) was characterized for multi-unit auctions with nonincreas-
ing marginal values [7]. Later, WCO was generalized to settings
involving heterogeneous items [4], resulting in the HETERO mech-
anism. [4]conjecturedhat HETERO is feasible and worst-case op-
timal for heterogeneous-item auctions with unit demand. In this pa-
per, we propose a more natural way to generalize the WCO mech-
anism. We prove that our generalized mechanism, though rep-
resented differently, actually coincides with HETERO. Based on dent of her own type This is sufficient for maintaining strategy-

this new representation of HETERO, we prove that HETERO is -
proofness and efficiency (an agent has no control over her own

indeed feasible and worst-case optimal in heterogeneous-item auc'redistribution) For smoothly connected domains (including multi-
tions with unit demand. Finally, we conjecture that HETERO re- ) y 9

mains feasible and worst-case optimal in the even more general!Jnlt auctlo_ns W'th nonincreasing marginal values an_d heterogeneous-
. . - . . . item auctions with unit demand), the above requirement is also
setting of combinatorial auctions with gross substitutes. L -~
necessary for maintaining strategy-proofness and efficiency [8]. A
VCG redistribution mechanism feasibleif it maintains all the de-
sired properties of the VCG mechanism. That is, we also require

o Efficiency the allocation maximizes the agents’ total valua-
tion (without considering payments).

e (Ex post) individual rationality Every agent’s final utility
(after deducting her payment) is always nonnegative.

However, VCG is generally not budget-balanced. Under VCG,
agents pay the VCG payments, which reduces social welfare. To
offset the loss of social welfare due to the VCG payments, VCG re-
distribution mechanisms were introduced. These mechanisms still
allocate the resources using VCG. On top of VCG, these mecha-
nisms try to redistribute as much VCG payments back to the agents
as possible. We require thah agent’s redistribution be indepen-

Categoriesand Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sciences— that the redistribution process maintains individual rationality and
Economicsl.2.11 [Computing M ethodologies]: Distributed Arti- the non-deficit property.
ficial Intelligence—Multiagent systems Let n be the number of agents. Since all VCG redistribution
mechanisms start by allocating according to the VCG mechanism,
General Terms a VCG redistribution mechanism is characterized by its redistri-
. bution scheme” = (r1,72,...,r,). Under VCG redistribution
Economics, Theory mechanisn#, agent’s redistribution equals; (01, . .., 0;-1, 0i+1,
...,0,), whered; is agentj’s type. (We do not have to differen-
Keywords tiate between an agent’s true type and her reported type, since all
Mechanism design, Vickrey-Clarke-Groves mechanism, payment VCG redistribution mechanisms are strategy-proof.) For the mech-
redistribution anism design objective studied in this paper, it is without loss of

generality to only consider VCG redistribution mechanisms that are
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ference on Autonomous Agents and Multiagent Systemsanonymous VCG redistribution mechanism is characterized by a
(AAMAS 2012) Conitzer, Winikoff, Padgham, and van der Hoek gjngie functionr. Under (anonymous) VCG redistribution mech-
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We usef to denote the type profile. LéfCG(é) be the total We organize existing results by their settings.
VCG payment for this type profile. A VCG redistribution mech-
anismr satisfies the non-deficit property if the total redistribution Worst-Case Optimal Redistributionin Multi-Unit Auctionswith
never exceeds the total VCG payment. That is, for any type pro- Unit Demand [7, 12]: In multi-unit auctions with unit demand, the
file 4, Sr(0-i) < vcg(@), A VCG redistribution mechanism  items for sale are identical. Each agent wants at most one copy of
7 is (ex post) individually rational if every agent's final utility is ~ the item. (Single-item auctions are special cases of multi-unit auc-
always nonnegative. Since VCG is individually rational, we have tions with unit demand.) Let» be the number of itemsThrough-
that a sufficient condition for to be individually rational is for any ~ out this paper, we only consider cases where< n — 2.2 Here,
§'and anyi, r(6_;) > 0 (on top of VCG, every agent also receives ~an agent’s type is a nonnegative real number representing her val-
a redistribution amount that is always nonnegative). On the other Uation for winning one copy of the item. It is without loss of gen-
hand, when agenitis not interested in any item (her valuation on ~ €rality to assume thah > 0, > ... > 6, > 0. [7] showed that
any item bundle equalg), under VCG,i's utility always equals for multi-unit auctions with unit demand, any VCG redistribution
0. After redistribution, agents utility is exactly her redistribution ~ mMechanism’s worst-case redistribution fraction is at most

7(0_;). Thatis,r(_;) > 0 for all 0_; (hence for alf and alli) is . "
also necessary for individual rationality. @ =1- gy (nﬂ)
We want to find VCG redistribution mechanisms that maximize j=m g

the fraction of total VCG payment redistributed in the worst-case  |f e switch to a more general setting, thei is still an up-
This mechanism design problem is equivalent to the following func- per pound: if there exists a VCG redistribution mechanism whose
tional optimization model: worst-case redistribution fraction is strictly larger thehin a more
general setting, then this mechanism, when applied to multi-unit
auctions with unit demand, has a worst-case redistribution fraction
that is strictly larger tham*, which contradicts with the meaning

