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ABSTRACT

With power demands of mobile devices rising, it is becoming in-

creasingly important to make mobile so"ware applications more

energy e#cient. Unfortunately, mobile platforms are diverse and

very complex which makes energy behaviours di#cult to model.

!is complexity presents challenges to the e$ectiveness of o$-line

optimisation of mobile applications. In this paper, we demonstrate

that it is possible to automatically optimise an application for en-

ergy on a mobile device by evaluating energy consumption in-vivo.

In contrast to previous work, we use only the device’s own internal

meter. Our approach involves many technical challenges but rep-

resents a realistic path toward learning hardware speci%c energy

models for program code features.
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1 INTRODUCTION

In recent years there has been growing interest in improving so"-

ware systems’ energy e#ciency. !is is partially due to environmen-

tal concerns (the majority of the world’s electricity consumption

is still derived from polluting fossil fuels [2]) but also usability
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issues present in ba&ery-constrained mobile devices such as smart-

phones. !e sale of smartphone devices has exceeded that of per-

sonal computers [11] with the average user spending 30 hours a

month on mobile applications [32]. !ese applications consume the

smartphone’s limited energy reserves which can leave users with

a drained ba&ery at inopportune moments. A survey of mobile

application complaints found that having resource intensive fea-

tures has a larger negative impact on an application’s rating than

uninteresting content or a poorly designed interface [17].

It is know that mobile applications may be refactored to con-

sume less energy and, therby, increase ba&ery life. However, a

study by Pang et al. [24] showned that developers typically lack

the necessary knowledge to make so"ware more energy e#cient.

While education may be a solution to this problem, a more cost-

e$ective approach is to automatically refactor so"ware to a more

energy e#cient state, entirely removing the need for developer

intervention. Previous studies have shown that this is possible

when given reasonable assumptions about an application’s end-use

such as the likely input data [8] or network usage [18].

Small improvements in energy e#ciency are achievable with-

out changing the functionality of a mobile application. Semantic

preserving changes to design pa&ern implementation [22] and the

resolution of energy bugs (instances when smartphones are un-

necessarily le" in high energy states) [5] have both been shown

e$ective at reducing energy consumption. !ere are, however,

limits to how much energy can be saved without sacri%cing func-

tionality [10]. Fortunately the majority (80%) of so"ware engineers

who work in energy-constrained systems are willing to sacri%ce

some requirements for reduced energy consumption [20]. Allowing

a degradation in quality to ful%l non-functional requirements is

part of an emerging %eld known as approximate computing [13].

Examples of approximate computing include Li et al.’s a&empt to

reduce the energy consumption of Android applications by decreas-

ing the quality of visual interfaces [19] and Si&hi et al.’s work on

reducing shader execution time by permi&ing faults in the graphics

they produce [29].

In this paper we aim to reduce the energy consumption of Re-

bound, a Java physics library that models spring dynamics. It is

used by popular Android applications like Evernote, Slingshot,

LinkedIn and Facebook. During our optimisation, we allow for
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an approximation of the intended output, with the goal of !nding

a set of con!gurations that represent trade-o"s between energy

consumption and faithfulness to physically correct animations.

#is article is structured as follows. We introduce the target

so$ware of this study in Section 2, and describe our approach to

optimising it by means of deep parameter optimisation in Section 3.

We present our used target hardware in Section 4. Strongly related

to this is our subsequent tale of woe in Section 5, which reports on

some of rabbit-holes that we went down when turning a modern

smartphone with a modern operating system (Android 6) into a

testbed. A proof-of-concept evolutionary run is shown in Section 6,

before we conclude this article with a summary in Section 7.

2 TARGET SOFTWARE: JAVA PHYSICS

LIBRARY REBOUND

In this section, we !rst lay out our requirements that target ap-

plications need to satisfy for our subsequent optimisation. #en,

we introduce our chosen application, characterise its test cases

and de!ne how we measure the impact of optimisation on the

application’s behaviour.

Our requirements for open-source target applications are as

follows:

• R1: widely used, for maximum impact;

• R2: computationally intensive, for potential room for improve-

ment;

• R3: compilable in under a minute on a regular computer;

• R4: provide tests that allow for gradual deviations from the

targets.

