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ABSTRACT
Wind turbine placement, i.e., the geographical planning of
wind turbine locations, is an important first step to an ef-
ficient integration of wind energy. The turbine placement
problem becomes a difficult optimization problem due to
varying wind distributions at different locations and due to
the mutual interference in the wind field known as wake
effect. Artificial and environmental geological constraints
make the optimization problem even more difficult to solve.
In our paper, we focus on the evolutionary turbine placement
based on an enhanced wake effect model fed with real-world
wind distributions. We model geo-constraints with real-
world data from OpenStreetMap. Besides the realistic mod-
eling of wakes and geo-constraints, the focus of the paper
is on the comparison of various evolutionary optimization
approaches. We propose four variants of evolution strate-
gies with turbine-oriented mutation operators and compare
to state-of-the-art optimizers like the CMA-ES in a detailed
experimental analysis on three benchmark scenarios.

Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained optimization; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

Keywords
Wind Power, Wind Farm Layout, Evolutionary Optimiza-
tion, Self-Adaptation, CMA-ES

1. INTRODUCTION
Renewable energy plays an increasing role in the energy

supply world-wide. The integration of geo-information into
planning processes becomes more and more important, re-
sulting in a complex geo-planning problem with many con-
straints. In particular, the effective integration of wind en-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754690

ergy is significantly influenced by the locations of wind tur-
bines. Wind turbine placement optimization is the process
of determining the placement of wind turbines within a spec-
ified land or offshore area, such that the output power of
the wind farm is maximized. An optimized placement re-
sult allows wind farm installations to maximize their cost-
effectiveness, thereby increasing their competitiveness in the
energy market. However, the optimal placement of wind tur-
bines considering geo-constraints is a complex optimization
problem that is hard to solve by exact methods. The solu-
tion space is non-linear with respect to how sited turbines
interact when considering wake loss and energy capture, in
particular when facing constraints. In this paper, we em-
ploy evolutionary heuristics to solve the turbine placement
problem.

Objective of this paper is to model a realistic wind turbine
placement scenario by taking into account realistic wake ef-
fects, real-world wind data from a meteorological service,
and geo-constraints from a topological map service. On the
basis of this model, we define three benchmark scenarios
and analyze turbine-oriented heuristics while comparing to
state-of-the-art optimization algorithms like the covariance
matrix adaptation evolution strategy (CMA-ES).

This paper is structured as follows. In Section 2, we
present related work on turbine placement with evolutionary
algorithms. Our enhanced wind model based on COSMO-
DE data and Kusiak and Song’s wake effects [10] is intro-
duced in Section 3. In Section 4 we describe how Open-
StreetMap data is modeled as geo-constraints. The evolu-
tionary heuristics we employ for optimization are introduced
in Section 5, followed by an experimental analysis on three
benchmark scenarios in Section 6. Conclusions are drawn in
Section 7.

2. RELATED WORK
For a very comprehensive overview on the single-objective

wind farm layout problem, we refer the interested reader to
the recent article by Herbert-Acero et al. [8]. For example,
Wan et al. [19, 20] use cell-based approaches and compare
different bio-inspired algorithms, each applied to the same
set of wind farm models and parameters. An alternative to
cell placement was explored in [10]: each turbine’s location
is a decision variable pair of real-valued, spatial (x, y) coor-
dinates. In that paper, a simple evolution strategy (ES) [3]
is used to optimize very small wind farms. In general, an
ES is effective because it is easily parallelized and it self-
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adapts the extent to which it perturbs decision variables
when generating a new potential solution. The more pow-
erful CMA-ES has been used for the same problem in [18].
Despite being computationally expensive, it allows for the ef-
fective optimization of huge layouts for up to 1000 turbines.
In [17] a random local search was presented that combines
a problem-specific operator with an asymptotic speed-up of
the computation time of the wake effects. Compared to the
CMA-ES approach, the problem-specific local search pro-
duced higher quality placements in shorter time.

Many of the recent approaches make simplifying assump-
tions regarding the realism of the wake models. Even in
some of the recent work, wakes are either completely ig-
nored, and e.g., assumed to be constant or highly simplified.
Nevertheless, we observe a trend towards the use of more
realistic models, such as the Jensen [15] wake model. There,
the wake effects decrease quadratically with the distance be-
tween the turbines. However, to make this model computa-
tionally viable, the model is simplified. For example, Kusiak
and Song [10] suggest to discretize the wind directions. Not
only are the resulting predictions less accurate, the model
introduces many local optima which make the optimization
an unnecessarily taxing task. To the best of our knowledge,
this issue has not been reported in literature before, which
is why we highlight and solve this later-on.

