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ABSTRACT
We investigate the problem of allocating items (private goods) among
competing agents in a setting that is both prior-free and payment-
free. Specifically, we focus on allocating multiple heterogeneous
items between two agents with additive valuation functions. Our
objective is to design strategy-proof mechanisms that are compet-
itive against the most efficient (first-best) allocation. We intro-
duce the family of linear increasing-price (LIP) mechanisms. The
LIP mechanisms are strategy-proof, prior-free, and payment-free,
and they are exactly the increasing-price mechanisms satisfying a
strong responsiveness property. We show how to solve for compet-
itive mechanisms within the LIP family. For the case of two items,
we find a LIP mechanism whose competitive ratio is near optimal
(the achieved competitive ratio is0.828, while any strategy-proof
mechanism is at most0.841-competitive). As the number of items
goes to infinity, we prove a negative result that any increasing-price
mechanism (linear or nonlinear) has a maximal competitive ratio of
0.5. Our results imply that in some cases, it is possible to design
good allocation mechanisms without payments and without priors.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics; I.2.11 [Distributed Artificial Intelligence ]: Multia-
gent Systems

General Terms
Economics, Theory

Keywords
Mechanism design, prior-free, payment-free

1. INTRODUCTION
We investigate the problem of allocating items (private goods)

among competing agents in a setting that is both prior-free and
payment-free. That is, we do not assume that we have knowl-
edge about the distribution of the agents’ valuations. We also do
not allow the mechanism to specify any monetary payments. This
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is useful in settings where no currency has (yet) been established
(as may be the case, for example, in a peer-to-peer network, as
well as in many other multiagent systems); or where payments are
prohibited by law; or where payments are otherwise inconvenient.
Specifically, we focus on allocating multiple heterogeneous items
between two agents with additive valuation functions. Our objec-
tive is to design strategy-proof mechanisms that are competitive
against the efficient (first-best) allocation.

It remains an open question to give an elegant characterization
of mechanisms that are strategy-proof, prior-free, and payment-free
(for the problem that we study), and we do not know how to solve
for the most competitive such mechanism in general. In our at-
tempts to design competitive mechanisms, we introduce the family
of linear increasing-price (LIP) mechanisms, which are based on a
certain artificial currency. The LIP mechanisms are strategy-proof,
prior-free, and payment-free. We show how to solve for competi-
tive mechanisms within the LIP family. For the case of two items,
we find a LIP mechanism whose competitive ratio is near optimal
(the achieved competitive ratio is0.828, while any strategy-proof
mechanism is at most0.841-competitive). Thus, at least for the
case of two items, it does not come at much of a loss to focus only
on LIP mechanisms. As the number of items goes to infinity, we
prove a negative result that any increasing-price mechanism (linear
or nonlinear) has a maximal competitive ratio of0.5.

By proposing specific competitive strategy-proof mechanisms
that do not rely on payments, our paper also helps to answer a
question that has recently been drawing the attention of computer
scientists:Are priors and payments necessary for designing good
mechanisms?The idea of designing strategy-proof mechanisms
without payments that achieve competitive performance was ex-
plicitly framed by Procaccia and Tennenholtz [22], in their paper
titled Approximate Mechanism Design Without Money. That paper
carries out a case study on locating a public facility for agents with
single-peaked valuations. (The general idea of approximate mech-
anism design without payments dates back further, at least to work
by Dekelet al. [10] in a machine learning framework.)

Our paper considers this question in the different context of al-
location mechanisms.1 Unlike the models studied in the above two
papers [10, 22], where a consensus agreement may exist, when we
are considering the allocation of private goods, the agents are nec-
essarily in conflict.2 Nevertheless, it turns out that even here, some

1Guo and Conitzer [15] also studied the problem of designing com-
petitive allocation mechanisms without payments, but in a repeated
setting. Another difference between [15] and this paper is that the
mechanisms proposed in [15] are Bayes-Nash incentive compatible
instead of strategy-proof.
2For example, both [10] and [22] proposed mechanisms that pick
the “median” report from the agents as the final outcome. When
the agents’ favorite outcomes are identical, the median report is the



positive results can be obtained. Thus, we believe that our results
provide additional insights for this line of research. Of course, it
is beyond the scope of this paper to answer the above question in
its general form; rather, we will be content to focus specifically on
designing prior-free, payment-free allocation mechanisms.

Resource allocation mechanisms with payments have been stud-
ied extensively in both economics and computer science. Related
work that does not require a prior distribution includes the follow-
ing. For two agents, McAfee [18] analyzes equilibrium behavior
under threesimple mechanismswhose description does not rely on
the prior distribution over the agents’ valuations. They are the first-
price, the second-price, and the cake-cutting mechanisms.3 For
the case of three or more agents, the family ofVCG redistribution
mechanismsare efficient, strategy-proof, and (ex post) individually
rational. VCG redistribution mechanisms are Groves mechanisms
that allocate resources according to the VCG (Clarke) mechanism,
and then redistribute a large portion of the VCG payments back to
the agents [2, 8, 21, 14, 13, 19]. The above papers aim to maxi-
mize social welfare. Prior-free approaches have also been used for
revenue maximization, such as in digital goods auctions [1, 17, 12].

There is also a rich literature on mechanisms without payments.
A survey is given in the book chapter by Schummer and Vohra [23].
Barberà [3] gives an introduction to strategy-proof social choice
functions. Budish [6] gives a nice survey of existing allocation
mechanisms without payments that are designed for practical usage
(e.g., the patented Adjusted Winner Procedure [5]). All these mech-
anisms are manipulable except for the Serial Dictatorship mecha-
nism in Budish and Cantillon [7], in which the authors study user
behavior in Harvard Business School course allocation. Several pa-
pers suggest that in particular settings, strategy-proof mechanisms
without payments, combined with various other restrictions (e.g.,
efficiency), must come down to mechanisms that are, in a sense,
dictatorial [20, 11, 24]. The proposed linear increasing-price mech-
anisms in our paper are also dictatorial in nature. Mechanism de-
sign without payments has also been studied in[16, 9].4

2. MODEL DESCRIPTION
We study the problem of allocatingm (m > 1) heterogeneous

items (referred to as items1 to m) between two agents (referred to
as agents1 and2). We use−i to denote the agent other thani.

