
Learning a Reactive Restart Strategy to
Improve Stochastic Search

Serdar Kadioglu1, Meinolf Sellmann2, and Markus Wagner3

1 Department of Computer Science, Brown University, RI, USA
serdark@cs.brown.edu,

2 Cortlandt Manor, NY, USA
meinolf@gmail.com,

3 Optimisation and Logistics, The University of Adelaide, SA, Australia
markus.wagner@adelaide.edu.au

Abstract. Building on the recent success of bet-and-run approaches for
restarted local search solvers, we introduce the idea of learning online
adaptive restart strategies. Universal restart strategies deploy a fixed
schedule that runs with utter disregard of the characteristics that each
individual run exhibits. Whether a run looks promising or abysmal, it
gets run exactly until the predetermined limit is reached. Bet-and-run
strategies are at least slightly less ignorant as they decide which trial
to use for a long run based on the performance achieved so far. We
introduce the idea of learning fully adaptive restart strategies for black-
box solvers, whereby the learning is performed by a parameter tuner.
Numerical results show that adaptive strategies can be learned effectively
and that these significantly outperform bet-and-run strategies.

Keywords: Restart strategies, adaptive methods, parameter tuning

1 Introduction

Restarted search has become an integral part of combinatorial search algorithms.
Even before heavy-tailed runtime distributions were found to explain the massive
variance in search performance [1], in local search restarts were commonly used
as a search diversification technique [2].

Fixed-schedule restart strategies were studied theoretically in [3]. For SAT
and constraint programming solvers, practical studies followed. For example,
one study found that there is hardly any difference between theoretically op-
timal schedules and simple geometrically growing limits [4]. SAT solvers used
geometrically growing limits for quite some time before the community largely
adapted theoretically optimal schedules (whereby the optimality guarantees are
based on assumptions that actually do not hold for clause-learning solvers where
consecutive restarts are not independent). Audemard and Simon [5] argued that
fixed schedules are suboptimal for SAT solvers and designed adaptive restarts
strategies for one SAT solver specifically.

In this paper, we describe a general methodology for embedding any black-
box optimization solver into an adaptive stochastic restart framework. The



framework monitors certain key performance metrics that are based on the evo-
lution of the objective function values of the solutions found. Based on these
observations, the method then adaptively computes scores that affect the like-
lihood whether we continue the current run beyond the original limit, whether
we start a new run, or whether we continue the best run so far. We employ an
automatic parameter tuner to learn how to adapt these probabilities dependent
on the observed performance metrics.

In the following, we recap the idea of bet-and-run strategies. We continue
with reviewing the recently introduced idea of hyper-parameterizing local search
solvers to achieve superior online adaptive behavior. We then introduce the idea
of using automatic hyper-reactive search tuning for learning adaptive restart
strategies. Finally, we present experimental results that clearly show that adap-
tive search significantly outperforms bet-and-run strategies.

2 Restart Strategies

Nowadays, stochastic search algorithms and randomized search heuristics are
frequently restarted: If a run does not conclude within a pre-determined limit,
we restart the algorithm. This was shown to to help avoid heavy-tailed runtime
distributions [1]. Due to the added complexity of designing an appropriate restart
strategy for a given target algorithm, the two most common techniques used are
to either restarts with a certain probability at the end of each iteration, or to
employ a fixed schedule of restarts.

Some theoretical results exist on how to construct optimal restart strategies.
For example, Luby et al. [3] showed that, for Las Vegas algorithms with known
run time distribution, there is an optimal stopping time in order to minimize the
expected running time. They also showed that, if the distribution is unknown,
there is a universal sequence of running times which is the optimal restarting
strategy up to constant factors.

Fewer results are known for the optimization case. Marti [6] and Lourenco et
al. [7] present practical approaches, and a recent theoretical result is presented by
Schoenauer et al. [8]. Particularly for the satisfiability problem, several studies
make an empirical comparison of a number of restart policies [9, 10].

Quite often, classical optimization algorithms are deterministic and thus can-
not be improved by restarts. This also appears to hold for certain popular modern
solvers, such as IBM ILOG CPLEX. However, characteristics can change when
memory constraints or parallel computations are encountered. This was the ini-
tial idea of Lalla-Ruiz and Voß [11], who investigated different mathematical
programming formulations to provide different starting points for the solver.