3. WIND MODEL
In this section, we introduce the employed wind model.

For a given vector

xi = (x1, x2, · · · , xN ) = (xt1, y
t
1, x

t
2, y

t
2, · · · , xtN/2, ytN/2) (1)

of N/2 turbine locations ti = (xti, y
t
i) with the length N , the

model yields the power output of the corresponding setting
with wind turbines. The model is based on the approach
from Kusiak and Song [10] and our objective is to create a
more realistic representation. For this purpose, we use power
curves from a real wind turbine by Enercon and wind data
from the German weather prediction model COSMO-DE by
the German Weather Service.

3.1 Wind Power Calculation
In order to compute the power output E of a turbine i at

position ti = (xi, yi) for a given wind direction θ, the wind
speed distribution pv(v, k(ti, θ), c(ti, θ)) has to be multiplied
with the turbine power curve βi(v), where v is the wind
speed. The Weibull parameter k(·) and c(·) are functions
depending on position and wind direction. For one wind
direction it applies:

Eθ(ti, θ) =

∫ ∞
0

βi(v) · pv(v, k(ti, θ), c(ti, θ))dv. (2)

The output E for one turbine i considering all wind direc-
tions is:

E(ti) =

∫ 360

0

pθ(ti, θ) · Eθ(ti, θ)dθ (3)

with the distribution pθ(·) of wind angles depending on posi-
tion and wind direction. We solve these integrals like Kusiak
and Song with a combination of an analytical solution and
with the Riemann sum, because a purely analytical form is
difficult to obtain [10]. This causes a discretization of the
wind speed and the wind direction. Using the existing solu-
tion for this integral leads to a linear power curve βi(v) for

the wind turbine:

β(v) =


0 v < vcut-in, vcut-out ≤ v
λ · v + η vcut-in ≤ v < vrated

Prated vrated ≤ v < vcut-out

(4)

While vcut-in is the wind speed the turbine starts to pro-
duce power, vrated denotes the minimal wind speed to get
the maximum power from the turbine, and vcut-out is the
speed when the turbine switches off for safety reasons. In
our paper, we use the parameters of the Enercon E101
wind turbine, which we determined from the manufacturer’s
datasheet [5]: λ = 277.0 kW·s/m, η = −551.6 kW, Prated =
3050 kW, vcut-in = 2 m/s, vrated = 13 m/s, vcut-out = 28 m/s.

3.2 Wind Analysis Data
We use the COSMO-DE analysis data from the German

Weather Service [4] as the basis for the wind potential pre-
diction for a position ti. This data provides a rotated lat-
itude / longitude grid over Germany with 419lat · 459lon =
192, 321 points. The distance between every grid point is
approximately 2.8 km. Between the points, we will use a
bilinear interpolation. For every data point, there are 50
different levels of height. As we use one turbine with the
height of 135 m, we linearly interpolate from the model lev-
els 46 and 47 with the height of approximately 180 m and
120 m – the levels in the COSMO-DE model are not at a
fixed height.

In this work, we use the data of COSMO-DE 2012, which
provides hourly wind vectors. We sort these vectors ac-
cording to their wind direction θ and fit a Weibull distri-
bution [21] for every wind direction θ. We employ the max-
imum likelihood estimation for fitting the distribution. The
result is a Weibull function pv(v, k(ti, θ), c(ti, θ)) represent-
ing the wind distribution for every position ti and angle θ.
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Figure 1: Example of a wind distribution at a loca-
tion in Lower Saxony, Germany.

Figure 1 shows an exemplary wind rose that illustrates a
wind distribution as an example based on the COSMO-DE
data in decimal degrees at 53.410◦, 8.074◦ and with height
level 46 in Lower Saxony, Germany. The wind rose illus-
trates the distribution of wind directions (from where the
wind comes at corresponding angle), and their frequency
(represented by the length of the bars), and the correspond-
ing wind speed (represented by color). The detailed wind
data is employed for an accurate wake model that will be
introduced in the following.

3.3 Wake Model
Like Kusiak and Song [10], we use the Jensen [15] wake

model. Figure 2 shows the structure for one turbine.
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Figure 2: Structure of a single wake effect.