Let O be the set of all possible allocations. An allocationo ∈ O
is denoted by a vector(p1, p2, . . . , pm) (0 ≤ pj ≤ 1 for all j),
wherepj is the proportion5 of itemj won by agent1 (so that1−pj

is the proportion of itemj won by agent2).
We assume that the agents’ valuations for the items are additive,

and that the agents are risk neutral. We use a vector(vi
1, v

i
2, . . . , v

i
m)

to denote agenti’s type, wherevi
j is agenti’s valuation for winning

consensus agreement for all the agents. When allocating private
goods (without externalities), consensus agreement never exists—
every agent wants every good. Of course, in the worst case (all of
these papers are based on worst-case analysis), the agents in the
earlier papers are also in conflict.
3In fact, the cake-cutting mechanism is payment-free. However, it
is not strategy-proof in our sense. In the literature on cake-cutting
mechanisms [4], strategy-proofness has another, much weaker
meaning: An agent can notguaranteea better result by cheating,
given that she is ignorant about the other agent’s type.
4The recently proposed qualitative Vickrey auction[16], a gener-
alization of the traditional Vickrey auction, is another mechanism
that does not rely on monetary payments. However, it can not be
applied to our problem as it requires that there will be only a single
winner, and that the center has preferences over the outcomes.
5For indivisible items,pj is interpreted as the probability that agent
1 wins itemj.

item j (vi
j ≥ 0). Additivity and risk neutrality imply that under

allocation(p1, p2, . . . , pm), agent1’s utility equals
P

j pjv
1
j and

agent2’s utility equals
P

j(1 − pj)v
2
j .

Furthermore, we require that the agents’ valuations are normal-
ized. That is, the type spaceV consists of vectors(v1, v2, . . . , vm)
with

P

j vj = 1. As a result, an agent’s utility for an allocation
can be thought of as her level of satisfaction; if an agent wins all
the items, then she is100% satisfied. The reason that we require
this normalization is the following. When payments are available
and utility is quasilinear, this provides a way of comparing valua-
tions between agents. However, because payments are unavailable
in our context, it is no longer possible to make such a compari-
son. Hence, the units in which valuations are expressed become
meaningless, so that the only meaning that can be derived from an
agent’s valuations is therelative valuations of the items (the ra-
tio of the valuations). If we (say) doubled one agent’s valuation
for every item, in our payment-free context this would double that
agent’s utility for every outcome, and as a result her behavior under
any mechanism would remain completely unchanged. As a result,
there can be no hope of coming anywhere close to maximizing the
social welfare without some normalization assumption.

A payment-free mechanismM : V × V → O maps the agents’
reported type vectors to an allocation. Letui(~v, o) be agenti’s
utility under allocationo when her true type is~v. MechanismM

is said to bestrategy-proofif: ∀i ∈ {1, 2}, ~vi, ~v′
i and ~v−i, we have

ui(~vi, M(~vi, ~v−i)) ≥ ui(~vi, M(~v′
i, ~v−i)). In words, a mechanism

is strategy-proof if no matter what the other agent reports, each
agent’s best strategy is to report truthfully.

We define thefirst-best allocation mechanismM∗ to be the mech-
anism that always naïvely maximizes the social welfare (without
considering incentives). That is,∀~v1, ~v2, M∗(~v1, ~v2) ∈ arg maxo∈O
P

i∈{1,2} ui(~vi, o).
We will use the first-best mechanismM∗ (which is not strategy-

proof) as our benchmark when evaluating the performance of strategy-
proof mechanisms. (When usingM∗ as a benchmark, we assume
that agents report truthfully, even though they are not incentivized
to do so. Hence,M∗ always produces the maximal social welfare
among all mechanisms, with or without priors, and with or without
payments.)

Strategy-proof mechanismM is said to be (at least)α-competitive
if the social welfare underM is always greater than or equal toα
times the social welfare underM∗. Hereα is calledM ’s competi-
tive ratio. The maximal possible value ofα is calledM ’s maximal
competitive ratio.

Definition 1. Strategy-proof mechanismM is α-competitive
against the first-best mechanismM∗ if ∀~v1, ~v2, we have

P

i∈{1,2} ui(~vi, M(~v1, ~v2)) ≥ α
P

i∈{1,2} ui(~vi, M
∗(~v1, ~v2))

Example 1.The mechanism that always divides every item evenly
has maximal competitive ratio0.5. The mechanism that always
gives every item to agent1 also has maximal competitive ratio0.5.

Our objective is to design strategy-proof mechanisms with high
competitive ratios.

3. UPPER BOUND ON THE COMPETITIVE
RATIOS OF STRATEGY-PROOF
MECHANISMS

In this section, we derive an upper bound on the competitive ra-
tios of strategy-proof mechanisms. Given our objective, we only



need to consider strategy-proof mechanisms that aresymmetric.6

Definition 2. A mechanismM is symmetric if it satisfies
Symmetry over the agents:If we swap the reported type vectors

of two of the agents, then the items allocated to these agents are
also swapped.

Symmetry over the items:If we swap agent1’s valuations for
any two items, and we swap agent2’s valuations for the same two
items, then the allocation result for these two items is also swapped.

CLAIM 1. For any strategy-proof mechanism that is
α-competitive, there is a correspondingsymmetricstrategy-proof
mechanism that is (at least)α-competitive.

We omit some of the proofs due to space constraint.

CLAIM 2. For the case of two agents, any symmetric strategy-
proof mechanism is (at least)0.5-competitive.