Many other modern optimization algorithms, while also working mostly de-
terministically, have some randomized component, for example by choosing a
random starting point. Two very typical uses for an algorithm with time budget
t are to (a) use all of time t for a single run of the algorithm (single-run strategy),
or (b) to make a number of k runs of the algorithm, each with running time t/k
(multi-run strategy).



Extending these two classical strategies, Fischetti et al. [12] investigated the
use of the following Bet-and-Run strategy with a total time limit t:

Phase 1 performs k runs of the algorithm for some (short) time limit t1 with
t1 ≤ t/k.

Phase 2 uses remaining time t2 = t− k · t1 to continue only the best run from
the first phase until timeout.

Note that the multi-run strategy of restarting from scratch k times is a special
case by choosing t1 = t/k and t2 = 0 and the single-run strategy corresponds to
k = 1; thus, it suffices to consider different parameter settings of the bet-and-run
strategy to also cover these two strategies.

Fischetti et al. [12] experimentally studied such a Bet-and-Run strategy for
mixed-integer programming. They explicitly introduce diversity in the starting
conditions of the used MIP solver (IBM ILOG CPLEX) by directly accessing
internal mechanisms. In their experiments, k = 5 performed best.

Recently, Friedrich et al. [13] investigated a comprehensive range of Bet-
and-Run strategies on the traveling salesperson problem and the minimum ver-
tex cover problem. Their best strategy was Restarts401%, which in the first phase
does 40 short runs with a time limit that is 1% of the total time budget and
then uses the remaining 60% of the total time budget to continue the best run
of the first phase. They investigated the use of the universal sequence of Luby
et al. [3] as well, using various choices of t1, however, it turned out inferior.

The theoretical analysis is provided by Lissovoi et al. [14], who investigated
Bet-and-Run for a family of pseudo-Boolean functions, consisting of a plateau
and a slope, as an abstraction of real fitness landscapes with promising and
deceptive regions. The authors showed that Bet-and-Run with non-trivial k
and t1 are necessary to find the global optimum efficiently. Also, they showed that
the choice of t1 is linked to properties of the function, and they provided a fixed
budget analysis to guide selection of the bet-and-run parameters to maximise
expected fitness after t = k · t1 + t2 fitness evaluations.

The goal of our present research is to address the two challenges encountered
in previous works: the need to set k and t1 in case of Bet-and-Run, and the
general issue of inflexibility in previous approaches. Our framework can decide
online whether (i) the current run should be continued, (ii) the best run so far
should be continued, or (iii) a completely new run should be started.

3 Learning Dynamic Parameter Updates

Our objective is to provide a generic framework for making restart strategies
adaptive for any optimization solver. To this end we build on the idea to use
parameter tuners for training adaptive search strategies [15, 16] and a recently
proposed approach for constructing a hyper-reactive dialectic search solver [17].

In [17], an existing local search meta-heuristic called dialectic search [18]
was modified in such a way that the search decisions (when and how much to
diversify, how strongly to intensify, when to restart, etc) were taken with regard



to the way how the optimization was observed to progress. In essence, the solver
tracked features of the optimization process itself and then tied these to decisions
(such as: which percentage of variables to modify to generate a new start point)
via logistic regression functions. The weights of these functions, one for each
meta-heuristic search decision, then became the hyper-parameters of the solver.

Key to making this work in practice is an effective method for learning the
weights in the logistic regression functions. Since the only immediately mean-
ingful observation is the overall performance of the solver, parameter tuner
GGA [19] was used to ”learn” which weights result in good performance.

4 A Hyper-Parameterized Restart Strategy

We now combine the two core ideas presented above. Namely, the idea of consid-
ering a batch of runs with the option to continue some of them, and the idea to
automatically learn which run to continue or whether to start a new run based
on the observed performance characteristics of past runs.

The first ingredient we need are features that somehow give us an idea of the
big picture of what is going on when tackling the instance at hand.