In the following, we describe the method to determine, if
a turbine i at position ti is affected by the wake effect of a
turbine j, according to Kusiak and Song [10]. First, we need
to compute the angle βij between the turbines:

βij = cos
−1 (xti − xtj) · cos θ + (yti − ytj) · sin θ + R/κ√(

(xti − xtj) +
R
κ · cos θ

)2
+
(
(yti − ytj) +

R
κ · sin θ

)2
(5)

where θ is the angle of the wind direction, R is the rotor
radius of turbine j, κ is the wake spreading factor, and
xti, x

t
j , y

t
i , y

t
j are the positions of the turbines i and j. Tur-

bine i is affected by the wake effect of the turbine j when
0 ≤ βij ≤ arctan(κ). A detailed description of this model
can be found in [10]. We use a different specification by sim-
ply describing the three lines which limit the wake effect. By
using the symmetry around the x-axis, we can simplify the
description as follows. Turbine i at position ti is affected by
the wake effect of turbine j if:

∆xt > 0 ∧
(∣∣∆yt∣∣−R) /∆xt < κ (6)

with ∆xt = cos θ ·(xti−xtj)+sin θ ·(yti−ytj) and ∆yt = cos θ ·
(yti−ytj)−sin θ·(xti−xtj). The Equations 5 and 6 characterize
the same behavior, but Equation 6 is computationally more
efficient and can be modified more easily, what we show in
the following. The velocity deficit through a wake effect is
described in the Jensen model as follows:

Vel defij =
(

1−
√

1− CT
)
/
(
1 + κ ·∆xt/R

)
(7)

and the summation of multiple wake effects of N/2 turbines
with:

Vel defi =

√√√√ N/2∑
j=1,j 6=i

(Vel defij)
2. (8)

Like in [10], we use κ = 0.075 and CT = 0.8.

3.3.1 Local Optima Through Wind Discretization
The discretization of the wind direction, see Section 3.1,

causes local optima in the solution space, which makes the
optimization unnecessarily difficult. We will demonstrate
and remove this issue in the following. Figure 3 shows the
wake effects for one turbine with 32 wind directions that are
equally distributed. In a real-world setting with equally dis-
tributed wind, we expect low wind potential next to the tur-
bine and higher potential with increasing distance because
the wake effects decrease. Although the wind is equally dis-
tributed, see Figure 3(a), there may occur multiple local
optima on the potential map. Yellow stands for high poten-
tial, while blue represents low potential. This is due the fact

that the wake effects are sampled for every direction, there
is no smooth transition between the different directions.

(a) before (b) after

Figure 3: Visualization of a wake effect: (a) the 15
degrees apart model as used by Kusiak and Song
induces local optima, while (b) our approach leads
to a smooth function.

We will add a smooth transition between the different
directions into the model by modifing Equation 6 to:

∆xt > 0 ∧
(∣∣∆yt∣∣−R) /∆xt < κ+ θinc (9)

with θinc = arctan ∆θ and ∆θ is the angle increment be-
tween the wake effects. And we will change Equation 8 to:

Vel defi =

√√√√ N/2∑
j=1,j 6=i

(m ·Vel defij)
2. (10)

with

m =


1.0 if ∆xt > 0 ∧ b ≤ κ
1.0− (b− κ/θinc) if ∆xt > 0 ∧ b > κ ∧ b < κ+ θinc

0.0 otherwise

with b =
(∣∣∆yt∣∣−R) /∆xt. Figure 3(b) shows the wake

effects with the modification. Now there are no more local
optima.

3.3.2 Rotor Size of the Affected Turbine
Our model is able to calculate how a point is affected

by wake effects. For our optimization, however, we do not
want to know the effect on a single point but for an entire
turbine with a rotor dimension. We include this fact into
the model by adding the rotor size of the affected turbine to
the equations. Thus, Equation 9 changes to:

∆xt > 0 ∧
(∣∣∆yt∣∣−Ri −Rj) /∆xt < κ+ θinc (11)

where Ri is the rotor size of the affected turbine i and Rj
is the rotor size of the turbine j, which is causing the wake
effect. Also, we change b in Equation 3.3.1 to

b =
(∣∣∆yt∣∣−Ri −Rj) /∆xt. (12)

Figure 4 compares the result of two exemplary optimiza-
tion runs (a) not considering the turbine rotor size, and (b)
considering the rotor size. As we can see, T2’s rotor is par-
tially influenced by T1’s and T3’s wakes in 4(a), while this
is not the case in 4(b) where we consider the rotor size.
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(a) Rotor size not considered (b) Rotor size considered

Figure 4: Two sectors of a larger map (a) without
and (b) with consideration of the affected turbines’
rotor size.