Claim 1 implies that for the purpose of deriving an upper bound
on the competitive ratios of strategy-proof mechanisms, we can
safely ignore strategy-proof mechanisms that are not symmetric.

Let us recall that a mechanismM is α-competitive if forall pos-
sibletype vectors, the social welfare underM is at leastα times the
social welfare under the first-best mechanismM∗. If we restrict the
type space, then the maximal competitive ratio ofM can only stay
the same or increase. That is, one way to compute an upper bound
on the competitive ratios of strategy-proof mechanisms is to restrict
the type space and then solve for the largest possible competitive
ratio for any strategy-proof mechanism.

THEOREM 1. The competitive ratio of any strategy-proof mech-
anism is at most0.841. This is true for any number of items and
two agents.

PROOF. We first focus on the case of two items. We consider the
following restricted type space:{(ih, (N − i)h)|i = 0, 1, . . . , N},
whereN = 50 andh = 1/N . Type vector(ih, (N − i)h) can
be denoted by the integeri. A mechanism for this restricted type
space can be denoted by thepi

jk for i = 1, 2 and0 ≤ j, k ≤ N ,
wherepi

jk is the proportion of itemi won by agent1 when agent
1’s report isj and agent2’s report isk.

Strategy-proofness for agent1 can then be represented by the
following set of linear inequalities:∀ 0 ≤ j, j′, k ≤ N

jp1
jk + (N − j)p2

jk ≥ jp1
j′k + (N − j)p2

j′k

Strategy-proofness for agent2 can be represented by a similar
set of linear inequalities involving thepi

jk.
The mechanism characterized by thepi

jk is α-competitive if the
following linear inequalities are satisfied:∀ 0 ≤ j, k ≤ N

jp1
jk + (N − j)p2

jk + k(1 − p1
jk) + (N − k)(1 − p2

jk) ≥

α(max{j, k} + max{N − j, N − k})

The largest possible competitive ratio for any mechanism and for
the above restricted type space can thus be computed by solving a
linear program, which results in0.841.7 Any strategy-proof mech-
anism for the case ofm > 2 items remains strategy-proof when
applied to the case of two items (when the agents do not care about
the other items). Hence, the upper bound0.841 still applies.
6This is a frequently used technique in the literature on prior-free
mechanism design.
7We acknowledge that a computer-assisted proof is not as satis-
factory as an easily human-verifiable mathematical proof. Because
this is a linear programming problem, in principle, we can give a
(nearly) optimal solution to the dual problem to show that it is im-
possible to better; we do not give such a solution here because it
does not seem to shed much light.

4. LINEAR INCREASING-PRICE
MECHANISMS

As mentioned earlier, it remains an open question to solve for
the most competitive strategy-proof mechanism in general. There
are two reasons for this: first, we lack an elegant characterization
of all strategy-proof mechanisms for our problem; second, we lack
a general approach for evaluating a given mechanism (computing
its maximal competitive ratio).

In our attempts to design competitive mechanisms, we start with
the family of all strategy-proof mechanisms (SP). We then move on
to more and more restricted families of mechanisms: the family of
swap-dictatorial mechanisms (SD), the family of increasing-price
mechanisms (IP), and finally the family of linear increasing-price
mechanisms (LIP). These4 families are nested as illustrated below:

LIP ( IP ( SD ( SP

As we move from SP to LIP, we get more and more elegant
characterizations of the mechanisms. Finally, the mechanisms in
the LIP family can actually be characterized by a single parameter,
and we are able to evaluate (the competitiveness of) any given LIP
mechanism. That is, we are able to solve for competitive mecha-
nisms within the LIP family.

In a payment-free setting, if we fix agent−i’s report, then agent
i essentially faces a set of allowable outcomes that she can choose
from (each outcome corresponds to an allowable report ofi). A
necessary condition for a mechanism to be strategy-proof is that
the mechanism should always choosei’s favorite outcome (among
all allowable outcomes). This condition is not sufficient for the
mechanism to be strategy-proof forbothagents, because agent−i
may have the power to change the set of allowable outcomes that
agenti faces. That is,−i may want to submit a false report to get
agenti to a decision−i prefers. However, if we require that the set
of allowable outcomes agenti faces is fixed, then the mechanism
that picksi’s favorite outcome is strategy-proof for both agents. Es-
sentially, in such a mechanism, agenti is the dictator: she chooses
her favorite outcome from a set of outcomes predetermined by the
mechanism, and agent−i has no choice but to accept this outcome
(the decision is solely made byi). This leads to the following fam-
ily of swap-dictatorial mechanisms (by Claim 1, we only need to
consider symmetric mechanisms):

Swap-Dictatorial Mechanisms:With probability0.5, agenti is
the dictator, who chooses her favorite allocation from a predefined
set of allowable allocationŝOi ⊂ O. TheÔi satisfy the following
(symmetry over the agents and the items):

• If (p1, p2, . . . , pm) ∈ Ôi, then(1−p1, 1−p2, . . . , 1−pm) ∈

Ô−i for anyi.

• If (p1, p2, . . . , pm) ∈ Ôi, then(pσ(1), pσ(2), . . . , pσ(m)) ∈

Ôi for any permutationσ andi.

Swap-dictatorial mechanisms, as well as other dictatorial mech-
anisms, have been studied extensively because of their simplicity
(e.g., [7]). Many papers in the literature on mechanisms without
payments suggest that strategy-proofness, combined with various
other properties, can only come down to mechanisms that are dic-
tatorial in nature [20, 11, 24]. However, since we do not assume
additional properties, for our problem, there do exist strategy-proof
mechanisms that are not dictatorial in nature (that is,SD ( SP ).

For purpose of maximizing social welfare, ideally, we want the
dictator agent to take only items that she really values, and leave
the remaining items to the other agent. This leads to the following
family of increasing-price (IP) mechanisms.