Interestingly, many open source applications do not satisfy the

last requirement, as tests tend to focus on function property checks

such as data extraction from !les, listening to events, application

of ciphers, user interface tests, and so on. Two noteworthy groups

of applications are internet browsers and media players, however,

they are not considered here as their compilation requires many

resources and some of the media decoders are implemented in hard-

ware, which means testing on di"erent platforms is not straightfor-

ward.

Following a comprehensive search for applications that satisfy

all requirements, we use Rebound1 in this study. Rebound is a Java

library that models spring dynamics. #e spring models in Rebound

can be used to create animations that feel natural by introducing real

world physics to applications. For example, in complex components

like pagers, toggles, and scrollers. Major apps that use Rebound

include Evernote, Slingshot, LinkedIn, and Facebook Home.

#e target for our optimisation is the Spring class in the

com.facebook.rebound package. #is class implements a classical

spring using Hooke’s law with con!gurable friction and tension.

Inside this class, the advance function is responsible for the physics

simulation based on SOLVER TIMESTEP SEC sized chunks. #e com-

putations include, among others, Euler integrations and calculations

of derivatives. Interestingly, some level of performance optimisa-

tion has already been performed, as evidenced by the source com-

ment “#e math is inlined inside the loop since it made a huge per-

formance impact when there are several springs being advanced.”

1Rebound Spring Animations for Android: h%p://facebook.github.io/rebound/, ac-
cessed 12 March 2017

Rebound comes with 44 test cases. #ese tests vary signi!cantly

in nature. For example, some tests check if the ID of a spring is set

correctly, and if listeners work as intended. Most importantly for

us are the tests that perform the actual physics calculations. #ese

are (i) relatively time consuming and (ii) deviations from the exact

results may be acceptable if energy consumption is decreased as a

result of a con!guration change.

In general, for a set of n tests with test oraclesT1, . . . ,Tn and cor-

responding observed outputs O1, . . . ,On , we measure the quality

in three ways:

(1) M1: How many tests are passed, as determined by

assertEquals(Ti,Oi), 1 ≤ i ≤ n?

(2) M2: If an array is to be produced, what is the average per-

element deviation? Variations here can result in unrealistic

looking animations.

(3) M3: If an array is to be produced, what is the average array

length deviation? Variations here can result in too long/short

animations.

Note that if for test i the output arrays of Ti and Oi di"er in

length, then M2 considers only the !rst min (|Ti |, |Oi |) !elds.

Interestingly, the original test cases do not result in a M1 quality

of 0, but in a tiny non-zero value. #is is due to tests not resulting

in exactly the spring speed and position values provided in the

test oracle. To address this, we adjust the test oracles based on the

actual output of the code on the device.

Under the above testing regime the original code has the follow-

ing outcome:

(1) M1: all 44 tests are passed;

(2) M2: the average deviation from the values provided by the

oracle is zero;

(3) M3: the average deviation from the oracle’s array lengths is

zero.

3 DEEP PARAMETER OPTIMISATION

Deep parameter optimisation [9, 33] is a genetic improvement tech-

nique [27] where the variation operations to be applied to a target

application are done so by toggling deep parameters found within

its source code.

What constitutes a ‘deep parameter’ is anything within code,

not previously exposed to the user, which may exist in mul-

tiple known forms while preserving some fundamental func-

tionality. For example, in Java, when a developer wishes

to use a collection they must declare which subclass of the

abstract superclass java.util.Collection to implement (e.g.

java.util.ArrayList, java.util.HashSet, etc.). Each of these

subclasses consume di"erent amounts of energy depending on how

they are used [21, 26]. In the vast majority of cases the developer

will choose an implementation based on his own intuition or pref-

erences; utilising li%le information on how this may e"ect the so$-

ware system’s performance. In essence, the developer hard-codes

these parameters. In deep parameter optimisation we expose these

parameters to be toggled and then optimised using a search-based

approach [15].

Within this investigation (as in previous investigations of using

deep parameter optimisation to reduce energy consumption [9]) we

expose integer and double constants. To do so we start by replacing
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integer or double constants with placeholders. !ese placehold-

ers are calls to read that placeholder’s value from a con"guration

"le. In most genetic improvement research, modi"cations to the

source-code require recompilation before evaluation. !is can be

costly – within this investigation, recompilation carries a penalty

of 20-30 seconds. With this setup the con"guration "le, which we

may conceptualise as the exposed parameters, can be modi"ed any

number of times without recompilation. !e con"guration "le is

read once per execution and thus incurs a "xed energy overhead

though, since this is constant across any and all evaluations this

does not e#ect the impact of our results.