4.1 Features

Whenever a restart decision has to be made, we have three options. We can
either continue the current run, we can continue the best run so far, or we can
start a completely new run. For each of these options we essentially track two
values: The first tells us how good each run looked initially, the second what the
trajectory looks like for making further progress.

For the current run and the best run so far, we record their best objective
function found after the initial limit. For the new run option, we track how well
any new run did after the initial limit and compute the running average.

For the trajectory of the current and the best run, we extrapolate the perfor-
mance improvement achieved between the best solution found in the initial run
and the best performance achieved so far. The extrapolation point is the end of
the remaining time we have for the optimization.

For the new runs, to get an estimate how well we might do if (from now
until the overall time limit is reached) all we did was run new runs, we consider
the standard deviation in objective function performance. Then, we estimate the
trajectory as the average minus the standard deviation times the square root of
two times the logarithm of the number of new runs we can still afford to conduct.
While not exact, this is a lower bound for the minimum of repeated stochastic
experiments for which all we know are the mean and the standard deviation [20].

We thus compute six data points that we can use to decide whether to con-
tinue the current run, give the current best run more time, or start a completely
new run. One complication arises. Namely, for different instances, the objective
function values observed will generally operate on vastly different scales. How-
ever, to learn strategies offline, we need to compute weights, and these need to



work with all kinds of instances. Consequently, rather than taking average and
projected objective function values at face value, we first normalize them.

In particular, we consider the three initial values (best found in initial time
interval for current and best, and running average of best found for all new runs)
and normalize them between 0 and 1. That is, we shift and scale these values in
such a way that their smallest will be 0, the largest will be 1, and the last will be
somewhere between 0 and 1. Analogously, we normalize the trajectory values.

On top of the six features thus computed we also use the percentage of
overall time that has already elapsed, the percentage of overall time afforded in
the beginning where all we do is restart a new run every time, and the time a
new run will be given as percentage of total time left. In total we thus arrive at
nine features.

4.2 Turning Features Into Scores

Now, to compute the score for each of the three possibilities (continue current
run, continue best run so far, and start a new run) we compute the following
function

pk(f)← 1

1 + exp(wk
0 +

∑
i fiw

k
i )

,

whereby k ∈ {1, 2, 3} marks whether the function marks the score for continuing
the current run, continuing the best run, or starting a new run, and f ∈ R9

is the feature vector that characterizes our search experience so far. Note that
pk(f) ∈ (0, 1), whereby the function approaches 0 when the weighted sum in
the denominators exponential function goes to infinity, and how the function
approaches 1 when the same sum approaches minus infinity. Finally, note that
we require a total of 30 weights to define the three functions. These weights will
be learned later by a parameter tuner to achieve superior runtime behavior.

4.3 The Reactive Restart Framework

Given the weights wk
i with k ∈ {1, 2, 3} and i ∈ {0, . . . , 9}, we can now define

the framework within which we can embed any black-box optimization solver.4

We present a stylized version of our framework in Algorithm 1. Given are
a randomized optimization algorithm S, an input x, a timeout, a fraction k ∈
[0, 1], a factor r ≥ 1, and weights w. The framework first runs S on x until a
first solution is computed. It records the time to find this solution and sets the
incremental time interval each run is given to r times this input-dependent value.
Next, S’ run on x is continued until this incremental time interval is reached.
The best solution seen so far is recorded.
4 We say black-box because we do not need to know anything about the inner workings
of the solver. However, we make two assumptions. First, that we can set a time limit
to the solver where it stops, and that we can add more time and continue the
interrupted computation later. Second, that whenever the solver stops it returns
information when it found the first solution, when it found the best solution so far,
and what the quality of the best solution found so far is.