Increasing-Price (IP) Mechanisms:With probability0.5, agent
i is the dictator, and is endowed with1 unit of artificial currency.
The dictator agent can purchase (proportions of) items (from the
mechanism, not from the other agent) with her artificial currency.
The (proportions of) items not purchased at the end go to the other
agent. Rather than having just a fixed price for each item, there
is a price schedule for each item, and the item becomes more ex-
pensive as the dictator agent buys more of it. The price schedules
are characterized by functionsf i

j : [0, 1] → R+ for i = 1, 2 and
j = 1, 2, . . . , m. f i

j(x) is the instantaneous price per unit charged
to agenti (wheni is the dictator) if she demands itemj, at the point
wherex units of her artificial currency have already been spent on
item j. By Claim 1, we can simply assumef i

j = f for all i andj.
Functionf is increasing and positive. We also assumef is differen-
tiable. If, at the end, agenti (when she is the dictator) spentx units
of artificial currency on itemj, then she is allocated a proportion
R x

0
1

f(t)
dt of item j. We will present an example IP mechanism

later in this section (which actually belongs to the more restricted
class of LIP mechanisms).

The intuition for why increasing-price mechanisms might per-
form well is as follows. If the dictator agent demands a large pro-
portion of an item, then she will be paying at a high rate, which
can only happen when she highly values the item. Because prices
are increasing, the optimal strategy for the dictator agent is sim-
ply the greedy strategy: purchase (an infinitesimally small amount
each time) the best deal (the item with the highest value/price ra-
tio) until the artificial currency runs out. That is, at some point, if
the dictator agent’s valuation for itemj is vj , and so farxj units
of artificial currency have been spent on itemj, then the dictator
agent should purchase an infinitesimally small amount of itemj∗,
wherej∗ = arg maxj{

vj

f(xj)
}. At the end, for items that have

been partly purchased, the final prices must be proportional to the
dictator agent’s valuations:

LEMMA 1. Under an IP mechanisms, if the dictator spends
k1, k2(0 < ki < 1) units of artificial currency on items1, 2, then
the dictator’s valuations for these items must bef1(k1) · C and
f2(k2) · C for someC.

Any increasing and positive functionf corresponds to an increasing-
price mechanism. Actually, for the purpose of designing competi-
tive mechanisms, we only need to consider functionsf that satisfy
R 1

0
1

f(t)
dt = 1. That is, we only need to consider increasing-price

mechanisms in which the dictator agent gets the entirety of an item
if and only if she spends all her artificial currency on this item.

CLAIM 3. For the purpose of designing competitive IP mecha-
nisms, we only need to consider increasing-price mechanisms with
f satisfying

R 1

0
1

f(t)
dt = 1.

PROOF. If
R 1

0
1

f(t)
dt > 1, then there existsU (U < 1) that

satisfies
R U

0
1

f(t)
dt = 1. ∀0 < ǫ < U , let f̂ be the same asf

for x ≤ U , and let f̂(x) take some very high values forU <

x ≤ 1 (in a way that makeŝf increasing), so that
R 1

0
1

f̂(t)
dt ≤

1+ǫ. Since the dictator agent will never spend more thanU units of
artificial currency on any item (it is pointless for the dictator agent
to continue purchasing an item when she has already obtained the
entirety of this item), on the region that matters to the mechanism
(0 ≤ x ≤ U ), f andf̂ are identical. Thus, we only need to consider
functionsf satisfying

R 1

0
1

f(t)
dt ≤ 1 + ǫ for arbitrary small value

ǫ. That is, we only need to consider cases where
R 1

0
1

f(t)
≤ 1.

If
R 1

0
1

f(t)
dt = p < 1, then let f̂ = pf , so that we have

R 1

0
1

f̂(t)
dt = 1. We denote the proportion of itemj won by agenti

underf wheni is the dictator byqi
j . The proportion of itemj won

by agenti underf wheni is not the dictator is then1 − q−i
j . The

proportion of itemj won by agenti underf̂ wheni is the dictator is
qi

j

p
(underf̂ , a dictator gets1

p
times as much item per unit of artifi-

cial currency at every amount of currency spent), and the proportion
of item j won by agenti underf̂ wheni is not the dictator is1 −
q−i

j

p
. The social welfare underf equals

P

i,j

qi
jvi

j+(1−q−i
j

)vi
j

2
. The

social welfare under̂f equals
P

i,j

qi
jvi

j/p+(1−q−i
j

/p)vi
j

2
, which is

at least1 (as in the proof of Claim 2). It turns out that the social
welfare underf is always less than or equal to the social welfare

underf̂ , as proved below.
P

i,j

qi
jvi

j+(1−q−i
j

)vi
j

2
=

P

i,j

qi
jvi

j+(p−q−i
j

)vi
j+(1−p)vi

j

2
=

P

i,j

qi
jvi

j+(p−q−i
j

)vi
j

2
+

P

i,j

(1−p)vi
j

2
=

P

i,j

qi
jvi

j+(p−q−i
j

)vi
j

2
+ (1 − p) =

p
P

i,j

qi
jvi

j/p+(1−q−i
j

/p)vi
j

2
+(1−p) ≤

P

i,j

qi
jvi

j/p+(1−q−i
j

/p)vi
j

2
.

Hence, we only need to considerf satisfying
R 1

0
1

f(t)
= 1.

Finally, the family of linear increasing-price mechanisms is de-
scribed below:

Linear Increasing-Price (LIP) Mechanisms: Linear increasing-
price mechanisms are increasing-price mechanisms characterized
by a linear functionf(x) = ax + b, wherea andb are positive
constants. (a has to be positive forf to be increasing.b has to
be positive to avoid negative prices or division-by-zero.) Since we
only considerf satisfying

R 1

0
1

f(t)
dt = 1, we haveb = a

ea−1
.

That is, a LIP mechanism is characterized by a single parametera.
From now on, we useLIP (a) to denote the LIP mechanism with
parametera. We useb to denote the value a

ea−1
.