While one could begin tuning the parameters at this stage, it

would be ine$cient. Previous research on deep parameter optimi-

sation has shown that the majority of exposed parameters are not

worth optimising [9, 33]. We categoise deep parameters as falling

within three categoties – those that too insensitive (large changes

have no e#ect on the target property/properties), those too sensitive

(small changes break hard constraints), and those worth optimis-

ing. In this investigation we start by pro"ling our target applica-

tion, Rebound, and selecting only those "les which consume large

amounts of energy for optimisation. In our case we "nd that most

calculations are performed in just one Java class, Spring. For ex-

ample, the previously mentioned advancemethod, which performs

the physics calculations, is the second-most called methods (9406

times).2 !e most frequently called method is isAtRest (20340

times, also in Spring), which performs a rather simple check. All

other methods are computationally uninteresting, and only called

a few dozen times, if at all. We therefore choose to target this class

exclusively as the remainder are unlikely to contain parameters

that are worth optimising (i.e. they are too insensitive).

Before exposing the parameters within Spring we replace all

instances of {variable}++ with {variable}+=1 and all instances

of {variable}--with {variable}-=1 as this improves the search-

space by giving us more parameters to target for optimisation. Once

this is done we expose 38 parameters from Spring. We then, for

each parameter, increment its value by 1 if it is an integer or by

10% if a double (all doubles are non-zero). If this results in the

program crashing when run we tag this parameter as unmodi"-

able as it is too sensative. Otherwise we multiply its value by 10

(a%er the incrementation). If this results in a program in which

energy consumption exists within the 95% con"dence interval of

the unmodi"ed application’s energy consumption (determined by

running the Rebound 100 times, measuring its energy each time)

we tag the parameter as unmodi"able as it is too insensative. A%er

this has been done for each parameter we are le% with a set of

parameters which we have not tagged as unmodi"able at any stage.

!ese are the target parameters for deep parameter optimisation. In

the case of Spring, we are le%with 19 of the original 38 parameters.

With these parameters we may toggle them, thereby altering

the so%ware. !ese alterations may reduce loop iterations [25], or

disable certain costly branches [33] to reduce energy consumption.

Given we permit output approximation, it is likely trade-o#s can

be found to reduce energy consumption at the expense of output

2Determined by Corbertura 2.1.1, available at h&p://cobertura.github.io/cobertura/
,accessed23March2017.. !e total class/line/branch coverage is 40%/61%/61%.

quality [10]. !ough, at this abstract level, the problem represen-

tation is simply an n-tuple of numbers which may be assigned a

"tness value for each objective producible for any given variant.

Given this, it is an ideal candidate for optimisation using a genetic

algorithm [30]. As we wish to optimise for multiple objectives (see

Section 2) we utilise NSGA-II [12], a genetic algorithm designed for

multi-objective search, as implemented by the MOEA Framework.3

We limit any parameter to have a minimum value of 0 and a

maximum value of 64 (the parameters, when exposed, have initial

values between 0 and 6). With a population size of µ = 20, we seed

the initial generation with the original solution (i.e. the parameters

as exposed from the initial, unmodi"ed application) and those close

to the initial solution in the search space by iterating through the

parameters and generating variants equal to the original but with

one variable being incremented by 1 in order to introduce some

initial diversity around the o$cial parameter choice.

4 TARGET HARDWARE: ANDROID

SMARTPHONES

4.1 Hardware Platform

Modern mobile phones are equipped with ba&ery fuel gauge chips

that report the voltage, current and remaining energy within the

ba&ery [3]. !e target devices for our experiments are the HTC

Nexus 9 and the Motorola Nexus 6. Both are equipped with the

MaximMAX17050 fuel gauge chip that compensates measurements

for temperature, ba&ery age and load [1].