Variable function: r
Maximize: « (worst-case redistribution fraction)
Subject to:

o a of a™.
Non-deficit:v0, 3, r(0-:) < VCG(0) [7] also characterized a VCG redistribution mechanism for multi-
Individual rationality:v0—;, (6—:) > 0 . unit auctions with unit demand, called the WCO mechariism.
Worst-case guarante®d, >, r(0—i) > a VCG(0) WCO's worst-case redistribution fraction is exaatly. That is, it

] . ] . is worst-case optimal.
In this paper, we will analytically characterize one worst-case ~ WCO was obtained by optimizing within the family thear
optimal VCG redistribution mechanism for heterogeneous-item auc-vVCG redistribution mechanisms. A linear VCG redistribution mech-

tions with unit demand. anismr takes the following form:
We conclude this subsection with an example VCG redistribu-

tion mechanism in the simplest setting of single-item auctions. In
a single-item auction, an agent’s type is a nonnegative real number r(0—i) = Z ¢j[f-il;

representing her utility for winning the item. Without loss of gen- i=1

erality, we assume thay > 02 > ... > 6, > 0. In single-item Here, thec; are constants. (We only consider thethat corre-
auctions, the Bailey-Cavallo VCG redistribution mechanism [2, 3] spond to feasible VCG redistribution mechanism@) ;]; is the

works as follows: j-th highest type among_;. Linear mechanism is characterized

. . . ) by the values of the;. The optimal values the; are as follows:
¢ Allocate the item according to VCG: Agemtwins the item y P &

and pay9-. The other agents win nothing and do not pay. (1) (n — m)("_fl) 1 1
ci = . n— n— n— -
e Every agent receives a redistribution that equéakimes the [ Z].:; ( p D " ; J
second highegithertype: Agentl and2 each receivegllreg.
fori=m+1,...,n—1,andc; =0for:=1,2,...,m.

The other agents each receives,. ol
9 " The characterization of WCO then follows:

The above mechanism obviously maintains strategy-proofness n—1 n—1
and efficiency (an agent’s redistribution does not depend on her r(0_;) = Z clo-i]; = Z 0=
own type). It also maintains individual rationality because all re- =1 ’
distributions are nonnegative. The total redistribution eq%dlﬁ—
n=29,. This is never more than the total VCG paymént That is,

n

the above mechanism maintains the non-deficit property. Finally,

j=m+1

Wor st-Case Optimal Redistribution in M ulti-Unit Auctionswith
Nonincreasing Marginal Values[7]: Multi-unit auctions with non-

H : : n—2 n—2 i i . : . : H
the total redistributiorf s + *~26> > “20,. Thatis, for single-  2[7] showed that for multi-unit auctions with unit demand, when
item auctions, this example mechanism’s worst-case redistribution,, = n, — 1, the worst-case redistribution fraction (of any feasi-
fraction is™=2 (the worst-case is reached whén= 0). ble VCG redistribution mechanism) is at méstSince the setting

studied in this paper is more general (heterogeneous-item auctions
1.2 PreviousResearch on Wor st-Case Optimaj with unit demand), we also have that the worst-case redistribution

iotri ; ; fraction is at mos® whenm = n — 1. Since heterogeneous-item
VCG Redistribution Mechanisms auctions withz units are special cases of heterogeneous-item auc-

In this subsection, we review existing results on worst-case op- tions withz 4 1 units, we have that for our setting the worst-case
timal VCG redistribution mechanisms. Besides high-level discus- redistribution fraction is at most whenm > n — 1. That is, not
sions, we also choose to include a certain level of technical details, "edistributing anything is worst-case optimal when> n — 1.

) 3 . - . .
as they are needed for later sections. WCO has also been independently derived in [12], under a slightly
different objective of maximizing worst-case efficiency ratio. Also,
1The problem of assigning heterogeneous items to unit demandfor [12]'s objective, the optimal mechanism coincides with WCO
agents is also often called the assignment problem. only when the individual rationality constraint is enforced.




increasing marginal values are more general than multi-unit auc- of the other items increase. Both multi-unit auctions with non-
tions with unit demand. In this more general setting, the items are increasing marginal values and heterogeneous-item auctions with
still identical, but an agent may demand more than one copy of the unit demand are special cases of combinatorial auctions with gross
item. An agent’s valuation for winning the first copy of the item substitutes [5, 9]. [6] showed that for this setting, the worst-case
is called her initial/first marginal value. Similarly, an agent’s addi- redistribution fraction of the Bailey-Cavallo mechanism [2, 3] is
tional valuation for winning the-th copy of the item is called her exactly% (whenn > m + 1), and it is possible to construct
i-th marginal value. An agent’s type contaimsnonnegative real mechanisms with even higher worst-case redistribution fractions.
numbers {-th marginal value foi = 1,...,m). In this setting, it The authors did not find a worst-case optimal mechanism for this
is further assumed that the marginal values are nonincreasing. setting. At the end of this paper, we conjecture that HETERO is
As discussed earlier, in this more general setting, any VCG re- optimal for combinatorial auctions with gross substitutes.
distribution mechanism’s worst-case redistribution fraction is still
bounded above by*. [7] generalized WCO to this setting, and  Finally, Naroditskiyet al.[13] proposed a numerical technique for
proved that its worst-case redistribution fraction remains the same. designing worst-case optimal redistribution mechanisms. The pro-
Therefore, WCO (after generalization) is also worst-case optimal posed technique only works for single-parameter domains. It does
for multi-unit auctions with nonincreasing marginal values. not apply to our setting (multi-parameter domain).
The original definition of WCO does not directly generalize to
multi-unit auctions with nonincreasing marginal values. When it 1.3 Our contribution