Algorithm 1 Reactive Restart Framework Algorithm

1: function ReactiveRestarts (S,x,timeout,k,r,w
k∈{1,2,3}
i∈{0,...,9})

2: (initTime,best)← S(x, newRun, stopAtF irstSolution)
3: interval← r × initTime
4: b← S(x, continueLastRun, interval− initTime)
5: elapsedTime← interval
6: Update(best, b)
7: while elapsedTime ≤ k × timeout do
8: (a, b)← S(x, interval)
9: elapsedTime← elapsedTime + interval

10: Update(initTime,best, a, b)
11: interval← r × initTime

12: Init(F )
13: while elapsedTime ≤ timeout do
14: pk ← 1

1+exp(wk
0+

∑
i w

k
i Fi)

∀k ∈ {1, 2, 3}

15: pk ← pk

p1+p2+p3 ∀k ∈ {1, 2, 3}
16: pick random x ∈ [0, 1]
17: if x ≤ p1 then
18: b← S(x, continueBestRun, interval)
19: elapsedTime← elapsedTime + interval
20: Update(best, b)
21: else if x ≤ p1 + p2 then
22: b← S(x, continueLastRun, interval)
23: elapsedTime← elapsedTime + interval
24: Update(best, b)
25: else
26: (a, b)← S(x, newRun, interval)
27: elapsedTime← elapsedTime + interval
28: Update(initTime,best, a, b)
29: interval← r × initTime

30: Update(F )

31: return best



Now, the first phase begins, which lasts for the fraction of the total time
allowed as specified by k. In this first phase, we start a new run on x every single
time, whereby we update the best solution seen so far and the time it takes each
time to find a first solution. The function Update is assumed to record the best
solution quality found so far as well as to maintain the running average of the
time it took to compute a first solution for each new run.

After the first phase ends, we initialize the features based on the search
experience so far. Then, we enter the main phase. Based on the given weights and
the current features we compute scores for the three options how we can continue
the computation at each step. We then choose randomly and proportionally to
these scores whether we continue the best run so far, the last run, or whether
we begin a new run.

No matter which choice we always keep the best solution found so far up to
date. When we choose to start a new run, we also update the running average of
the times it takes to find a first solution as well as the incremental time interval
that results from this running average times the factor r. Finally, we update the
features and continue until the time has run out.

The last ingredient needed to apply this framework in practice is a method
for learning the weights w. Based on a training set of instances, we compute
weights that result in superior performance using the gender-based genetic al-
gorithm tuner GGA [19], following the same general approach for tuning hyper-
parameterized search methods as introduced in [17].

5 Experimental Analysis

We now present our numerical analysis. First, we briefly introduce the combi-
natorial optimization problems, the solvers, and the instances used in our ex-
periments. Second, we describe our comprehensive data collection, which allows
us to conduct our investigations completely offline, that is, without the need of
running any additional experiments. Third, we present the results of our inves-
tigations which show the effectiveness of our online method.

5.1 Problems and Benchmarks

First, we briefly introduce the two considered NP-complete problems, as well as
the corresponding solvers and benchmarks used in our investigations.

Traveling Salesperson. The Traveling Salesperson Problem (TSP) considers
an edge-weighted graphG = (V,E,w), the vertices V = {1, . . . , n} are referred to

as cities. It asks for a permutation π of V such that
(∑n−1

i=1 w(π(i), π(i+ 1))
)
+

w(π(n), π(1)) (the cost of visiting the cities in the order of the permutation and
then returning to the origin π(1)) is minimized.

Natural applications of the TSP are in areas like planning and logistics [21],
but they are also encountered in a large number of other domains, such as genome



sequencing, drilling problems, aiming telescopes, and data clustering [22]. TSP
is one of the most important (and most studied) optimization problems.

We use the Chained-Lin-Kernighan (Linkern) heuristic [23, 24], a state-of-
the-art incomplete solver for the Traveling Salesperson problem. Its stochastic
behavior comes from random components during the creation of the initial tour.

The TSPlib is a classic repository of TSP instances [25]. For our investi-
gations, we pick all 112 instances from TSPlib, and as additional challenging
instances ch71009, mona-lisa100k, and usa115475.

Minimum Vertex Cover. Finding a minimum vertex cover of a graph is a
classical NP-hard problem. Given an unweighted, undirected graph G = (V,E),
a vertex cover is defined as a subset of the vertices S ⊆ V , such that every edge
of G has an endpoint in S, i.e. for all edges {u, v} ∈ E, u ∈ S or v ∈ S. The
decision problem k-vertex cover decides whether a vertex cover of size k exists.
We consider the optimization variant to find a vertex cover of minimum size.

