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ABSTRACT
Multi-component problems are optimization problems that are com-
posed of multiple interacting sub-problems. �e motivation of this
work is to investigate whether it can be be�er to consider multiple
objectives when dealing with multiple interdependent components.
�erefore, the Travelling �ief Problem (TTP), a relatively new
benchmark problem, is investigated as a bi-objective problem. �e
results indicate that a multi-objective approach can produce solu-
tions to the single-objective TTP variant while being competitive
to current state-of-the-art solvers.
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1 MOTIVATION
In 2013, Bonyadi et al. proposed a benchmark problem called the
Travelling �ief Problem (TTP) [1, 8]. TTP is a combination of
the Travelling Salesman Problem (TSP) and the Knapsack Problem
(KP). �e goal of proposing such a �ctional problem was to provide
a more realistic academic model that simulates the research on
interdependence of sub-problem in multi-component problems.
In the original paper, the authors proposed two versions of the
problem: a mono-objective TTP (TTP1) and a bi-objective TTP
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(TTP2). However, almost all published papers we are aware of are
investigating the mono-objective version.

�e problem supposes that a thief with his rented knapsack is
willing to visit a set of cities. Each city contains a number of items,
each having a value and a weight. �e general goal of the problem
is to help the thief �nd a path and picking plan in order to maximize
the gain, minimize the lost, or �nd a trade-o� between objectives
depending on the problem’s model.

In TTP’s terminology, two main functions are de�ned: �e �rst
is the travelling time, which corresponds to the time taken by
the thief to visit all the cities, pick up some items, and get back
to the initial city. �e second is the pro�t, which represents the
total value of all stolen items. Additionally, in order to achieve
the interdependence, two conditions are also proposed: variable
speed, a constraint which supposes that the speed of the thief
depends on the knapsack load; and value drop, a constraint which
implies that the value of an item decreases with time.

Depending on how these functions and conditions are combined,
di�erent versions of the TTP can be created. It is clear that a
TTP model can be formulated as a single objective problem or
a bi-objective problem. We believe that the TTP1 formula is a
simple scalarization of a multi-objective problem by nature—and
therefore a multi-objective approach that does not consider the
scalarization should be able to produce solutions covering a wide
range of interdependencies.

�e motivation of this work is to investigate multi-component
problems as multi-objective ones by taking the TTP as a benchmark
problem. �erefore, we are investigating the TTP as a bi-objective
problem by considering traveling time and pro�t as the overall
objectives.

Our investigations of this bi-objective model show that the best
known TTP solutions can be found in the Pareto set region pro-
duced by our EMOA. It is even able to compete with three of the
best algorithms for the TTP and �nd be�er solutions for the single
objective model implicitly. For decision makers in the real-world
who encounter multi-component problems, this can mean that com-
parable or even be�er solutions can be achieved if a multi-objective
approach treats the di�erent components as equally important.

2 PROPOSED APPROACH
Our proposed algorithm is built around the NSGA-II [3] framework
as implemented in jMetal [4]. Instead of specifying the stopping



GECCO’17, July 2017, Berlin, Germany

criteria in terms of function evaluations or generations, we use the
10 minute stopping criteria commonly used in the TTP literature.
We de�ne two disruptive operators and two local search heuristics
as NSGA-II mutations. In the absence of an e�ective crossover op-
erator, we use the Null Crossover to simply clone selected solutions.
At the end of each generation the solutions are sorted based on
dominance (non-dominated sorting operator). Solutions in each
front are further sorted based on their crowding distance. Based
on these two operators, the solutions for the next generation are
selected. We will refer to this algorithm as EMOA-TTP.

3 EXPERIMENTS & RESULTS
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Figure 1: �e obtained Pareto front for one TTP instance. �e col-
ors represent the TTP score.

As a �rst representative example, we show in Figure 1 the ob-
tained Pareto front for one instance. �e �gure shows that EMOA-
TTP was able to obtain a set of solutions that represent a trade-o�
between time and pro�t. We can also see that the best solutions
regarding the TTP score are concentrated in the knee region of the
Pareto front. In addition, the solutions obtained using MMAS [9],
MA2B [5], and S5 [6] are always close to the knee region. �is shows
that the single objective model is contained in the bi-objective
model we investigated, as the TTP score is a simple scalarization
of a bi-objective problem by nature.

50 runs 200 runs

8000 9000 1e+04 1.1e+04 1.2e+04 1.3e+04
Time

-2
.2
e+
04

-2
e+
04

-1
.8
e+
04

-1
.6
e+
04

-1
.4
e+
04

-1
.2
e+
04

P
ro
fit

ATT_50

best
median
worst

8000 9000 1e+04 1.1e+04 1.2e+04 1.3e+04
Time

-2
.2
e+
04

-2
e+
04

-1
.8
e+
04

-1
.6
e+
04

-1
.4
e+
04

-1
.2
e+
04

P
ro
fit

ATT_200

best
median
worst

Figure 2: Attainment surface plots for 50 and 200 (from
le�) independent runs of the EMOA-TTP for the instance
berlin52 n255 uncorr-similar-weights 01.

While the original single-objective TTP formulation allows for a
straightforward comparison of objective scores, interpretations of

the bi-objective results are more complex. We use the Empirical At-
tainment Function (EAF) [2, 7] to provide a graphical interpretation
of the quality of the outcomes. In Figure 2 we show the variance of
solution distribution depending on the number of runs of EMOA-
TTP. �e algorithm is run 50 and 200 times (from le� to right) with
randomly chosen seeds. Within each plot, the best results EMOA-
TTP are shown by the best a�ainment surface (dashed blue line)
and the worst results are shown by the worst a�ainment surface
(solid red line). �e median a�ainment surface corresponds to the
region a�ained by 50% of the runs, which allows us to examine the
median case quality of the a�ained objective vectors.

As we can see, the locations of the a�ainment surfaces are chang-
ing with increasing numbers of independent runs; in particular, the
area between the worst and best surfaces increases, as expected for
a stochastic algorithm. �is means that the distribution of solutions
varies and that multiple runs of EMOA-TTP have to be performed
to compare a statistically signi�cant di�erences between them at a
later stage.

Our future work will include investigations to explore the bene-
�ts of a multi-objective approach as a single-objective solver, and
as a contributor to TTP algorithm portfolios [10].
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