
Improving Test Coverage of Formal Verification Systems
via Beam Search

Mahmoud Bokhari
Computer Science School

University of Adelaide
Adelaide, Australia

Computer Science Department
Taibah University

Medina, Kingdom of Saudi Arabia

Markus Wagner
Optimisation and Logistics,

University of Adelaide
Adelaide, Australia

ABSTRACT
The correctness of program verification systems is of great
importance, since they are used to formally prove that
safety- and security-critical programs follow their specifica-
tion. Within these verification systems, the background ax-
iomatization captures the semantics of the target program
language—errors here can lead to incorrect formal proofs,
which in turn can have devastating consequences.

Testing the axiomatization thoroughly is one approach to
increase the trust in its correctness, however, the manual
creation of test cases is a very time-consuming process for
verification engineers. We present a beam search approach
for creating test cases through test case modifications.

Categories and Subject Descriptors
G.1.6 [Optimization]: Miscellaneous; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search—Heuristic Methods

1. INTRODUCTION
Broadly speaking, the purpose of software verification is

to prove or disprove the correctness of software using formal
or informal methods [8]. Examples of formal methods that
use mathematical approaches include model checking and
deductive verification [1]. Due to the error-prone nature of
manually applying such methods, the need for auto-active
verification software systems arises.

Deductive verification systems following the auto-active
verification paradigm must understand their target pro-
grams, which can be accomplished by using the so-called
axiomatization base. Consisting of a large set of axioms
(typically 100s of axioms), it carries the semantics of the
programming language used for writing the target programs.
Motivation. To confirm the correctness of software verifiers,
it is necessary to test both parts: the axiomatization base
and the implementation [6]. Only testing the latter is not
sufficient, even if high code coverage is achieved. For in-
stance, the authors of [3] reported that there is a relatively
high amount of “core code” executed by the test suite, how-
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Axiom
Replacement

Set

Successful

Times

Total Successful

Times

Unsuccessful

Times

ax1 0 0 10

ax2 {ax4} 10 10 7

ax3
{ax5} 6

8
0

{ax6, ax7} 2 3

Table 1: Guidance Table example

ever, a small number of “core axioms” were used during the
test. Some logical bugs remain uncovered within the ax-
iomatization unless it is fully exercised. In addition, two
bugs in the axiomatization were found during the coverage
maximization research in [3].

In order to maximize the axiomatization coverage, a large
number of test cases are required. In our situation, test cases
consist of programs and their formal specifications. Creating
such test cases manually from scratch is a difficult and time
consuming task even for experienced verification engineers,
due to their inherent complexity.
Topic. We present a heuristic approach to maximize the
number of axioms used in successful proof procedures [2].
Our approach utilizes the beam search algorithm [5], which
uses some historical data to explore the search space. We use
such an algorithm to address two main key issues: having
a large number of axioms as well as the time consuming
verification process (sometimes minutes).

The author of [9] presents a collection of uniformed ap-
proaches that explore the search space in breadth-first and
depth-first fashions to increase the axiomatization coverage.
In contrast to this, our approach is informed by previous
runs. We do this in order to achieve two goals: minimizing
the likelihood of creating infeasible solutions, and maximiz-
ing the likelihood of covering previously uncovered axioms.

2. ALGORITHM
Guidance Table. To effectively explore the search space,
our approach uses a guidance table GT to inform and guide
the search process towards promising nodes. The GT keeps
track of the following: each used axiom in every minimal
set, its successful replacement sets, the total number of suc-
cessful replacements for each set, the total number of all
successful replacements, and the total number of unsuccess-
ful attempts for replacing the axiom. All data is recorded
for each axiom. Table 1 presents an example of the guid-
ance table: it shows that the two sets {ax5} and {ax7, ax6}
successfully replaced ax3 eight times in total. While the for-
mer replaced it six times, the latter was only used twice as
a replacement for it.

The GT is also used to discover equivalences between ax-
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Figure 1: Activity Diagram: Beam Search.

ioms.1 In other words, it records the equivalent sets of ax-
ioms for each individual axiom or axiom set. For example,
Table 1 shows that ax3 has two equivalent sets of axioms
which are {ax5} and {ax6, ax7}. It is important to note
that these two sets are only equivalent to that axiom in
eight cases in total. However, since they are not entirely
equal to ax3, the second set could not replace ax3 in three
instances.
Beam Search. Diagram 1 illustrates our informed beam

search. As can be seen, it tries to verify the test case TC .
If it cannot find a proof it stops otherwise it continues to
the next step, which is receiving the minimal set of axioms
used in the proof M . Then for each axiom mi within M , it
checks whether it is recorded in the GT . In case the mi is not
found, it is added to the promising list. This is because the
GT contains all previously discovered axioms and therefore
this mi is recently covered and has to be investigated first.

On the other hand, if the mi is found in the GT , it is added
to the promising list only if it has been successfully replaced,
i.e. the successful rate is greater than zero. However, if it
has not been replaced at all we add it to the discard list.

3. APPROACH ANALYSIS
Now let us look to how our approach explores the search

space. Figure 2 illustrates a small part of one test case’s
search space. At the beginning the java card software verifier
KeY system starts the proof procedure using 1520 axioms[1].
It successfully finds a proof for the given test case using 31
axioms, which represents the first minimal set M .

Using the GT , our approach explores the promising nodes
to be dropped from the axoimatization base. This operation
forces the KeY to find an alternative proof for the same test
case, but without the dropped axioms; as a result, the cov-
erage increases. We refer to this method by white and black
listing, where the white list includes what the verifier can
use, whereas the black list contains the forbidden axioms.

Initially, the approach identifies four axioms to be dropped
a1, a2, a15 and a31. After excluding each axiom, the verifier
successfully manage to prove the same test case. As a result,
four Ms are found, however, in this case, two of them are

1“Equivalence” is not strictly logical here, but regarding the
tool’s capability to find a proof in a different way.

Figure 2: Search Space Example: Exploring the search space
by the beam search approach.

equal to the first M . In other words, the other two Ms
contains new axioms that are not covered in the first M .

In the subsequent stage, the approach tries to identify new
promising nodes to drop together with the previous ones, i.e
it drops pairs of axioms. It chooses 9 axioms in total, never-
theless, only two pairs are unsuccessfully replaced {a1, a17}
and {a15, a27}. Although the last set could not be replaced,
it was possible to replace it after adding one axiom a11 to
it. This is because the replacement of a15, a11 renders a27
redundant for the proof.

It is worth mentioning that our approach identifies the
first four nodes without trying to drop the 1520 axioms,
which significantly reduces the time complexity. Further-
more, in total it tries only 38 replacements where 79% of
them are successful.

In-depth studies will follow in the very near future.
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