Applications arise in numerous areas such as network security, scheduling and
VLSI design [26]. The vertex cover problem is also closely related to the problem
of finding a maximum clique. This has a range of applications in bioinformatics
and biology, such as identifying related protein sequences [27].

Numerous algorithms have been proposed for solving the vertex cover prob-
lem. We choose FastVC [28] over the popular NuMVC [29] as a solver for the
minimum vertex cover problem as it works better for massive graphs. FastVC
is based on two low-complexity heuristics, one for initial construction of a ver-
tex cover, and one to choose the vertex to be removed in each exchanging step,
which involves random draws from a set of candidates.

For our experimental investigations, we select all 86 instances used in [28].
Among these, the number of vertices ranges from about 1000 to over 4 million,
and the number of edges ranges from about 2000 to over 56 million.

5.2 Data Collection

We recorded 10,000 independent, regular runs of the original solvers on each of
the 115 TSP instances and on each of the 86 MVC instances. For TSP, the
time limit per instance was 1 hour. For MVC, we allowed 100 seconds. The runs
were conducted on a compute cluster with Intel Xeon E5620 CPUs (2.4GHz).

For each run, we make a record whenever a solver finds a better solution,
together with the solution quality. Altogether, the records of our 20,000 runs
take up over 8 GB when GZ-compressed with default settings. We plan to make
these files publicly available (upon finding a suitable webserver) as a resource
for studying the behaviour of these algorithms.

5.3 Training of Hyper

For each of the two benchmarks, we used two thirds of the respectively available
instances for training. That is, we handed the parameterized framework to a



recently improved version of GGA that uses surrogate models to predict where
improved parameterizations may be found [30] We ran GGA for 70 generations
with a population size of 100 individuals. The random replacement rate was set
to 5%, the mutation rate was set to 5% as well.

5.4 Results

Following the training of Hyper on two thirds of the instances (per problem
domain), we are left with 38 of the 115 TSP instances and 28 of the 86 MVC
instances. We use these to compare the performance of the following investigated
approaches:

1. Single: the solver is run once with a random seed, allowing it to run for the
total time given;

2. Restarts: the solver is restarted from scratch whenever a preset time limit
is reached, and this loop is repeated until time is up;

3. Luby: restarts based on the fixed Luby sequence [3], where one Luby time
unit is based on five times the time the first run needs to produce the first
solution;

4. Bet-and-Run: the previously described bet-and-run strategy by Friedrich
et al. [13];

5. Hyper: our trained hyper-parameterized bet-and-run restart strategy, as
described above.

We will analyze the outcomes using several criteria. First, we compare the
performance gaps achieved with respect to the optimal solution possible within
the time budget.5 Second, we consider the number of times an approach is able
to find the best possible solution. Third, we compare the amount of time needed
in order to compute the final results.

To start off, Tables 1 and 2 show the results of the individual solvers across
the sets of 38 and 28 instances. Note that we are using the problem domain
names TSP and MVC instead of the respective solvers to facilitate reading.

We observe that the number of times the best possible solution is found
increases with increasing time budget. Note that this is not natural as the best
possible solution is the best possible solution for the respective time limit! The
fact that the relative gap decreases anyhow is therefore a reflection of the fact
that the best restart can actually find the best solution rather quickly. With
increasing time limits, the restarted approaches thus have more buffer to find
this best quality solution as well.

Next, we find that Single and Restarts are clearly outperformed by the
other three approaches across both problem domains and across all total time
budgets. On TSP, Hyper achieves less than half the performance gap of Bet-
and-Run when the total time budget is only 100 seconds. This advantage for
Hyper becomes more and pronounced as the budget increases to 5,000 seconds.

5 This best possible solution is the best solution provided within the given time limit
by any of the 10,000 runs we conducted.