4. GEOGRAPHICAL DATA
Besides a detailed wind model, we consider data from

OpenStreetMap [6] for a realistic geo-planning scenario. The
geo-information adds constraints to our wind turbine place-
ment optimization problem. In this section, we introduce
OpenStreetMap and define three scenarios for the experi-
ments.

4.1 OpenStreetMap
OpenStreetMap is a community-driven project, which was

started in 2004 with the objective to create a license free
world map. It contains geographical like positions of streets
and buildings. Neis et al. [14] come to the conclusion that
“[...] at least in countries, in which the OSM project is well
developed, the data is becoming comparable in quality to
other geodata from commercial providers [...]”. The data
is provided in easily processable XML files containing the
geo-information. The overall amount of data is more than
400 GByte. For Germany 3.6 GByte geodata are available.
In our simulation model, we dynamically load the relevant
data for the corresponding sector and use the information to
define constrained areas on the target. We model that the
minimum distance between a turbine i and a street should
be 1.5 · hi and 500 m to a building which is a good practice.

On the map plots in the remainder of this paper, yellow
lines stands for streets, grey areas illustrate buildings and
the constrainted areas around streets and buildings are vi-
sualized in red.

4.2 Scenarios
In this section, we introduce our scenarios to test the op-

timization algorithms. We focus on onshore wind farms. In
Lower Saxony most wind farms consist of fewer than 30 tur-
bines [16], and we define scenarios with this in mind. Even
at this scale, a wind farm consisting of 20 Enercon E-101
wind turbines with 3000 kW and 60% of full load hours pro-
duces about 315 GWh/a. An output increase by 1% will
increase the value of the produced energy on the basis of a
price of 0.10 EUR/kWh by 315 000 EUR per year.

In the scenarios we define multiple constraints: (1) the
OpenStreetMap data results in areas that are unavailable
for the placement of turbines, and (2) we require like Man-
well [12] a minimum safety distance depending on the rotor
size r between every turbine i and j of 8 ·max(ri, rj).

(a) Scenario 2 (b) Scenario 3

Figure 5: Illustration of benchmark Scenarios 2
and 3.

Scenario 1. In Scenario 1, the task is to place 25 turbines
on an empty map of size msize = (3.0, 3.0) leading to an area
of 9 km2. The wind distribution is very similar to Figure 1.
In addition, the potential in the right upper corner is slightly
higher than on the rest of the map. A turbine will produce
nearly 700 kW in mean per year at this position if it is not
influenced by wake effects.

Scenario 2. In the upper right corner of Scenario 2 in Fig-
ure 5(a) Leerhafe, a part of the city Wittmund in Lower
Saxony, can be seen. The scenario has the coordinates in
decimal degrees 53.5015◦−53.5317◦, 7.7346◦−7.7836◦, with
size msize = (3.3, 3.3) leading to an area of 10.9 km2. It con-
tains 250 buildings and 64 streets consisting of 489 parts.
All these elements lead to constraints. As the scenario is
next to the position of the wind rose in Figure 1, the wind
distribution is very similar to it.

Scenario 3. Scenario 3 on Figure 5(b) has many con-
strained areas. It lies at the position 53.4023◦ −
53.4433◦, 8.0743◦−8.1412◦. It employs sizemsize = (4.5, 4.5)
resulting in an area of 20.3 km2 and contains 185 buildings
and 229 streets consisting of 1493 parts. Its wind distribu-
tion can be seen in Figure 1.