comes to multi-unit auctions with nonincreasing marginal values, e generalize WCO to heterogeneous-item auctions with unit
an agent’s type is no longer a single value, which means that there isjemand. We prove that the generalized mechanism, though rep-
no such thing as “thg-th highest type amony_,". To addressthis,  resented differently, coincides with the HETERO mechanism pro-
[7] replacedf]; by ~ R(0—i, j—m—1)forj =m+1,...,n— posed in [4]. That is, what we proposed is not a new mechanism,
1. Basically, R(6—i,j — m — 1) is the generalization off—;];: but a new representation of an existing mechanism. Based on our
it is identical to[¢—;]; in the unit demand setting, and it remains  new representation of HETERO, we prove that HETERO is indeed
well-defined for multi-unit auctions with nonincreasing marginal feasible and worst-case optimal when applied to heterogeneous-
values. We abuse notation by not differentiating the agents anditem auctions with unit demand, thus confirming the conjecture
their types. For examplel_; is equivalent to the set of agents  rajsed in [4]. We conclude with a new conjecture that HETERO

other thani. Let S be a set of agentsiz(S, 4) is formally defined  remains feasible and worst-case optimal in the even more general
as fO”OWS (thIS def|n|t|0n IS |nC|Uded fOr Completeness; we W|” not Setting of combinatorial auctions with gross substitutes.

use it anywhere):

e R(S,0) = VCG(S) (the total VCG payment when only 2. NEW REPRESENTATION OF HETERO

those inS participate in the auction).
P P ) _ We recall that WCO was obtained by optimizing within the fam-
e Fori=1,...,|8|-m—1,R(S,4) = == """ R(U(S, §), ily of linear VCG redistribution mechanisms. The original repre-

m-i Jj=1
i —1). Here,U(S, j) is the new set of agents, after remov- sentation of HETERO was obtained using a similar approach [4].
ing the agent with the-th highest initial marginal value i The authors focused on the following family of mechanisms:
from S. I
The general form of WCO is as follows: r(0-)= > Bit(0-s,j—1)
1 n—1 Jj=1
r(0-:) = m Z G R(0-i,j —m —1) Here, theB; are constantsi(S, 5) is the expectedotal VCG
g=mtl payment when we removgagents uniformly at random frorfi,
Wor st-Case Optimal Redistribution in Heter ogeneous-1tem Auc- and allocate all the items to the remaining agents. It is easy to see

tionswith Unit Demand [4]: In heterogeneous-item auctions with  that all member mechanisms of the above family are well-defined
unit demand, the items for sale are different. Each agent demandsfor general combinatorial auctions. Not every member mechanism

at most one item. Here, an agent’s type consistaafonnegative is feasible though.

real numbers (her valuation for winning iteifor i« = 1,...,m). [4] did not attempt optimizing over the family. Instead, the

Heterogeneous-item auctions with unit demand is the main focus are chosen so that the corresponding mechanism coincides with

of this paper. WCO when it comes to multi-unit auctions with unit demand. It
Since heterogeneous-item auctions with unit demand is more turns out that the choice isnique and the corresponding mecha-

general than multi-unit auctions with unit demand, is still an nism is called HETERO. [4¢onjecturedhat HETERO is feasible

upper bound on the worst-case redistribution fraction. [4] proposed and worst-case optimal for heterogeneous-item auctions with unit
the HETERO mechanism, by generalizing WCO. The autbors demand.

jecturedthat HETERO is feasible and has a worst-case redistribu-  In this section, we propose another way to generalize WCO. We
tion fraction that equala™. That is, the authors conjectured that will show that the generalized WCO actually coincides with HET-
HETERO is worst-case optimal in this setting. The main contribu- ERO. That is, what we derive is a new representation of HETERO.

tion of this paper is a proof of this conjecture. This new representation will prove itself useful in later discussions.
We recall that the characterization of WCO for multi-unit auc-
Redistribution in Combinatorial Auctions with Gross Substi- tions with nonincreasing marginal values is based on a series of

tutes[6]: The gross substitutes condition was first proposed in [9]. functionsR(S, ¢). These functions do not directly generalize to set-
Like unit demand, the gross substitutes condition is a condition on tings involving heterogeneous items, because; tor0, R(S, 1) is

an agent’s type (does not depend on the mechanism under discusedefined explicitly based on the agents’ initial marginal values. For-
sion). In words, an agent’s type satisfies the gross substitutes con-tunately, there is an easy way to rewrR€S, i), so that it becomes
dition if her demand for an item does not decrease when the priceswell-defined for settings involving heterogeneous items.