For the optimisation of energy consumption, we solely rely on

the energy readings as provided by the ba&ery chip. !is is in

contrast to some existing work (e.g., [16]) which relies on external

meters. A brief practical characterisation of the internal ba&ery

meters on the Nexus 6 and Nexus 9 is included in [7]. !ere, the

authors outline results for validating the precision of the internal

meters under various workloads. !e internal meters are deemed

su$ciently precise if the experiments are long. Also, based on

our experience with external meters, their setup can come with

unexpected electronic challenges. For example, we observed voltage

drops and system crashes due to cheap alligator clips and corroding

copper strips.

4.2 So!ware Framework

Our so%ware framework includes a data logger, hardware com-

ponent controller and ba&ery monitor. !e data logger samples

hardware se&ings and utilisation data such as CPU frequency and

load, screen brightness and network tra$c. !e controller’s main

job is to create test scenarios. It activates, deactivates and applies

workloads on hardware components. For example, while pro"ling

the screen, it changes and "xes its brightness, as well as it turns o#

other components and "xes the CPU frequency.

!e ba&ery monitor records the power consumption data such as

the remaining energy, voltage and drawn current during each test

session. Accessing the ba&ery chip’s values can be done through

the ba&ery API, such as Android’s Ba&eryManager class. !is API

broadcasts these values with a frequency of 4Hz.

3MOEA Framework version 2.9 available at h&p://moeaframework.org, accessed 23
March 2017. We leave all variation operators and variation probabilities at their
standard values.
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5 GETTING THE EXPERIMENTAL SETUP

RIGHT - A TALE OF WOE

Here, we lament report the various encountered challenges. !e

discussion is divided into expected challenges and unexpected chal-

lenges. We report on this because genetic improvement of energy

usage is only as reliable as the measurements [14].

5.1 Expected Challenges

5.1.1 System Behaviour. It is important to note that both con-

sidered devices are complex with many communication interfaces,

controller chips, and multiple CPU cores, where much of the device

behaviour is controlled by the operating system. !e operating

system, Android 6.0.1, is itself is complex, with system and user

processes running in parallel with elaborate power consumption

management in place.

To minimise the noise from these complex systems and to max-

imise the relative strength of the energy signal from our experi-

ments it is important to reduce the energy footprint produced by

background processes. To this end we deactivated communica-

tion interfaces using the "ight mode. !is prevents processes from

transmi#ing data, which has proven to substantially impact energy

consumption, even when occurring in short bursts [6].

We also put the display in sleep mode, which reduces the power

drawn for the display light and GPU. Turning the screen o$ allows

the system to enter the so-called Doze-mode [4], which was in-

troduced in Android 6, and which deactivates a number of system

services that would otherwise inject noise into the energy signature

of the experiments.

Another potential source of noise is the system dynamically

adjusting CPU speed according the current workload. To avoid this

issue we %x the speed of all cores to the same value.

5.1.2 Sampling-Frequency-Induced Error. Some sampling error

is induced by the fact that the ba#ery fuel gauge can be sampled

with a maximum frequency of 250ms. !is means that some noise is

introduced by gaps between the start and %nishing time of the mea-

sured process and the time the ba#ery is sampled. We minimise the

impact of this low sampling frequency by running each individual

20 consecutive times and recording the fuel-gauge samples only be-

fore and a&er these runs. !e use of 20 consecutive runs also serves

to increase the measured magnitude of energy use which further

reduces the impact of random noise in the fuel-gauge. Finally the

large number of runs also smooths out random variations in runs

caused by sporadic drains on energy caused by system processes.

Note that the expected causes of measurement error above can be

accounted for by reasonably standard approaches to sampling and

controlling the run-time environment. Next we describe some un-

expected challenges which require interventions which are speci%c

to this domain.

5.2 Unexpected Challenges

5.2.1 System Behaviour. !ere are a number of unanticipated

challenges presented by system behaviour. One unexpected in-

teraction stemming from having the display in sleep mode is that

the system will go into Doze-mode a&er the experiment starts.

Doze-mode impacts the experiment by suspending and reschedul-

ing background processes including those we use to log data and

run the test suite of Rebound library. As a consequence, the test

execution time increases drastically from seconds to hours in some

cases. While the existence of Doze-Mode has bene%ts, it can be

problematic in se#ings such as these experiments. To counter this

problem we use partial wakelocks which prevents the system from

suspending our processes. In addition, temporarily activating the

display a&er each generation of the evolutionary process allows

our framework to run Rebound’s test cases normally. Needless to

say, while the screen is on, the test execution is suspended.