5. EVOLUTIONARY STRATEGIES
The turbine placement problem is a continuous black-

box optimization problem f : RN → R with constraints
g : RN → B, i.e., a candidate solution x ∈ RN encodes the
geo-positions of N/2 turbines that can be feasible (g(x) = 0)
w. r. t. geo-constraints or not (g(x) = 1). In our implemen-
tation, a fitness function evaluation f first invokes a run of
the geo-constraints module, and in case of feasibility a run
of the wake model module determines the total power of the
wind park. As fitness function f to maximize, we use the
sum of the power output E of every turbine:

f(x) =

N/2∑
i=1

E(ti). (13)

where ti is defined as in Equation 1. For optimization, we
employ evolution strategies, as they are strong blackbox op-
timization heuristics in continuous solution spaces. In this
section, we present the optimization variants we employ in
the experimental section, and describe how solutions are
initialized and how constraints are handled. We use six
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strategies that can be categorized into two groups. One
group is formed by the strategies that optimize the solution
vector x without any knowledge about which value repre-
sents which turbine. For this category we use the state for
the art CMA-ES and an adaptive (1 + 1)-ES. In the other
group the strategies modify individual turbines. These ap-
proaches use the knowledge which values represents which
turbine and coordinate. For this category we use a replacing
strategy, a deterministic (1 + 1)-ES, an adaptive (1 + 1)-ES
and a new self-adaptive approach.

5.1 Constraint Handling
Infeasible solutions from the geo-constraints get a low fit-

ness, i.e., if g(x) = 1, we assign f(x) = 0. This is a variant
of death penalty that does not require a modification of the
optimization algorithm with a feasibility control loop while
generating offspring candidate solutions. This type of death
penalty is similar the approach by Morales and Quezada [13].

5.2 Initialization
The initialization of the turbine locations can play an im-

portant part in the optimization. We experiment with chess-
board and random initialization to create the initial solution
x0. Chessboard initialization places the turbines equidis-
tantly on a grid also taking into account the geo-constraints.
If there is an infeasible area, the final chess pattern will look
like a chessboard with missing fields. Random initialization
places the turbines randomly on the map but only at valid
positions taking into account the geo-constraints, if applica-
ble.

5.3 Holistic Approaches
In the following, we introduce the optimization approach

we employ in the following experiments. As stated before,
our optimization approaches can be classified into holistic
ones that treat the turbine placement task as N -dimensional
optimization problem, and turbine-oriented approaches that
use evolutionary operators oriented to the coordinates ti of
specific turbines that are randomly chosen.

5.3.1 Adaptive (1 + 1)N -ES
The first holistic optimization approach is a simple (1+1)-

ES [3] with Gaussian mutation

x′ = x + σ · N (0, 1) (14)

and Rechenberg’s step size control [3], which works as fol-
lows. The (1 + 1)-ES runs for a number Gr of generations.
During this period, step size σ is kept constant and the num-
ber Gs of successful mutations is counted. From Gs, the
success probability can be estimated as Ps = Gs/Gr. Step
size σ is increased according to σ′ = σ · τ , if Ps > 1/5,
and decreased otherwise, with τ > 1. We use τ = 1.1, which
turned out to be the best choice in preliminary experiments.
The (1 + 1)-ES accepts the new candidate solution x′, if its
fitness is better than or equal to the fitness of x, i.e., if
f(x′) ≥ f(x). The ES terminates after G generations.

5.3.2 CMA-ES
Using a CMA-ES [7] for optimizing wind turbines on an

empty map with various kinds of border shapes was already
conducted by Wagner et al. [18]. Their experiments showed
that the optimization results of the CMA-ES outperformed
the optimization module of the industry tool OpenWind [1].

The CMA-ES starts with an initial solution x0. The initial
standard deviation σ0 is set to σ0 = 10.0 corresponding to
10 m. A small standard deviation makes constraint viola-
tions less likely and prevents the CMA-ES to some extent
from problems with infeasible mutations x′ while adjusting
its covariance matrix C.

5.4 Turbine-oriented Approaches
The mutation operators of turbine-oriented approaches

concentrate on the locations ti of subsets of turbines i ∈ T ,
in particular they concentrate on only one turbine for each
mutation operator execution.

5.4.1 Adaptive (1 + 1)1-ES
A special case of our turbine-oriented approaches is the

adaptive (1 + 1)1-ES that randomly selects one turbine i at
location ti from the set of turbines {1, . . . , N/2}. From this
turbine, only one coordinate (xi or yi) is randomly selected
and subject to Gaussian mutation, see Equation 14. Like in
case of the holistic adaptive (1 + 1)N -ES, Rechenberg’s step
size control is employed.

5.4.2 Replacing
The replacing optimization is a simple optimization ap-

proach. In every step, the algorithms removes randomly
one chosen turbine i at the position ti from the solution x
and replaces the turbine i at a randomly chosen new posi-
tion t′i to create a new solution x′. If the fitness function
value f(x′) is greater than f(x) the new solution is picked
as basis for the next step. So it is a very basic (1 + 1)-ES
but without any step size control.