[7] proved that fol0 < 5 < |S| —m — 2,
> R(S-a,j) = (IS|-m—1=)R(S, j)+(m+1+5)R(S, j+1)

a€sS
1)
Based on Equation 1, WCO can be rewritten into the following
form (the only changes are that for> 0, R(.S,4)’s definition no
longer mentions “initial marginal values”):

Definition 1. Heterogeneous WCO (new representation of HET-
ERO):

n—1
1 * .
7"(9_1') = % E ch(Q_i,] —m — 1)
j=m+1

e R(S,0) =VCG(S)
e Fori =1,...,|S|—m—1, R(S,i) equals:

L (ZR(S a,i—1) = (IS| = m — )R(S,i — 1))
a€S

m+1

Heterogeneous WCO is well-defined for general combinatorial

auctions, so we can directly apply it to heterogeneous-item auctions

Similarly, R(S,2) = [S]4, R(S,3) = [S]s, ..., andfinallyR(S, |S|—
m — 1) = R(S,|S| — 2) = [9]s| (lowest type from the agents in
S). Itis clear that redistribution monotonicity holds here.

More generally, redistribution monotonicity holds for multi-unit
auctions with nonincreasing marginal values: Clainof [7] proved
that R(.S, ) is nonincreasing in for multi-unit auctions with non-
increasing marginal value®(.S, 7)'s original definition as described
in Subsection 1.2 makes it clear that tRéS, ¢) are nonnegative.

The following proposition greatly simplifies our task:

PrROPOSITION 2. Ifthe setting satisfies redistribution monotonic-
ity, then HETERO is feasible (strategy-proof, efficient, individually
rational, and non-deficit), and its worst-case redistribution fraction
is at leasta™. If the setting is also more general than multi-unit
auctions with unit demand, then HETERO is worst-case optimal.

PrROOF We first prove that HETERO is feasible given redistri-
bution monotonicity. According to Definition 1, under HETERO,
an agent’s redistribution does not depend on her own type. That
is, HETERQO is strategy-proof and efficient in all settings. We only
need to prove that HETERO is individually rational and non-deficit
given redistribution monotonicity.

Individual rationality: As discussed in Subsection 1.1, individ-
ual rationality is equivalent to redistributions being nonnegative.

with unit demand. Of course, we still have the burden to prove that We recall that for multi-unit auctions with unit demand, under WCO,

it remains feasible and worst-case optimal. We will do so in the
next section.

Heterogeneous WCO is not a new mechanism. It turns out that it

coincides with HETERO for general combinatorial auctions. That

agent:’s redistribution equals

n—1

> Glo-is

Jj=m+1

r(0-:)

is, Definition 1 is a new representation of the existing mechanism \yco is known to be individually rational. That is, for &lL.;

HETERO.

PROPOSITION 1. Heterogeneous WCO coincides with HETERO

for general combinatorial auctions.

Proof omitted since it is based on pure algebraic manipulation.

3. FEASIBILITY AND WORST-CASE
OPTIMALITY OF HETERO

In this section, we prove that HETERO, as represented in Defi-
nition 1, is feasible and worst-case optimal for heterogeneous-item

auctions with unit demand.
We first define theedistribution monotonicitgondition:

Definition 2. An auction setting satisfieedistribution mono-
tonicity if for any set of agents§, we have that

R(S,0) > R(S,1) > ... > R(S,|S| —m —1) >0

R was defined in Definition 1. That if2(S,0) = VCG(S),
andfori =1,...,|S| —m — 1, R(S,%) equals

! (ZR(S—a,i—l)—(S|—m—i)R(S,i—1)>.

m+1
+ acS

For example, the setting of single-item auctions satisfies redistri-

bution monotonicity. In a single-item auctioR(S,0) = VCG(S) =
[S]2 ([S]: is thei-th highest type from the agents ).

R(S,1) = <Z R(S — a,0) — (IS| - 2)R(S, 0)>

a€s

1

5 (2Sls + (151 = 2)[S]2 = (IS] = 2)[5]2) = [5]s.

n—1

> - >0

j=m+1

This is equivalentto foraltg > ... > xp—m-2 > 0,

n—1
E C;ijmfl Z 0

)
j=m+1
Under HETERO, agenits redistribution equals
1 n—1
— >GRO, j-m—1) ®)
j=m+1

Redistribution monotonicity implies that
R(Hfi,O) Z R(G,i, 1) 2 NN 2 R(O,i,n - m — 2) Z 0 (4)

Based on (2) and (4) (substituti®(0_;, j) for =, for all j), we
have that (3) is nonnegative. Therefore, redistribution monotonicity
implies individual rationality.

Non-deficit and worst-case optimalitfzor multi-unit auctions
with unit demand, under WCO, the total VCG paymentié,, 1.