Example 2.Let a = 2 (b = 2
e2−1

) and m = 2. Let the
agents’ type vectors be(1, 0) and (0.5, 0.5), respectively. Un-
der LIP (a), with 0.5 probability, agent1 is the dictator. Since
agent1’s type vector is(1, 0), she will spend all her artificial cur-
rency on item1. The resulting allocation is(1, 0): agent1 wins
the entirety of item1, while agent2 gets what is left (the en-
tirety of item 2). With 0.5 probability, agent2 is the dictator.
Since agent2’s type vector is(0.5, 0.5), she will divide her arti-
ficial currency evenly on items1 and2. The resulting allocation
is (1 −

R 0.5

0
1

at+b
dt, 1 −

R 0.5

0
1

at+b
dt) = (0.283, 0.283): agent2

wins
R 0.5

0
1

at+b
dt = 0.717 proportion of both item1 and2, while

agent1 gets what is left (1 −
R 0.5

0
1

at+b
dt = 0.283 proportion

of both items). In total, the resulting allocation underLIP (a) is
(1 − 1

2

R 0.5

0
1

at+b
dt, 1

2
− 1

2

R 0.5

0
1

at+b
dt) = (0.642, 0.642).

Besides simplicity, the linear increasing-price mechanisms pos-
sess a nice property that is not shared by other (non-linear) increasing-
price mechanisms. Before defining this property, we need the fol-
lowing definitions. Suppose we are considering an IP mechanism
characterized by functionf .

Definition 3. A type vector~v ∈ V is strictly full rankedfor f if
a dictator agent with true type~v will purchase positive proportions
of every item underf .

Every strictly full ranked type vector~v = (v1, v2, . . . , vm) cor-
responds to a vector(t1, t2, . . . , tm) with

Pm
j=1 tj = 1, wheretj

(> 0) denotes the amount of artificial currency that an agent with
type vector~v will spend on itemj (when she is the dictator). The
final value/price ratio

vj

f(tj)
should be the same for allj (Lemma 1).



Definition 4. A type vector~v ∈ V is full rankedif ~v ∈ W, where
W is the closure of the set of all strictly full ranked type vectors.

For a full ranked vector~v, we also have that the final value/price
ratio

vj

f(tj)
should be the same for allj.

Not all type vectors are full ranked type vectors. If an agent
has very low valuations for some items, then she will not spend
any artificial currency on those items iff(0) is sufficiently high.
For smallf(0), most type vectors are full ranked. In the rest of this
paper (when solving for the competitive ratios of LIP mechanisms),
we focus on full ranked type vectors, and treat vectors that are not
full ranked as exceptions.

CLAIM 4. For cases of at least three items, LIP mechanisms
are the only IP mechanisms satisfying the following condition:

Strong responsiveness:For two agents with full ranked type vec-
tors, if one agent values an item more than the other agent, then she
should win a greater proportion of this item than the other agent.

We first prove the following lemma, which will be also used later
in the paper.

LEMMA 2. Let ~v = (v1, v2, . . . , vm) be a full ranked vector
underLIP (a). Let~v ’s payment vector(t1, t2, . . . , tm) (

Pm
j=1 tj =

1) be such that an agent with true type~v will spendtj units of arti-
ficial currency on itemj underLIP (a) (when she is the dictator).

Then, thevj and thetj satisfyvj =
atj+b

a+mb
for all j.

PROOF. The final value/price ratio
vj

atj+b
should be the same for

all j, by Lemma 1. Since
P

vj = 1, we havevj =
atj+b

a+mb
for all

j.

Now we are ready to prove the above claim.

PROOF OFCLAIM 4. We first prove that LIP mechanisms sat-
isfy the strong responsiveness condition.

Lemma 2 says that under a LIP mechanism, an agent’s value
for an item is linear in the amount of artificial currency this agent
would spend on the item as a dictator. Therefore, if one agent val-
ues an item more than the other agent, then, as the dictator, she
would spend more on this item than the other agent, which means
she wins more of the item at the end.

We now prove that LIP mechanisms are the only IP mechanisms
satisfying the strong responsiveness condition, for cases of at least
three items.

Let us consider an IP mechanism characterized by an increasing
positive functionf . If ∃ nonnegativeta, tb, t

′
a, t′b, so that0 ≤ ta +

tb = t′a + t′b = t ≤ 1 andf(ta) + f(tb) > f(t′a) + f(t′b) are
both satisfied, then we can construct the following full ranked type
vectors:

( f(1−t)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

, f(ta)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

,
f(tb)

f(1−t)+f(ta)+f(tb)+(m−3)f(0)
, f(0)

f(1−t)+f(ta)+f(tb)+(m−3)f(0)
, . . . ,

f(0)
f(1−t)+f(ta)+f(tb)+(m−3)f(0)

) and

( f(1−t)
f(1−t)+f(t′a)+f(t′

b
)+(m−3)f(0)

,
f(t′a)

f(1−t)+f(t′a)+f(t′
b
)+(m−3)f(0)

,

f(t′b)

f(1−t)+f(t′a)+f(t′
b
)+(m−3)f(0)

, f(0)
f(1−t)+f(t′a)+f(t′

b
)+(m−3)f(0)

, . . . ,
f(0)

f(1−t)+f(t′a)+f(t′
b
)+(m−3)f(0)

).