5.4.3 Deterministic (1 + 1)t-ES
Lückehe et al. [11] proposed a turbine-oriented determin-

istic (1 + 1)-ES to place and optimize iteratively turbines
on a map with constraints. We use the optimization part of
this approach and combine it with the initial solutions x0.
In this approach, the (1 + 1)t-ES picks in every generation
one turbine i with the position ti, and mutates it by moving
i to a new position t′i. It applies:

t′i = ti + σ(g) ·msize · N (0, 1) (15)

with the step size:

σ(g) = 1.0−
((

1.0− 1

G

)
· g
G

)
(16)

where g is the actual number of generation and G the total
number of generations. After the mutation, the strategy
evaluates the new solution and selects the solution with the
highest fitness function value.

5.4.4 Self-Adaptive (1 + λ)-ES
We want to improve the results by using a self-adaptive

(1 + λ)-ES. A self-adaptive step size σ ∈ [0, 1] should make
it possible to react more flexibly to the scenarios. New posi-
tions are created like in Equation 15. We also want to extend
the options for the strategy, and we do this as follows. First,
we add the capability to move multiple turbines at the same
time and not consecutively. How many turbines n shall be
moved at the same time is controlled self-adaptively. The
second new option for the strategy is to remove one turbine
ti from solution x and replace it at a new position t′i. The
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probability p ∈ [0, 1] that controls how often the strategy
move or replace a turbine is also operated self-adaptively.

As step size σ and probability p are bound constrained,
we employ the operator by Bäck and Schütz [2] for interval
constrained self-adaptation:

σ′ =

(
1 +

1− p
p
· eτ ·N (0,1)

)−1

. (17)

The parameter τ controls the magnitude of mutations. We
choose the setting τ = 0.22 like proposed in [2]. The number
n of turbines to change in one step will be unchanged n′ = n
with the probability 2/3 and increased or decreased by 1
with probability 1/6 with constraint n ≥ 1. In initial tests,
a population size of 50 showed a good performance.

6. EXPERIMENTAL RESULTS
In this section, we experimentally analyze the optimiza-

tion variants introduced in the previous section on the three
scenarios presented in Section 4.2.

6.1 Comparison of Evolutionary Algorithms
Table 1 shows the results of the two initialization vari-

ants combined with the six introduced optimization algo-
rithms on benchmark Scenario 1, which does not have geo-
constraints. The row Init. shows the fitness at initialization.
The figures show the mean fitness with corresponding stan-
dard deviation and the best fitness achieved in 25 runs. Bold
values show the best results achieved for Scenario 1, in which
25 turbines have to be placed (N = 50).

Init. Chess Random
Algo. Mean ± Std Max Mean ± Std Max
Init. 14679.9± 0.0 14679.9 14136.4±207.2 14573.6

(1+1)N 15169.1± 60.8 15281.6 14892.5±126.6 15083.3
CMA 15356.5± 48.6 15418.9 15359.5±110.9 15449.6
(1+1)1 15408.8± 22.2 15446.6 15461.4± 32.6 15510.6
Rep. 15438.2± 25.1 15482.8 15443.8± 25.1 15505.5
(1+1)t 15532.1±10.2 15552.0 15527.5±13.4 15551.0
(1+λ) 15525.6± 17.3 15557.4 15524.6± 18.9 15556.4

Table 1: Experimental results of Scenario 1. Se-
lected corresponding statistical test can be found in
Table 4.

We can observe that all optimization heuristics achieve
a significant improvement in comparison to the initial so-
lutions. The (1 + 1)t-ES achieves the best results in av-
erage with a small standard deviation. The self-adaptive
(1 + λ)-ES achieves the second best mean result, but at the
same time the best maximum of all strategies. The class of
holistic optimizers is outperformed by all turbine-oriented
methods, which is probably due to the fact that it treats
the whole optimization problem in a holistic fashion, i.e.,
all N variables at once, although strong dependencies exist
between the turbines. The (1 + 1)N -ES achieves the worst
results of all strategies and is outperformed by the CMA-ES,
which has much stronger capabilities in adapting its Gaus-
sian mutations. The replace strategy achieves higher wind
potentials than the (1 + 1)1-ES in the chessboard initializa-
tion case, and vice versa in the random intialization case.
Both strategies are less specialized than the deterministic
(1+1)t-ES and the self-adaptive turbine-oriented (1+λ)-ES
and perform worse, but still clearly outperform the holistic
variants in mean and in the maximum achieved values. The

statistical significance of the most important observations
are confirmed with a Wilcoxon signed rank-sum test [9], see
Table 4.