The total redistribution is

n n—1 n—1 n
oD glemii= Y Gy 0
i=1 j=m+1 j=m+1  i=1
n—1
= > (i1 + (n—5)0;)
j=m+1

WCO is known to be non-deficit and have worst-case redistribu-
tion fractiona™. That s, for alld,,,+1 > ... > 6, > 0,

n—1
O mOmir <Y ¢8540 + (0 — §)0;) < MmOy
j=m+1



Thatis, forallxo > z1 > ... > xp—m-1 >0,

n—1
og*mﬂ,‘o < Z C;(jﬂ?jfm + (’I’L _j)mjfmfl) < mzxo (5)
j=m+1
Under HETERO, the total redistribution is
1 n n—1
EZ Z GR(O_i,j—m—1)
i=1 j=m+1

LS GGRE - m)+ (- DREG-m 1) ©

j=m+1

The total VCG payment equalsCG(6) = R(8,0).
Redistribution monotonicity implies that
R(,0) > R(@,1)>...> R(On-m—1)>0  (7)
Given (5) and (7) (substitutin@(@, j) for x; for all 5), we have
that (6) is betweem™ times the total VCG payment and the total
VCG payment. Therefore, redistribution monotonicity implies the
non-deficit property and also worst-case optimalitjz]

In the remaining of this section, we prove that heterogeneous-
item auctions with unit demand satisfies redistribution monotonic-
ity, which would then imply that HETERO is feasible and worst-
case optimal for heterogeneous-item auctions with unit demand.

We defineR?(S, i) by modifying the definition ofR(S,4) in
Definition 1.

e RI(S,0) = VCG?(S). VCG?(S) is the VCG price of item
j (the VCG payment from the agent winning itethwhen
we allocate all the items to the agentsdmusing VCG.

e Fori=1,...,|S| —m — 1, R/(S, i) equals
1 i . Npia s
o <ZRJ(S—a,z—1)—(|S —m—z)RJ(S,z—1)> .
acsS
PropoOSITION 3. For any set of agentS§, for: =0, ..., |S| —

m — 1, we have
> RI(S,i) = R(S, 1)
j=1

PROOF We prove by induction. Wheh= 0, by definition, for
anys,

m

> " R(S,0) = R(S,0)

j=1

Now let us assume that for< k < |S| — m — 1,
> R(S,k) = R(S, k)
j=1

We have that

iRJ’(S,kH)

Jj=1

m

- ; m(‘;Rj(S—a, k)~ (15|~ m—E—1)R'(5, k)

B 1

= m(z R(S — a,k) — (|S| —m — k — 1)R(S, k))

a€sS

= R(S,k+1)
O

We want to prove that for heterogeneous-item auctions with unit
demand, the following redistribution monotonicity condition holds.

R(S,0) > R(S,1) > ... > R(S,|S|—-m—1) >0
By Proposition 3, it suffices to prove that for all
R’(8,0) > R/(5,1) > ... > R/(S,|S| —m —1) > 0.
Without loss of generality, we will prove

R'(S,0) > R'(S,1) >...> R'(S,|S| —m —1) > 0.

To prove the above inequality, we need the following definitions
and propositionsi-rom now on to the end of this section, the setting
by default is heterogeneous-item auctions with unit demand, unless
specified.

We useE (T, S) to denote the efficient total valuation when we
allocate all the items ifi" to the agents it$.

PrROPOSITION 4. Submodularity in both items and agents [14]:
For anyTy,T», S, we have

E(Tl,S) + E(TQ,S) > E(T1 UTQ,S) + E(Tl ﬂTQ,S)A
ForanyT, S, Sz, we have
E(T, Sl) =+ E(T7 Sz) > E(T, S1 U Sz) + E(T, Sa N Sz)

[14] showed that the proposition is true when gross substitutes
condition holds. Heterogeneous-item auctions with unit demand
satisfies gross substitutes.

We use{1} @ {1,...,m} to denote the item set that contains
not only item1 to m, but also an additional duplicate of iteln

PrRoPOSITION 5. Let S be any set of agents. Lete the agent
who wins iteml when we allocate the item§l,...,m} to the
agentsinS. We have thalbl({1} ®{1,...,m},S) = E({1},a)+
E({1,...,m},S —a). Thatis, after we add an additional dupli-
cate of iteml to the auction, there exists an efficient allocation
under which agent still wins item1.

The above proposition was proved in [11].

PrROPOSITION 6. For any set of agents, for anya € S, we
haveVCG'(S) > VCG' (S — a). Thatis, the VCG price of item
1 is nondecreasing as the set of agents expands.

PROOF Let w; be the winner of iteml when we allocate the
items {1,...,m} to the agents inS using VCG.VCG'(S) =
E{1,...,m},S —wi) — E({2,...,m},S — w1). acould be
eitherw; or some other agent. We discuss case by case.