The two vectors are constructed in such a way that agent1 will
spend1 − t units of artificial currency on item1, ta units on item
2, tb units on item3, and0 units on the other items, while agent2
will spend1 − t units of artificial currency on item1, t′a units on
item 2, t′b units on item3, and0 units on the other items. Agent
1 values item1 less than agent2 (the denominator is larger), but

they will spend the same amount of artificial currency on item1.
So, they win the same proportion of item1 at the end. Now if
we increase the value of agent1 for item 1 by a tiny amount (still
keeping it less than the value of agent2), then we have a situation
where agent1 values item1 less, but wins a greater proportion of
it at the end (agent1 now spends more on item1). That is, to
satisfy the strong responsiveness condition, whenever0 ≤ ta +
tb = t′a + t′b = t ≤ 1 for nonnegativeta, tb, t

′
a, t′b, we must have

f(ta) + f(tb) = f(t′a) + f(t′b). That is,∀0 ≤ c ≤ t ≤ 1, we have
f(t)+f(0) = f(t−c)+f(c). Since we assumef is differentiable,
by taking the derivative overt on both sides of the equality, we have
thatf ′(t) = f ′(t− c). The values oft andc can be arbitrary. That
is, f ′ is a constant.f must be linear.

The above claim provides another justification (other than sim-
plicity) why, among all IP mechanisms, we focus on LIP mecha-
nisms. In the next section, we solve for competitive mechanisms
within the LIP family.

5. COMPETITIVE LINEAR INCREASING-
PRICE MECHANISMS

Since a linear increasing-price mechanism is characterized by a
single parameter, if, for a given value ofa, we are able to evaluate
the competitiveness ofLIP (a), then the task of solving for com-
petitive LIP mechanisms can be done simply by searching for the
optimal value ofa.

In what follows, we discuss how to evaluate the competitiveness
of LIP (a), for a given value ofa and a given number of items.

5.1 Two Items
We first focus on the case of two items.
We denote the type vectors of agent1 and2 by (x, 1 − x) and

(y, 1 − y), respectively (1 ≥ x ≥ y ≥ 0). We abuse notation by
usingx to refer to both the valuex and the type vector whose first
element isx. We do the same fory.

CLAIM 5. UnderLIP (a), with probability0.5, agent1 is the
dictator, whose optimal strategy (when she is the dictator) is as
follows.

• If x
a+b

≥ 1−x
b

, then agent1 will spend all her artificial cur-
rency on item1. At the end, agent1 gets item1 in its entirety
while agent2 gets what1 does not take (item2 in its entirety).
It should be noted that this is the resulting allocationwhen
agent1 is the dictator. When agent2 is the dictator, we may
get a different allocation.

• If 1−x
a+b

≥ x
b
, then agent1 will spend all her artificial cur-

rency on item2. At the end, agent1 gets item2 in its entirety
while agent2 gets item1 in its entirety.

• Otherwise, agent1 will spendt = x(a+2b)−b
a

units of arti-

ficial currency on item1, and1 − t = (1−x)(a+2b)−b
a

units
of artificial currency on item2. At the end, the instanta-
neous prices of items1 and 2 will be at + b = x(a + 2b)
and a(1 − t) + b = (1 − x)(a + 2b), respectively. (We
note that the prices are proportional to agent1’s type vec-
tor (x, 1 − x), as they should be.) At the end, agent1 gets
a proportion ln(at+b)

a
− ln(b)

a
of item 1 and a proportion

ln(a(1−t)+b)
a

− ln(b)
a

of item 2, while agent2 gets the re-
mainder.



For j = 1, 2, we usepj(x, y) to denote the proportion of itemj
won by agent1 at the end, when agent1’s reported type vector isx
and agent2’s reported type vector isy. (This proportion takes the
randomization over who is the dictator into account.) The value of
pj(x, y) can be computed as shown above.p1(x, y) is increasing in
x and decreasing iny. p2(x, y) is decreasing inx and increasing in
y. We useS(x, y) to denote the social welfare underLIP (a). That
is,S(x, y) = xp1(x, y)+(1−x)p2(x, y)+y(1−p1(x, y))+(1−
y)(1−p2(x, y)). The social welfare under the first-best mechanism
M∗ equalsx + 1 − y.

By definition, the maximal competitive ratio ofLIP (a) can be
computed as

min
1≥x≥y≥0

S(x, y)

x + 1 − y

We now show how to bound the above expression from both be-
low and above.

Let N be a large positive integer. Leth = 1
N

be the step size.
Let thexi be defined asxi = ih for i = 0, 1, . . . , N . Similarly, let
theyi be defined asyi = ih for i = 0, 1, . . . , N .

We have that

min
1≥x≥y≥0

S(x, y)

x + 1 − y
≥ min

N>i≥j≥0
{ min
xi + h ≥ x ≥ xi

yj + h ≥ y ≥ yj

S(x, y)

xi + h + 1 − yj
}

≥ min
N>i≥j≥0

xip1(xi, yj + h) + (1 − xi − h)p2(xi + h, yj)
+yj(1 − p1(xi + h, yj))

+(1 − yj − h)(1 − p2(xi, yj + h))

xi + h + 1 − yj

We also have that

min
1≥x≥y≥0

S(x, y)

x + 1 − y
≤ min

N≥i≥j≥0

S(xi, yj)

xi + 1 − yj

= min
N≥i≥j≥0

xip1(xi, yj) + (1 − xi)p2(xi, yj)
+yj(1 − p1(xi, yj))

+(1 − yj)(1 − p2(xi, yj))

xi + 1 − yj

We note that thexi and theyi are constants. The values of the
pk(xi, yj) are also constants (for fixeda). That is, based on the
above two inequalities, we are able to compute a constant upper
bound and a constant lower bound on the maximal competitive ratio
of LIP (a). Whena = 2, the lower bound is0.828. Since any
lower bound on the maximal competitive ratio is also a competitive
ratio,LIP (2) is (at least)0.828-competitive. That is, the obtained
LIP (2) mechanism is near optimal for the case of two items (we
recall that Theorem 1 says that any strategy-proof mechanism is at
most0.841-competitive).

THEOREM 2. For the case of two items and two agents, the
competitive ratio ofLIP (2) is at least0.828, and at most0.829.

5.2 Three or More Items
With more than two items, we need a different technique to

bound the maximal competitive ratio of a given LIP mechanism.
Let α be the maximal competitive ratio ofLIP (a) (for some

givena andm). Let W be the set of full ranked type vectors under
LIP (a). Let αW be the maximal competitive ratio ofLIP (a) if
we restrict the type space toW. The following claim says that a
lower bound onα can be obtained based onαW.