Init. Chess Random
Algo. Mean ± Std Max Mean ± Std Max
Init. 10944.2± 0.0 10944.2 10626.5±145.2 10875.3

(1+1)N 11221.3± 33.0 11287.3 11084.6±126.6 11280.2
CMA 11359.7± 12.5 11386.6 11348.4± 89.8 11475.2
(1+1)1 11399.3± 17.5 11444.5 11437.8± 47.8 11502.5
Rep. 11484.0± 9.7 11505.0 11480.8± 12.1 11506.5
(1+1)t 11524.1± 8.4 11538.2 11524.6± 6.6 11535.6
(1+λ) 11516.5± 11.7 11537.2 11519.9± 9.7 11536.6

Table 2: Experimental results of Scenario 2.

Table 2 shows the experimental comparison of all evolu-
tionary approaches on benchmark Scenario 2. This bench-
mark problem is an N = 36-dimensional problem with 18
turbines. We observe a similar behavior of the algorithms in
comparison to Scenario 1. Again, the deterministic (1 + 1)t-
ES and the self-adaptive (1 + λ)-ES outperform the other
approaches. Further, we can observe that the replace strat-
egy is better than the (1 + 1)1-ES for both initialization
schemes, which is probably due to the highly constrained
solution space.

Init. Chess Random
Algo. Mean ± Std Max Mean ± Std Max
Init. 10537.7± 0.0 10537.7 10491.3±200.9 10815.4

(1+1)N 10675.3± 32.7 10774.6 10814.4±144.4 11098.4
CMA 10831.0± 29.9 10859.1 11008.2±105.4 11187.8
(1+1)1 10889.7± 51.5 11083.8 11083.6± 88.2 11234.1
Rep. 11261.5± 9.9 11286.9 11261.8± 11.9 11280.5
(1+1)t 11288.9± 8.0 11301.6 11286.0± 6.9 11300.7
(1+λ) 11286.5± 9.8 11302.7 11283.8± 9.1 11295.8

Table 3: Experimental results of Scenario 3.

Last, we show the experimental results on Scenario 3 in
Table 3. This problem employs the most constraints with
17 turbines resulting in an N = 34-dimensional problem.
Again, (1 + 1)t-ES and (1 + λ)-ES perform best, i.e., with
chessboard initialization, the (1 + 1)t-ES achieves the best
mean result, but the (1 + λ)-ES reaches the highest fitness.
With random initialization, the (1+1)t-ES achieves the best
mean and best overall fitness. Although the mean results
are better, the (1 + 1)t-ES does not perform significantly
different than the (1 + λ)-ES, see the Wilcoxon test in Ta-
ble 4. Further, we can observe that the quality of the replace
strategy is close to the two best turbine-oriented optimizers,
probably because of the same argument like in Scenario 2,
i.e., because of the highly constrained solution space.

CMA (1 + 1)t (1 + λ)

CMA +/+ /+ +/+ /+

(1 + 1)t +/+ /+ −/+ /−
(1 + λ) +/+ /+ −/− /−

Table 4: Statistical significance of comparison be-
tween selected experiments of Tables 1 to 3.

Table 4 shows an analysis of the statistical significance
of selected experiments of Tables 1 to 3 employing the
Wilcoxon signed rank-sum test. The runs of the CMA-ES,
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the (1 + 1)t-ES and the (1 + λ)-ES are compared to each
other on the three scenarios, corresponding to order of sce-
narios. If the p-value is lower than 0.05, the difference of the
runs is statistically significant with a significance level of 5%,
indicated by ’+’, otherwise indicated by ’-’. The upper right
triangle of the table shows the results for chessboard initial-
ization, while the lower left part shows the corresponding
results for random initialization.

In general, when comparing chessboard and random ini-
tialization, random tends to result in higher standard de-
viations. This is probably because of the varying starting
conditions. Interestingly, there is no significant difference
between chessboard and random initialization for the best
optimization strategies (1 + 1)t-ES and (1 +λ)-ES resulting
in a p-value greater than 0.05. For the (1 + 1)N -ES and the
(1 + 1)1-ES, the initialization makes a significant difference.