Casea = w;: Letw] be the new winner of item when we
allocate the item¢1, ..., m} to the agents itf — w; using VCG.
VCOG'(S—wi) = E({1,...,m},S—wi—w})—E({2,...,m},
S —w; — wh). We need to prove that({1,...,m},S —wy) —
E({2,...,m}S—wi)>E({l,...,m},S —w —w)
—E({2,...,m},S — w1 —w}). We construct a new agent Let
2’s valuation for item1 be extremely high so that she wins item
1. The above inequality can be rewritten B${1,...,m},S —
w)—E{2,...,m},S—wi)—E({1},z) > E{1,...,m},S—
wi —wi) — E({2,...,m}S —wi —wy) — E({1},z). This



is, E{1,...,m},S —wi) — E{1,...,m},S — w1 +z) >
E({1,...,m}S—wi —wl) — E{1,...,m},S —wi —w} +
x). We rearrange the terms, and dgé¢{1,...,m},S — wi) +
E{1,...,m},S —wi —wi +2) > E({1,...,m},S — w1 +
z)+E({1,...,m}, S —wi —wi). This inequality can be proved
based on Proposition 4.

Casea # wi: Letw] be the new winner of iterh when we al-
locate all the itemg1, ..., m} to the agents it — a using VCG.
VOG'(S—a) = E({1,...,m},S—a—w})—E({2,...,m},S—

a —w}). We need to prove tha'({1,...,m}, S — w1)

- E({2,...,m},S —w1) > E({1,...,m},S —a — wy) —
E({2,...,m}, S—a—w!). Thatis, we need to provB({1, ..., m},
S_wl)_E({Qa"'7m}75_w1)_E({1}7w1)_E({1}7wl1) 2
E({1,...,m}S —a—w}) - E({2,...,m},S —a — w}) —
E({1},w1) — E({1},w?). We simplify and rearrange terms, and
getE({1,...,m},S—wi)+E{1,...,m},S—a)+E({1},w1) >
Proposition 4 says thd({1,...,m}, S—a)+FE({1,...,m},S—
wi) > E({1,...,m}S—a—wi)+E{1,...,m},S). Soitsuf-
ficestoproveE ({1, ...,m}, S—w1)+E({1},w1) > E({1,...,m},
S —wi) + E({1},w}). By Proposition 5, the left-hand side is
E({1} & {1,...,m},S). The right-hand side is at most this[]

ProPoOSITION 7. Winners still win after we remove some other
agents [4, 6]* For any set of agent§ and any set of item®, we
useW to denote the set of winners when we allocate the items in
T to the agents ir using VCG. After we remove some agents in
S, those inWW that have not been removed remain to be winners,
provided that a consistent tie-breaking rule exists

It should be noted that there may not exist a consistent tie-breaking
rule that satisfies the above proposition. Fortunately, we are able to

prove that tie-breaking is irrelevant for the goal of proving redistri-
bution monotonicity.

We say that a type profile ige-freeif it satisfies the following:
LetTh = {1} @ {1,...,m}. LetT, = {1,...,m}. Basically,
Ty andT; are the only item sets that we will ever mention. A type
profile istie-freeif for any set of agentsS, when we allocate the
items inTy (or 1T3) to S, the set of VCG winners is unique. If

we only consider tie-free type profiles, then we do not need to be

bothered by tie-breaking. We notice that the set of tie-free type
profiles is adensesubset of the set of all type profiles — any type
profile can be perturbed infinitesimally to become a tie-free type
profile.

Our ultimate goal is to prove that for any set of agefits

We notice that theR(SS, j) are continuous in the agents’ types.
Therefore, it suffices to prove the above inequality for tie-free type
profiles only.

From now on, we simply assume that the set of VCG winners is
always unique.

Definition 3. For any set of agentSwith |.S| > m+1, let D(S)
be the set ofn + 1 winners when we allocatgl} & {1,...,m}
to the agents ir5. D(S) is called thedetermination setf S.

PROPOSITION 8. For any set of agent$ and anya € S —
D(S), we haved/CG*(S) = VCG* (S —a) andD(S) = D(S —
a).

The above proposition says that for the purpose of calculating

item 1's VCG price, only those agents i(S) are relevant.

“The proposition was originally introduced in [4]. A more rigorous
proof of a more general claim was also given in [6].

ProOFR D(S) is the set of VCG winners when we allocdte} &
{1,...,m} to the agents ir6. By Proposition 7, after removing
a € S — D(S), every agent inD(S) should still win. That is,
D(S —a) = D(S).

Let wy be the winner of iteml when we allocatg1,...,m}
to the agents inS. VCG'(S) = E({1,...,m},S — w1) —
E({2,...,m},S—w1) = E({1,...,m}, S—wi)+E({1},w1)—
(the last step is due to Proposition 5). The first term only depends
on those inD(S). The second term also only depends on those in
D(S) for the following reason: Lef’ be the set of VCG winners
when we allocatg1, ..., m} to the agents irt. The second term
only depends on those i#f. We introduce an agent whose val-
uation for iteml is extremely high so that she wins itemWhen
we allocate{1} & {1,...,m} to the agents irf + z, the set of
VCG winners are them + S’. D(S) are the new set of VCG win-
ners after we remove. By Proposition 7, those i5’ must still
remain inD(S). Overall, VCG*(S) only depends on those agents
in D(S). Similarly, VCG*(S — a) only depends on those agents
in D(S —a). Fora € S — D(S), D(S) = D(S — a). Therefore,
we must havd’CG(S) = VCG* (S —a). O

Definition 4. Let S be any set of agents. Létbe any integer
from1to|S|. Leta: < az < ... < ax be a sequence éfdistinct
agents inS. We say thesé& agents form avinner sequence with
respect taS if

a1 € D(S);a2 € D(S —ai1);a3 € D(S — a1 — a2);

co;ar €D(S —ar— ... —ak-1).