CLAIM 6. Let α be the maximal competitive ratio ofLIP (a).
Let αW be the maximal competitive ratio ofLIP (a) if we restrict
the type space to the set of full ranked type vectorsW. We have

a + b

a + 2mb
αW ≤ α

Before proving this claim, let us introduce the following defini-
tion and lemma.

Definition 5. Let ~v = (v1, v2, . . . , vm), which may or may not
be full ranked. Let~v ’s payment vector(t1, t2, . . . , tm) be such
that an agent with true type~v will spendtj units of artificial cur-
rency on itemj (when she is the dictator). We defineφ(~v) =

(v′
1, v

′
2, . . . , v

′
m), wherev′

j =
atj+b

a+mb
for all j. That is,φ(~v) is

the (unique) full ranked type vector corresponding to the payment
vector of~v.

If ~v is already full ranked, thenφ(~v) = ~v. In any case, an agent
with true typeφ(~v) will act in the same way as an agent with true
type~v, since their corresponding payment vectors are the same.

LEMMA 3. ∀~v = (v1, v2, . . . , vm), ∀j, letφ(~v) = (v′
1, . . . , v

′
m).

Then, we havevj + b
a+mb

≥ v′
j andvj

a+b
a+mb

≤ v′
j . That is, if we

change~v into φ(~v), the value of an element increases at most by
b

a+mb
, and the value of an element decreases at most by a factor of

a+b
a+mb

.

PROOF. Let (t1, t2, . . . , tm) be the payment vector of~v and
φ(~v). Let S = {j|tj > 0, j = 1, 2, . . . , m} andT = {j|tj =
0, j = 1, 2, . . . , m}. We have that for allj ∈ S,

vj

atj+b
= C

for a common constantC. We also have that for allj ∈ T , C ≥
vj

atj+b
=

vj

b
.

We get
P

j∈S vj = C(a + |S|b). We also get
P

j∈T vj ≤

C(|T |b). Since
P

j∈S∪T vj = 1, we haveC(a + mb) ≥ 1. That

is, for j ∈ S, vj ≥
atj+b

a+mb
= v′

j . For j ∈ T , v′
j = b

a+mb
.

Therefore, for anyj, vj + b
a+mb

≥ v′
j .

Since
P

j∈S∪T vj = 1 andvj ≥ 0 for all j, we have
P

j∈S vj ≤

1. That is,C(a+b) ≤ C(a+|S|b) ≤ 1. That is,C ≤ 1
a+b

. Hence,

for anyj, vj ≤
atj+b

a+b
. Let us recall thatv′

j =
atj+b

a+mb
. Therefore,

for anyj, vj
a+b

a+mb
≤ v′

j .

Now we are ready to prove Claim 6.

PROOF OFCLAIM 6. Let ~v1, ~v2 ∈ V be any two type vectors.
Let S be the obtained social welfare (underLIP (a)) when the

agents report~v1 and ~v2, respectively. LetM be the first-best so-
cial welfare when the agents report~v1 and ~v2, respectively. LetSφ

be the obtained social welfare (underLIP (a)) when the agents re-
portφ(~v1) andφ(~v2), respectively. LetMφ be the first-best social
welfare when the agents reportφ(~v1) andφ(~v2), respectively.

We consider what happens when agents reportφ(~v1) andφ(~v2)
instead of~v1 and ~v2. The allocation does not change. Since there
arem items and by Lemma 3 the valuation of an item goes up by
at most b

a+mb
, we haveSφ ≤ m b

a+mb
+S. Since by Lemma 3 the

valuation of an item goes down by at most a factor ofa+b
a+mb

, we

haveMφ ≥ a+b
a+mb

M . Therefore
S+m b

a+mb
a+b

a+mb
M

≥ Sφ

Mφ . SinceS ≥ 1

(as in the proof of Claim 2), we have
S+m b

a+mb
S

a+b
a+mb

M
≥ Sφ

Mφ . That is,

S
M

≥ a+b
a+2mb

Sφ

Mφ ≥ a+b
a+2mb

αW.



Claim 6 implies that if we can get a lower bound onαW, then by
multiplying it by a+b

a+2mb
, we get a lower bound onα. So, we now

focus on deriving a lower bound on the maximal competitive ratio
of LIP (a) considering only full ranked type vectors.

Let x,y be the agents’ valuations for item1 (or any other item).
Without loss of generality, we assumex ≥ y. Since we are only
dealing with full ranked type vectors, we havex = atx+b

a+mb
for some

0 ≤ tx ≤ 1, wheretx is the amount of artificial currency agent
1 spends on item1 when she is the dictator. Similar observations
hold for y. That is,y =

aty+b

a+mb
for some0 ≤ ty ≤ 1, wherety

is the amount of artificial currency agent2 spends on item1 when
she is the dictator. Letu = y

x
. We have b

a+b
≤ u ≤ 1.

UnderLIP (a), the proportion of item1 won by agent1 when1

is the dictator isln(atx+b)
a

− ln(b)
a

. The proportion of item1 won

by agent1 when1 is not the dictator is1 −
ln(aty+b)

a
+ ln(b)

a
. In

total, the proportion of item1 won by agent1 is 1
2

+
ln( atx+b

aty+b
)

2a
=

1
2

+
ln( x

y
)

2a
= − ln(u)

2a
+ 1

2
. Similarly, the proportion of item1 won

by agent2 is ln(u)
2a

+ 1
2
.

We useR(x, y) to denote the sum of the agents’ utilities derived
from item 1 when the agents’ valuations for item1 arex andy,
respectively (x ≥ y). Let θ(a) be defined as the minimum ratio
betweenR(x, y) and x over all x, y. That is,θ(a) is the mini-
mum ratio of achieved utility over optimal utility for item1 under
LIP (a), when we only consider full ranked vectors.θ(a) only
depends ona (not onm). We call it theintrinsic valueof a.