5.2.2 Android Debug Bridge. Android Debug Bridge (adb) is a

command-line tool by which developers can communicate with

Android devices. It supports a variety of actions such as copying

%les to and from the device and installing/un-installing applications.

adb consists of a client to initiate commands from the development

machine, a daemon to run execute command on the Android device,

and a server to manage the communication between the client and

the daemon.

In our framework, adb is used to install code on target devices.

In early experiments the Rebound library was compiled, transferred

to, and installed on the device for every change in its parameters.

Unfortunately, these operations took up to a minute to complete,

making iterative search impractically slow. Moreover, app trans-

fer and installation could fail due to adb server instability. Failure

modes included, the connected device going o$-line and interfer-

ence with the communication port by other Android services. To

reduce deployment time the Rebound library was modi%ed to read

its code parameters from a con%guration %le - thus avoiding the

need to compile and transfer the application. To address the adb

connectivity issue a programmable USB hub was con%gured to

automatically drop and restore the link to the device whenever the

device goes o'ine. !e framework is also con%gured to poll for

devices using adb devices and to restart the adb server in the case

of interference on the communication port.

5.2.3 Temperature. Temperature variations during experimen-

tal runs produced an unexpected source of systematic noise in our

experiments. In preliminary testing we observed that the ba#ery

temperature increased a&er many successive runs of Rebound. !is

temperature increase was observed to increase the fuel consump-

tion of the same program when run repeatedly over time. Figure 1

shows how the rise of ba#ery temperature correlates with increas-

ing energy consumption on the same program run 1000 consecutive

times (100 trials of ten Rebound runs each) on the Nexus 6 device.

!is trend of increasing energy consumption for the same code over

time is extremely problematic in the context of an evolutionary

run using NSGA-II. !is is because the very %rst variant of the

program will be on the Pareto frontier in the dimension of energy

consumption. If the energy consumption increases as a function

of temperature, and the temperature increases as a function of the

number of evaluations, then it becomes progressively more di(-

cult for genuinely improved individuals to dominate the starting

program variant.

To see if it was possible to learn the relationship between temper-

ature and power consumption – and therefore compensate for it –

we collected energy consumption for the same Rebound benchmark
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Figure 1: Battery temperature (red) and average energy con-

sumption (blue) over 100 consecutive trials of 10 runs each

on the same benchmark.

Figure 2: Scatter plot of temperature vs. energy consump-

tion on the same benchmark.

in varying temperatures.4. Figure 2 shows a sca!er plot relating

temperature to energy readings from the same benchmark as pre-

vious. As can be seen, there is a general upward trend in the data.

We then ran non-linear regression on the resulting data using the

GPTIPS2 [28] symbolic regression package. "e learned function is:

e = 357t2 − 6180.0t + 608000 where e is the energy consumption of

the benchmark in nWh and t is temperature in degrees Celsius. "e

actual-vs-predicted curves for the sorted temperature data is given

in Fig 3. Note, that the data is sorted by temperature from le#-to-

right. Observe that there is large variance of energy consumption at

each temperature level. Moreover, the variance seems to get larger

as temperatures rise. "is noisy relationship is borne out if we

sort actual versus predicted energy consumption by error level, as

shown in Figure 4. "e $gure shows that the distribution of energy

consumption is bi-modal and the shape of the predictor function

appears to be in%uenced by this. "ese systematic variances seem

to indicate that there may be two populations of energy sensor

readings from the Nexus 6.

To avoid this problem we switched to the Nexus 9 – which exhib-

ited less systematic variation in energy readings. However, given,

4
"e experimental rig was placed in the refrigerator to extract some cooler readings.
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energy consumption (red) as a function of temperature.
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Figure 4: Fit of the regressed temperature function. As can

be seen, the errors are bi-modal and the !tting function ap-

pears to be in"uenced by this.

Figure 5: Test rig to limit variations in temperature in the

Nexus 9 platform.

the di&culty in determining an accurate relationship between tem-

perature and energy consumption, we decided instead to setup a

test rig to control temperature by using a desk-fan coupled with suf-

$cient egress for air%ow around the device. "is new rig is pictured

in Figure 5.5

5.2.4 Processor Thro!ling. "e test rig described above moder-

ated rises in temperature but not enough to prevent a hardware

5For a video demonstrating an earlier setup, see h!ps://www.youtube.com/watch?v=

xeeFz2GLFdU
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Figure 6: Battery temperature vs. processor speed over con-

secutive runs. As battery temperature rises the processor

speed is throttled.