Single
time

budget
solutions no solutions best found

average
performance

average
time

100 380 0 234 0.1415 12
200 378 2 239 0.1368 21
500 380 0 266 0.0885 95

1000 380 0 266 0.0877 105
2000 380 0 266 0.0762 165
5000 380 0 266 0.0596 290

Restarts
time

budget
solutions no solutions best found

average
performance

average
time

100 380 0 252 0.0689 21
200 380 0 255 0.0618 35
500 380 0 259 0.0519 61

1000 380 0 261 0.0474 98
2000 380 0 261 0.0457 154
5000 380 0 258 0.0435 268

Luby
time

budget
solutions no solutions best found

average
performance

average
time

100 380 0 296 0.0274 19
200 380 0 299 0.0189 32
500 380 0 309 0.0135 75

1000 380 0 317 0.0108 127
2000 380 0 318 0.0090 229
5000 380 0 322 0.0070 476

Bet-and-Run
time

budget
solutions no solutions best found

average
performance

average
time

100 380 0 244 0.0487 5
200 380 0 245 0.0473 6
500 380 0 246 0.0444 8

1000 380 0 248 0.0436 13
2000 380 0 251 0.0429 22
5000 380 0 256 0.0419 49

Hyper
time

budget
solutions no solutions best found

average
performance

average
time

100 380 0 295 0.0216 15
200 380 0 302 0.0142 26
500 380 0 307 0.0132 57

1000 380 0 307 0.0090 87
2000 380 0 319 0.0077 178
5000 380 0 321 0.0066 322

Table 1: TSP results. Shown are time in seconds, and performance gap from
the best possible solution within the respective time limit. ”solutions” and ”no
solutions” refer to the number of times the approach has produced any solution
at all. ”best found” lists the number of times the best possible solution was
found given 380 runs (38 instances * 10 independent runs). Highlighted in dark
blue and light blue are the best and second best average approaches.



Single
time

budget
solutions no solutions best found

average
performance

average
time

5 211 69 74 0.1097 3
10 223 57 76 0.4558 5
20 254 26 80 0.6181 9
50 264 16 98 0.2273 19

Restarts
time

budget
solutions no solutions best found

average
performance

average
time

5 228 52 76 0.1111 3
10 252 28 82 0.4140 6
20 268 12 88 0.6128 12
50 278 2 101 0.1802 25

Luby
time

budget
solutions no solutions best found

average
performance

average
time

5 228 52 80 0.1064 3
10 252 28 91 0.3907 6
20 268 12 91 0.5767 11
50 278 2 114 0.1032 23

Bet-and-Run
time

budget
solutions no solutions best found

average
performance

average
time

5 228 52 65 0.0800 3
10 252 28 79 0.3328 5
20 268 12 90 0.4721 9
50 278 2 105 0.0390 18

Hyper
time

budget
solutions no solutions best found

average
performance

average
time

5 228 52 75 0.0781 3
10 252 28 87 0.3309 5
20 268 12 104 0.4710 9
50 278 2 119 0.0385 19

Table 2: MVC results. Shown are time in seconds, and performance gap from
the best possible solution within the respective time limit. ”solutions” and ”no
solutions” refer to the number of times the approach has produced any solution
at all. ”best found” lists the number of times the respective best possible solution
has been found given 280 runs (28 instances * 10 independent runs). Highlighted
in dark blue and light blue are the best and second best average approaches.



For this time limit, Hyper has a six-times lower average gap than Bet-and-
Run, which is marked improvement. At the same time, Bet-and-Run can find
the best solutions in only 67% of the runs, whereas Hyper’s success rate is 84%.

MVC can be seen as a little bit more challenging in our setting, as the com-
putation time budgets were rather short and FastVC encountered significant
initialization times on some of the large instances. As a consequence, the number
of times where no solution has been produced by the various approaches is higher
than for TSP, however, this number decreases with increasing time budget.

On MVC, Hyper and Bet-and-Run are really close in terms of average
performance gap, however, there is an advantage for Hyper in number of times
the best possible solutions are found. In practice this is still a substantial im-
provement.

Interestingly, our results differ from [13], where Luby-based restarts per-
formed not as well as Restarts, whereas in our study Bet-and-Run is out-
performed by LubyStat on TSP. This might be due to a different approach of
setting tinit and because we use a larger instance set for TSP. Independent of
this Hyper outperforms both.

Figure 1 adds to the results by showing the results of performing single-sided
Wilcoxon rank-sum tests on the outcomes of 10 independent runs. For the two
different problem domains, we observe the following. ForTSP,Hyper dominates
the field and is beaten five times by Luby (as assessed by the statistical tests) in
terms of quality gap to the optimum. For MVC, Hyper typically outperforms
Single, Restarts, and Luby. In contrast to this, Hyper and Bet-and-Run
perform essentially comparably on MVC, and the differences are rarely signifi-
cant.