CLAIM 7. The intrinsic valueθ(a) is less than or equal to the
maximal competitive ratio ofLIP (a) considering only full ranked
type vectors.

PROOF. By symmetry over the items, the achieved utility over
optimal utility for any item is at leastθ(a). Hence, the maximal
competitive ratio is at leastθ(a).

Let N be a large positive integer. Leth = a
N(a+b)

be the step

size. Let theui be defined asui = b
a+b

+ ih for i = 0, 1, . . . , N .
We observe that

θ(a) = min
b

a+mb
≤y≤x≤ a+b

a+mb

x(− ln(u)
2a

+ 1
2
) + y( ln(u)

2a
+ 1

2
)

x

= min
b

a+b
≤u≤1

− ln(u)

2a
+

1

2
+

u ln(u)

2a
+

u

2

≥ min
0≤i<N

min
ui≤u≤ui+h

(u − 1) ln(u)

2a
+

1

2
+

u

2

≥ min
0≤i<N

(ui + h − 1) ln(ui + h)

2a
+

1

2
+

ui

2

Givena, theui are constants. The above expression is the min-
imum of N constants. It gives a lower bound onθ(a). We denote
it by θ(a). The following expression gives an upper bound onθ(a)

(denoted byθ(a)).

θ(a) = min
b

a+b
≤u≤1

− ln(u)

2a
+

1

2
+

u ln(u)

2a
+

u

2

≤ min
0<i≤N

(ui − 1) ln(ui)

2a
+

1

2
+

ui

2

≤ min
0≤i<N

(ui + h − 1) ln(ui + h)

2a
+

1

2
+

ui

2
+

h

2
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Figure 1: Obtained Competitive Ratios

That is, the obtained lower boundθ(a) and upper boundθ(a)

differ only by at mosth
2

, which can be made arbitrarily small.
Sinceθ(a) ≤ αW, we have thatα is bounded below by a+b

a+2mb
θ(a).8

Next, we prove thatθ(a) serves as an upper bound onα.9

CLAIM 8. θ(a) ≥ α.

PROOF. Let ᾱ be the maximal competitive ratio ofLIP (a) when
there are only two items. We havēα ≥ α. Hence we only need to
showθ(a) ≥ ᾱ.

For the case of two items, let us consider the case where agent1’s
type vector is( u

u+1
, 1

u+1
), and agent2’s type vector is( 1

u+1
, u

u+1
).

Here, b
a+b

≤ u ≤ 1. It is easy to see that these two type vec-
tors are full ranked. The utility of agent1 underLIP (a) equals

u
u+1

( 1
2

+ ln(u)
2a

) + 1
u+1

( 1
2

+ − ln(u)
2a

). The utility of agent2 is
the same. The first-best social welfare is2

u+1
. So, ᾱ is at most

2
1
2
+ u

u+1
ln(u)
2a

+ 1
u+1

− ln(u)
2a

2
u+1

= u+1
2

+ u ln(u)
2a

+ − ln(u)
2a

.

Sinceu can take any value fromb
a+b

to1, ᾱ ≤ min b
a+b

≤u≤1
1
2
+

u
2
+ u ln(u)

2a
− ln(u)

2a
. The expression on the right side of the inequal-

ity is exactlyθ(a).

Theorem 3 summarizes the development in this section.

THEOREM 3. For the case ofm items and two agents,LIP (a)
is at least a+b

a+2mb
θ(a)-competitive, and at mostθ(a)-competitive.

We illustrate the results in this section with Figure 1. For three
to one hundred items, we searched for the LIP mechanism (from
{LIP (a)|a = 0.01, 0.02, 0.03, . . . , 20}) that maximizes a+b

a+2mb
θ(a)

(the corresponding upper boundsθ(a) are also presented).

8When we compute this lower bound, we actually compute
a+b

a+2mb
θ(a).

9When we compute this upper bound, we actually computeθ(a).



6. LARGE NUMBERS OF ITEMS
We now show a negative result: as the number of items goes

to infinity, any increasing-price mechanism (whether it is linear or
nonlinear) has maximal competitive ratio0.5. That is, in the limit,
they are no more competitive than the mechanism that simply di-
vides the items evenly.

THEOREM 4. For the case of two agents, as the number of items
m goes to infinity, the maximal competitive ratio of any increasing-
price mechanism is0.5.

PROOF. Let M be any increasing-price mechanism, character-
ized by the price functionf . Let the type vectors of the agents be
( f(1)

f(1)+(m−1)f(0)
, f(0)

f(1)+(m−1)f(0)
, . . . , f(0)

f(1)+(m−1)f(0)
) and

(1, 0, . . . , 0), respectively. Either agent, when she is the dictator,
will choose to spend all her artificial currency on item1.

When agent1 is the dictator, the social welfare underM equals
f(1)

f(1)+(m−1)f(0)
. When agent2 is the dictator, the social welfare

underM equals1 + (m−1)f(0)
f(1)+(m−1)f(0)

. The social welfare under the

first-best mechanism equals1 + (m−1)f(0)
f(1)+(m−1)f(0)

. The competitive

ratio of M is then at most 1

1+
(m−1)f(0)

f(1)+(m−1)f(0)

= f(1)+(m−1)f(0)
f(1)+2(m−1)f(0)

.

As m → ∞, this ratio goes to0.5. That is, the maximal com-
petitive ratio of any increasing-price mechanism is at most0.5 as
m → ∞. On the other hand,0.5 is a lower bound on the competi-
tive ratios of strategy-proof mechanisms by Claim 2.

7. FUTURE RESEARCH
One direction for future research is to find out whether higher

competitive ratios can be achieved by focusing on other families of
strategy-proof mechanisms. We could also consider more general
settings in which the agents may express complementary/substitutable
preferences over the items.
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