Figure 7: Processor-speed (blue) vs. energy consumption

(red) during an evolutionary run.

CPU governor in the device from triggering reductions in proces-

sor speed. !e e"ect of this fail-safe is shown in Figure 6. !e

#gure seems to indicate that thro$ling is activated by steep rises

in temperature rather than high absolute values in temperature.

!e thro$ling also seems to have the desired protective e"ect in

slowing rises in temperature. !is thro$ling has the potential to

impact on the energy consumption of benchmarks. Figure 7 traces

processor speed and energy consumption. !e lower CPU speed

leads to longer execution times on the Rebound benchmark but

appears to lead to slightly less energy consumption. !ere also

seems to be less variation in execution time at lower processor

speeds.

Informed by these results, we thro$led processor speeds using

the system governor. We found a speed of 1.428GHz allows the

benchmark to run in a tolerable time-frame whilst reducing mea-

surement variability and temperature increases.

5.2.5 Log Files and Memory. Further experiments with reduced

processor speed revealed that per-run energy consumption still

increased over multiple runs – albeit at a slower rate than before.

Preliminary investigations revealed that the increased energy con-

sumption seemed to correlate with the size of logs and the size of

the memory footprint of the Java test-harness used to run each

generation. We re-designed the logging procedures to reduced the

memory footprint of the generational log to 500kB. !is reduction

Figure 8: Sorted energy-use data for 100 runs with calls to

the GC (red) and without calls to the GC (blue).

removed some of the variability energy consumption but an in-

crease in energy consumption over multiple runs persisted. For

further improvement we a$empted to reduce the memory footprint

of the test harness by calling the Java garbage collector (GC) every

250ms. !is reduced overall energy consumption level and growth.

As an illustration of the impact of calling the GC Figure 8 shows the

sorted energy consumption data for a sequence of 100 runs with

(red) and without (blue) garbage collection. A%er checking that

both the with-GC and without-GC data were normally distributed

(with a one-sample Kolmogorov-Smirnov test) we applied a t-test

and con#rmed the with-GC runs were signi#cantly less than the

without GC runs with p ≪ 0.001. A%er further experiments it was

determined that the same e"ect could be achieved by calling GC

a%er each generation.

Informed by explorations described above, the experiments

described in the next section were run with a processor speed

1.428GHz, using the physical setup shown in Figure 5.

6 PROOF-OF-CONCEPT

In the following, we report on our actual experiments performing

deep parameter optimisation of a Java physics library as described

in the previous sections.

6.1 Evaluation times

Due to the communication and framework overheads, our eval-

uations are relatively time-consuming. adb reports 20 Rebound

runs have a total runtime of approximately 30 seconds. However,

the initialisation of the individual runs and eventual clean-up by

the framework results in a total time of approximately 50 seconds

per e"ective evaluation of a Rebound con#guration on the device.

Also, in order to allow for variation in Rebound’s runtime, and to

account for variations in log#le write times, sleeping threads, and

other Android peculiarities, we set the time-out per con#guration

evaluation to two minutes.

As running tests consumes energy, we recharge the device a%er

each generation. Interestingly, di"erent USB cables result in di"er-

ent charging currents and thus in di"erent charging times needed.

For example, one cable’s charging current is approximately 0.8A (as

reported by the USB hub’s so%ware), whereas a “be$er” cable allows
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Figure 9: Scatter plot of energy vs. accuracy. Shown are the

evolved con!gurations (blue) and the original one (orange).

for 1.4A. Based on preliminary experiments, we have conservatively

chosen a charging time of 20 minutes between generations.

!e above means that a single generation of µ = 20 solutions

takes approximately 1 hour on the device. While this seems costly, it

is a big jump over some existing work, where a single con"guration

is evaluated by measuring the time needed for the device to run

dry from 100% charge to 0% charge – which typically takes hours.

Note that, as a welcome side-e#ect of our recharging strategy

between generations, we can keep the ba$ery close to its maximum

charge. Within each generation, we observed only very minor

drops in the ba$ery voltage, for example, from 4,214V to 4,201V

over a duration of approximately 15 minutes. !is greatly reduces

potential measurement dri% by the fuel gauge chip.