Lastly, we summarize the investigations by testing whether the performance
differences betweenHyper and and the other approaches across all instances and
time budgets are statistically significant. Again, we apply a single-sidedWilcoxon
test to test the null hypothesis that two given distributions are identical. We
compare the approaches based on the performance gap achieved, and across
all time budgets and instances. In particular, we take the median of the 10
independent runs per instance, and then collect for each restart approach the
medians across all instances and time limits. As a consequence, each approach
has 38*6=228 medians for TSP and 28*4=112 medians for MVC.

Table 3 shows the results of these two tests. In summary, we can deduce
from the outcome that Hyper performs no worse than existing approaches, and
typically better. A closer inspection of the raw results of Hyper and Bet-and-
Run on MVC reveals that their performance is near-identical, despite the fact
that the averages of Hyper are consistently lower than those of Bet-and-Run
(as seen in Table 2). In stark contrast to this, the performance comparisons on
TSP are mostly highly significant and in an favor of Hyper.



Hyper vs Single

TSP:
(gap)

16

22

15

22

12

25

12

25

12

25

12

25

Hyper vs Restarts

TSP:
(gap)

14

22
2

13

23
2

13

24

13

24

13

24

13

24

Hyper vs Luby

TSP:
(gap)

2
27

9

3
29

5

29

8

29

8

29

8

229

7

Hyper vs Bet-and-Run

TSP:
(gap)

13

22
3

14

22
2

13

22
3

13

23
2

14

23

13

23
2

time budget: 100s 200s 500s 1000s 2000s 5000s

Hyper vs Single

MVC:
(gap)

9

7

11

13

7 7

11

7
9

2

12

8 6

Hyper vs Restarts

MVC:
(gap)

68

13

11

7
9

11

8
8

3
11

9
5

Hyper vs Luby

MVC:
(gap)

48

15

7
7

13

8
8

11

3
7

10
8

Hyper vs Bet-and-Run

MVC:
(gap)

8

19

6

21

2

8

18

3
11

14

time budget: 50s 100s 200s 500s

Fig. 1: Statistical comparison of Hyper with the other approaches using the
Wilcoxon rank-sum test (significance level p = 0.05). The approaches are com-
pared based on the quality gap to the best possible solution (smaller is better).
The colors have the following meaning: Green indicates that Hyper is statisti-
cally better, Red indicates that Hyper is statistically worse, Light gray indicates
that both performed identical, Dark gray indicates that the differences were sta-
tistically insignificant. We have chosen pie charts on purpose because they allow
for a quick qualitative comparison of results.



Single Restarts Luby Bet-and-Run
TSP 0.000003 0.000015 0.478300 0.000002
MVC 0.060172 0.248689 0.354935 0.236808

Table 3: One-sided Wilcoxon rank-sum test to test whether the quality gap
distribution of Hyper is shifted to the left of that of the other approaches.
Shown are the p-values.

6 Conclusion

We introduced the idea of learning reactive restart strategies for combinatorial
search algorithms. We compared this new approach (Hyper) with other ap-
proaches, among them a very recent Bet-and-Run approach that had been
assessed comprehensively on TSP and MVC instances. Across both domains,
Hyper resulted in markedly better average solution qualities, and it exhibited
significantly increased rates of hitting the best possible solution.

As the investigated problem domains are structurally very different, we ex-
pect our approach to generalize to other problem domains as well, such as con-
tinuous and multi-objective optimization problems.

Future work will focus on the development of other runtime features as a
basis for making restart decisions.