Let S’ be a subset of of sizek. We say thatS’ forms a winner
sequence with respect if there exists an ordering of the agents
in S’ that forms a winner sequence with respectSto When S’
forms a winner sequence with respectspwe call S’ a sizetS’|
winner sequence sefith respect toS.

Let H(S',S) = 1if S’ forms a winner sequence with respect
to S, and letH (S’,S) = 0 otherwise. For presentation purpose,
we say that the empty set forms a winner sequence (oD$iaéth
respect to any sef. Thatis,H (0, 5) = 1.

Now we are ready to prove that heterogeneous-item auctions
with unit demand satisfies redistribution monotonicity. We recall
that it suffices to prove that for any set of agefifs

R'(S,0) > R'(S,1) > ... > R'(S,|S| —m —1) > 0.
Here,R'(S,0) = VCG'(S), and fori = 1,...,|S| —m — 1,

R'(S, i) equals
%ﬂ <(;R1(S —ai—1)— (S| = m — )R (S,i — 1)> .

PROPOSITION 9. For any set of agent§, R'(S, k) equals

LY veehs- ).
( m ) s’'cs
|’ |=k
H(S’,5)=1

We have that
{S'|S' C S;|S'| = k; H(S',S) =1} = <’”T: ’“)

That is,R* (S, k) is the average oV CG*(S — S') for all S’ that
is a sizek winner sequence set with respectdo For any set of



agentssS (it should be noted that foR' (S, k) to be well-defined, Now let us analyze the expressidn, . ¢ RY(S —a, k). Byin-
we need|S| > k 4+ m + 1), the total number of sizé-winner duction assumption, it can be rewritten as
sequence sets with respectdds ("™1).

VCG (S —a—5").

The following lemmas are needed for the proof of the above
proposition. All these lemmas are implications of “winners still m aeS S'CS—a
win after we remove some other agents”. The proofs are omitted H(S‘,SSU;):l
due to space constraints. '
By induction assumption, the above expression is the sum of

LEMMA 1. LetS be any set of agents. L&t be a subset af |S|("+*) terms. Each term corresponds to one choice afnong
that forms a winner sequence with respecttoLeta be an arbi- S and one choice o’ amongsS — a. We divide theseS|(™ ")
trary agent inS — S’. Then,S” must also form a winner sequence  terms into two groups:
with respect toS — a. Group A, terms wittw ¢ D(S — S’): By Lemma 2,5’ must

also form a winner sequence with respectStoThat is, there are

LEMMA 2. Let S be any set of agents. Letbe an agent in at most("") choices ofS’. For each choice of’, there are at

S. LetS’ be a subset of — a that forms a winner sequence with most|S — 8" — D(S — S")| = |S| — k — m — 1 choices ofa.
respect toS — a. If we have that ¢ D(S — '), then” also Overall, there are at mogt*, ") (|S| — k —m — 1) terms in Group
forms a winner sequence with respectito A. On the other hand, for any’ that forms a winner sequence with

) respect taS, S’ must also form a winner sequence with respect to
LEMMA 3. Let S be any set of agents. Letbe an agent in S — a by Lemma 1. Forany ¢ D(S — '), there must be a

S. LetS’ be a subset of — a that forms a winner sequence With  term in Group A that is characterized byands’. That is, there
respect toS' — a. We have that i, € D(S — S’), thenS’ +a forms are at Ieas(m;j’“)(|s| — k —m — 1) terms in Group A. Hence,

a (longer) winner sequence with respectio there are exactly™"*) (|S| — k —m — 1) terms in Group A. Since

LEMMA 4. LetS be any set of agents. L&t + a be asubset @ & D(S—5"), we have thaV CG (S—a—S") = VCG' (S-5)
of S that forms a winner sequence with respectsto We must by Proposition 8. Therefore, the sum of all the terms in Group A

have thatS’ forms a winner sequence with respect$o- a and equals
a€ D(S—-9). 1
(IS =k —m—1) VCG'(S - S)
Now we are ready to prove the proposition. (™) SZC:S
PROOF. We prove by induction. Hg/!;k:l
Initial step: We haveR! (S, 0) = VCG*(S). Whenk = 0,
1 ) , ) ) This is exactly|S| — k —m — 1 timesR' (S, k).
@] > VCGHS-S)=VCG (S —0)=VCG'(S) Group B, terms with, € D(S—S'): There are exactlys| ("++)
" (18] ~k—m—1)("+*) = (k+mA1)("r*) = ETmaEeD)
H(s',8)=1 (k + 1)("™*"**1) terms in Group B. LefX be the set of all size-
Also, whenk = 0, (k + 1) winner sequence sets with respectdo According to