6.2 Evolutionary Runs
Now, we concentrate on the comparison of the evolution-

ary dynamics by analyzing the best evolutionary optimiza-
tion runs of all experiments, see Figure 6.
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Figure 6: Development of best evolutionary runs
when optimizing Scenarios 1, 2, and 3 with chess-
board and random initialization. On the y-axis we
show the energy output of the wind farm after x
fitness evaluations.

We can observe that the (1 + 1)1-ES shows the fastest
process at the very beginning of the search, except for the
chessboard initialization in Scenario 3 where the replacing
strategy is the fastest one. After about 2000 to 5000 fitness
function evaluations, depending on the initialization and
scenario, both strategies are overtaken by the self-adaptive
(1 + λ)-ES. In later phases of the search, the (1 + λ)-ES

shows an excellent typically evolutionary convergence be-
havior. Interestingly, the deterministic (1 + 1)t-ES is opti-
mizing comparatively slowly at the beginning of the search,
but shows its strengths in later phases of the search. Al-
though it shows phases of stagnation, the low mutation rates
at the end of the search let the optimization progress accel-
erate in later generations. But at the end of the search,
Equation 16 does not yield feasible mutation rates and in
most cases the search ends before reaching the level of fit-
ness achieved by (1 + λ)-ES. We will analyze this behavior
in the future and modify Equation 16 to allow a continued
optimization without infeasible mutation rates.

6.3 Analysis of Operator Ratios
In the following, we analyze the operator frequencies ap-

plied during optimization with the (1+λ)-ES. Figure 7 shows
the corresponding results of the best runs in Scenario 2 with
(a) chessboard and (b) random initialization. At the be-
ginning, the replacement operation (blue part) is applied in
about one third of the generations, while two third are de-
voted to turbine shifting (red parts). In the following 25
generations, less turbines are replaced. At later phases of
the search, the ratio of group shifting operations is increased
while converging to the optimum.
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(b) Scenario 2 (random)

Figure 7: Exemplary development of operator fre-
quencies applied every 25 generations during opti-
mization with the (1 + λ)-ES on Scenario 2 with (a)
chessboard and (b) random initialization.

6.4 Optimal Placement Results
Last, we visualize the optimal turbine placements that are

evolved by the (1 + 1)t-ES for Scenario 2 (see Table 2), and
by the (1+λ)-ES for Scenario 3 (see Table 3) in Figure 8. We
can observe that the majority of the turbines are placed at
the borders of the map. In a few cases, small feasible islands
between constrained areas are used in the middle of the map.
It is obvious that the EA maximizes the distances between
the turbines. Intuitively, this makes sense since the wake
effects decrease with increasing distance. The horizontal
inter-turbine distances are larger than vertical ones as the
horizontal ratio of wind is comparatively large. The large
free spaces stay free, as they are mostly influenced by wake
effects, whose complex structures are clearly visible.

7. CONCLUSIONS
Turbine placement with a realistic wake effect model, real-

world wind data, and also realistic geo-constraints results in
a difficult optimization problem. In this work, we proposed
four turbine-oriented optimization heuristics and performed
a detailed experimental comparison on three benchmark sce-
narios in Lower Saxony. We compared our approaches to
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(a) Scenario 2 (b) Scenario 3

Figure 8: Final turbine placements after 25000 fit-
ness function evaluations on (a) Scenario 2 evolved
by the (1 + 1)t-ES and (b) Scenario 3 optimized by
the (1 + λ)-ES.

a simple (1 + 1)N -ES with adaptive step size control and
to the CMA-ES, which belongs to the state-of-the-art ap-
proaches in continuous blackbox optimization and showed
promising results in turbine placement tasks in the past.
All turbine-oriented approaches outperformed the holistic
strategies with statistically significance.

As future work, we plan to extend the experimental analy-
sis to further scenarios, in particular concentrating on large-
scale scenarios and also off-shore turbine placement with
ground and ship route constraints. As constraints have an
important part to play in realistic scenarios and the results
have shown that the constraints make the optimization prob-
lems more difficult to solve, we will concentrate on more ad-
vanced constraint handling techniques in the future, ranging
from penalty function to meta-modeling of the constraint
boundary.
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