Bibliography

[1] Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of Automated Reasoning
24(1) (2000) 67–100

[2] Hoos, H.H.: Stochastic local search - methods, models, applications. PhD thesis,
TU Darmstadt (1998)

[3] Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47(4) (1993) 173–180

[4] Wu, H., van Beek, P.: On universal restart strategies for backtracking search. In:
Principles and Practice of Constraint Programming (CP), Springer (2007) 681–695

[5] Audemard, G., Simon, L.: Refining Restarts Strategies for SAT and UNSAT. In:
Principles and Practice of Constraint Programming (CP). Springer (2012) 118–126

[6] Marti, R.: Multi-start methods. In Glover, F., Kochenberger, G.A., eds.: Hand-
book of Metaheuristics. (2003) 355–368

[7] Loureno, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and
applications. In: Handbook of Metaheuristics. Springer (2010) 363–397

[8] Schoenauer, M., Teytaud, F., Teytaud, O.: A rigorous runtime analysis for quasi-
random restarts and decreasing stepsize. In: Artificial Evol., Springer (2012) 37–48

[9] Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Theory
and Applications of Satisfiability Testing (SAT). (2008) 28–33

[10] Huang, J.: The effect of restarts on the efficiency of clause learning. In: Int. Joint
Conference on Artifical Intelligence (IJCAI). (2007) 2318–2323

[11] Lalla-Ruiz, E., Voß, S.: Improving solver performance through redundancy. Sys-
tems Science and Systems Engineering 25(3) (2016) 303–325



[12] Fischetti, M., Monaci, M.: Exploiting erraticism in search. Operations Research
62(1) (2014) 114–122

[13] Friedrich, T., Kötzing, T., Wagner, M.: A generic bet-and-run strategy for speed-
ing up stochastic local search. In: Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence. (2017) 801–807

[14] Andrei Lissovoi, Dirk Sudholt, M.W.C.Z.: Theoretical results on bet-and-run as
an initialisation strategy. In: Genetic and Evolutionary Computation Conference
(GECCO). (2017) Accepted for publication.

[15] Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
Genetic and Evolutionary Computation Conference (GECCO). (2016) 795–818

[16] Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic component-wise design
of multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 20(3) (2016) 403–417

[17] Ansótegui, C., Pon, J., Tierney, K., Sellmann., M.: Reactive dialectic search port-
folios for MaxSAT. In: AAAI Conference on Artificial Intelligence. (2017) Ac-
cepted for publication.

[18] Kadioglu, S., Sellmann, M.: Dialectic search. In: Principles and Practice of Con-
straint Programming (CP) 2009, Springer (2009) 486–500

[19] Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Principles and Practice of Constraint
Programming (CP). (2009) 142–157

[20] Hartigan, J.A.: Bounding the maximum of dependent random variables. Electronic
Journal of Statistics 8(2) (2014) 3126–3140

[21] Polacek, M., Doerner, K.F., Hartl, R.F., Kiechle, G., Reimann, M.: Scheduling pe-
riodic customer visits for a traveling salesperson. European Journal of Operational
Research 179 (2007) 823–837

[22] Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press (2011)

[23] Applegate, D.L., Cook, W.J., Rohe, A.: Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing 15(1) (2003) 82–92

[24] Cook, W.: The Traveling Salesperson Problem: Downloads (Website). http://

www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm (2003) [On-
line; accessed 21-Dec-2016].

[25] Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. ORSA Journal on
Computing 3(4) (1991) 376–384 Instances: http://comopt.ifi.uni-heidelberg.
de/software/TSPLIB95/tsp/. [Online; accessed 21-Dec-2016].

[26] Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R.: Experimental anal-
ysis of approximation algorithms for the vertex cover and set covering problems.
Computers and Operations Research 33(12) (2006) 3520–3534

[27] Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel
algorithms for FPT problems. Algorithmica 45(3) (2006) 269–284

[28] Cai, S.: Balance between complexity and quality: Local search for minimum vertex
cover in massive graphs. In: International Joint Conference on Artificial Intelli-
gence (IJCAI). (2015) 747–753 Code: http://lcs.ios.ac.cn/~caisw/MVC.html.
[Online; accessed 21-Dec-2016]”,.

[29] Cai, S., Su, K., Luo, C., Sattar, A.: Numvc: An efficient local search algorithm
for minimum vertex cover. Journal of Artificial Intelligence Research 46(1) (2013)
687–716

[30] Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: International Joint Con-
ference on Artificial Intelligence (IJCAI). (2015) 733–739

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://lcs.ios.ac.cn/~caisw/MVC.html

	Learning a Reactive Restart Strategy to Improve Stochastic Search