Lemma 3 and Lemma 4, every term in Group B must corresponds
to an element inX, and every element iX must correspond to ex-

g’ Q' — 0 ’ o o L m+0
[{S']S" C 55157 = 0 H(S", ) = 1} = {0} = 1 = ( m ) actly k + 1 terms in Group B€.g.,a size{k + 1) winner sequence

setY = {z1,...,zr+1} corresponds to the following+ 1 terms:
Induction assumptionWe assume that fok > 0, for any S a = x; andS’ =Y — z; for all i). Therefore, the total number of
(IS| > k+ m + 1), we have elements inX must be(mtﬁﬂ)-
. 1 . The sum of the terms in Group B equals
R(&k):W > veei(s-9) "
m |§’|C:Sk — Z VCOG(S - 5)
H(S’,8)=1 ( m ) s'cs
|S'|=k+1
Also, |{S'|S" C S;|S'| = k; H(S', S) = 1}| = (" }F). H(S',8)=1
We need to prove that the results hoId fo#- 1. That s, for any ) o
S (S| >k +m+2), Equation 8 can then be simplified as
1 1 1
R(s,k:+1):(m+Tl) Y veai(s-9) . 1 1
m s'cs - - — — —m -k -
7S iy (ZR (S —a,k)— (IS| —m—k—1)R'(S, k:))
H(S',8)=1 a€s
and|{S'|S" C S;|S'| =k + L H(S',S) = 1}| = (™HFH1).
Induction proof:By definition, R' (S, k + 1) equals
1 k+1 1 /
1 L = > veei(s-9)
- - — _ _ — —1 m+k
m+k+1<;sR a,k)— (S| —m—k—1)R (S,Ic)) mAk+1| (M) =
a |S!|=k+1

(8) H(S',8)=1



1

1 /
= Z VOGS - S') 5[1]
||k r1
H(S’,S)=1

O
(2]

(3]

Proposition 9 implies that functio®® is always nonnegative.
We still need to prove that

R'(S,0) > R'(S,1) > ... > R'(S,|S| —m —1).

Due to space constraint, we only present an outline of the proof
of R*(S,3) > R'(S,4), which highlights the main idea behind
the full proof. [4]
PROPOSITION 10. R'(S,3) > R'(S,4) for any S. (We need

4 <|S| —m — 1for R'(S, 4) to be well-defined.) [5]
Proof sketch:By definition, R'(S,4) = +15(3,cq R (S — 6]
a,3)—(|S|—m—4)R*(S, 3)). To prove tha?' (S, 4) < R'(S, 3),

it suffices to prove thaR' (S, 3) > R'(S — a, 3) foranya € S.

Let a be an arbitrary agent ifi. According to Proposition 9, we 7

need to prove 71

> veGHs-8)>= Y VCG'(S-a-9).

(8l

s’'cs S'CS—a
|S"|=3 |S"|=3
H(S',8)=1 H(S',S—a)=1

The proof is outlined as follows:

e On both sides of the inequality, there §F&*®) terms (Propo-
sition 9). Every term is characterized by a sizeinner se-
quence sef’.

[10]

e For every term on the right-hand side, we map it to a corre- [11]

sponding term on the left-hand side. The corresponding term

on the left-hand side is larger or the same. (2]
e We prove that the mapping is injective. That is, different

terms on the right-hand side are mapped to different terms

on the left-hand side. [13]

e Therefore, the left-hand side must be greater than or equal to
the right-hand side.

4. CONCLUSION

We conclude our paper with the following conjecture:

[14]

CONJECTURE 1. Gross substitutes implies redistribution mono-
tonicity. Thatis, HETERO remains feasible and worst-case optimal
in combinatorial auctions with gross substitutes.

The idea is that both multi-unit auctions with nonincreasing marginal
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APPENDIX

ProPOSITION 11. Let M be a feasible VCG redistribution mech-

values and heterogeneous-item auctions with unit demand satisfy@niSm thatis possibly not anonymous. bét be the worst-case re-
redistribution monotonicity. A natural conjecture is that the “most _ distribution fraction ofM. If the agents’ type spaces are identical,
restrictive joint” of these two settings also satisfies redistribution then there exists an anonymous feasible VCG redistribution mech-
monotonicity. There are many well-studied auction settings that 2niSm, whose worst-case redistribution fraction is at leakt
contain both multi-unit auctions with nonincreasing marginal val-
ues and heterogeneous-item auctions with unit demand (a list of
which can be found in [10]). Among these well-studied settings,
combinatorial auctions with gross substitutes is the most restric-
tive. To prove the conjecture, we need to prove that gross substi-
tutes implies that for any set of agerfis R(S,0) > R(S,1) >

. > R(S,|S| —=m —1) > 0. So far, we have only proved
R(S,0) > R(S,1) > 0.

Proof sketch: M can be anonymized using the technique de-
scribed in Sectios of [1]. The resulting mechanism is anonymous,
feasible, and its worst-case redistribution fraction is at ledst