6.2 Results

In the following, we report on the results of a successful experiment,

which ran for 17 generations. !e "rst objective was the minimi-

sation of energy, and the second objective was the minimisation

of deviation from the oracle’s values. We also recorded the array

length deviations M3, however, we only observed two cases: either

the length deviation was zero, or the entire test timed out.

A%er removing duplicates and timed-out solutions, 55 evolved

Rebound con"gurations remain that are di#erent from the original

one. Figures 9 show these in the objective space, with the original

con"guration highlighted. Signi"cantly, we can see solutions that

consumed less energy at the cost of an decreased accuracy. In

total, the 56 solutions achieve 43 di#erent levels of accuracy. !eir

overall distribution of energy consumption covers quite a range,

with the overall average being 37.5mWh and a standard deviation

of 1.9mWh.

In terms of code features, it is di&cult to gain consistent insights

from the produced con"gurations, as we have 19 decision variables,

44 test cases with physics simulations, and noise in energy and time

measurements. Out of the 19 variables, nine have direct in'uence

on the mathematics involved in the spring simulation. When these

are changed, then the resulting calculations deviate from the or-

acle. Additional experiments are necessary to further reduce the

noise in the energy and time measurements to be$er understand

the in'uence of certain parameters on the algorithms behind the

simulations and thus on the observed energy consumption.

Figure 10: Scatter plot of energy vs. accuracy. Shown are the

evolved con!gurations (blue) and the original one (orange).

One con!guration at about (46mWh,40s) is not shown.
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Figure 11: Correlation of energy with charge measurements

and runtime. fuel is measured in mWh (correlation with

runtime r = 0.7382), kernel and adb is charge in mAh (r =

0.1479, r = 0.7727).

Given the amount of technical di&culties described here, one

might wonder if we could use a proxy function instead on mobile

devices that do not have a dedicated ba$ery chip installed. As one

would expect, energy consumption and runtime (as reported by

adb) are correlated in our experiment, as we can see in Figure 10.

However, this is just a moderate, positive correlation with a correla-

tion coe&cient r = 0.7382. Other data sources that might be able to

serve as proxies for energy consumption are Android’s kernel-based

estimations (which are based around imprecise and static power

pro"les for the entire device) and adb’s own reports (which are also

based on power pro"les while considering time slices allocated to

tasks).6 We show the measurements for the 56 con"gurations in

Figure 11. While the kernel’s estimates are be$er ignored, adb’s

correlation with runtime is comparable to the one of the ba$ery

chip. Interestingly, the measurements of adb and the chip are not

very highly correlated (r = 0.758), but this might again simply be

the consequence of noise in the measurements. A limiting factor of

adb’s estimates when used for short experiments is its low resolu-

tion, which discretises the objective space unnecessarily7 and thus

can pose challenges for optimisation algorithms.

6
!e resolution of the kernel’s and adb’s estimates are 0.5mAh and 0.1mAh.

7adb/kernel: 14/33 di#erent charge estimation values for the 56 con"gurations.
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7 CONCLUSIONS

As shown in this article, the evolution of so!ware con"gurations

with modern mobile devices in-the-loop is feasible. However, our

path to achieving this was li#ered with smaller and larger stumbling

blocks, with some visible from afar and some only upon close

scrutiny of results.

Our created test platform is quiet enough to allow us to see sig-

nals stemming from CPU utilisation. In the future, this will enable

us to automatically learn energy consumption models for code seg-

ments. $is will become increasingly important for energy-aware

applications, as the operating system keeps evolving. For example,

Android 8 will have a new and more restrictive approach to running

apps in the background by thro#ling access to services [31]. While

promising be#er ba#ery life by means of operating system control,

this will also immediately invalidate some existing consumption

models for applications.

While there is a good chance for some of the future consumption

models to be transferable across a range of mobile device models,

we expect a degree of device-dependency of the models due to

di%erent CPU architectures in the over 24,000 di%erent Android

phones available [23]. $is means that discovering the models will

have to be on a per-platform basis. If we may express a wish, then

we would love for smartphone manufacturers to spend an extra $1

on an accurate internal ba#ery chip.8
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