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Abstract. Ant colony optimization performs very well on many hard optimization
problems, even though no good worst case guarantee can be given. Understanding
the reasons for the performance and the influence of its different parameter set-
tings has become an interesting problem. In this paper, we build a parameter pre-
diction model for the Traveling Salesperson problem based on features of evolved
instances. The two considered parameters are the importance of the pheromone
values and of the heuristic information. Based on the features of the evolved in-
stances, we successfully predict the best parameter setting for a wide range of in-
stances taken from TSPLIB.

1 Introduction

Ant colony optimization (ACO) [3] has become very popular in recent years to solve a
wide range of hard combinatorial optimization problems. Throughout the history of
heuristic optimization, attempts have been made to analyze ACO algorithm perfor-
mance theoretically [6, 17] and experimentally [11, 19]. However, much less work has
been done towards the goal of explaining the impact of the problem instance structure
and the algorithm parameters on performance.

The study in [19] provides an overview of existing parameter prediction/tuning ap-
proaches for ACO in two major directions: (1) parameter choosing before running the
algorithm (offline configuration and tuning), and (2) adaptation during runtime (on-
line tuning). It has been shown in [12] that offline tuning outperformes online tuning
for the Max-Min Ant System (MMAS) applied to the Traveling Salesperson problem
(TSP). However, the drawback of existing offline parameter configuration techniques
is that they are time consuming and use a lot of computing power as they need to run
iteratively on training instances. We refer the reader to [5] for a discussion on general
parameter tuning and prediction methods. To the best of our knowledge, none of the
existing approaches have taken structural features of evolved problem instances into
consideration when setting the algorithm’s parameters.

In early research, the problem hardness analysis of the TSP was based on only a
few features that describe the edge cost distribution [14, 20], and the algorithms were
typically run on predetermined instances. Later on, more sophisticated methods were
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introduced for the instance generation, and the investigated problem features have be-
come more diverse [7, 10, 15]. However, a comprehensive analysis of ACO and TSP
problem features has not been conducted so far.

We study the potential of feature-based characterization to be used in automatic algo-
rithm configuration for ACO and consider the well-known Max-Min Ant System [18]
for the TSP. One important question in the configuration of ACO algorithms is to what
extent the pheromone values and the heuristic information should influence the be-
haviour of the algorithm—the importance of these two components is determined by the
parameters « (for pheromone values) and 3 (for heuristic information). We first inves-
tigate statistical features of evolved (hard, easy, and in-between) instances from [9] and
their impact on the appropriate choice of these two parameters. Based on this we build a
prediction model in order to predict the right choice for instances of TSPLIB [13]. The
potential strength of the prediction model relies on the wide range and on the diversity
of the evolved instances, and on the expressiveness of the selected structural features.
Our experimental investigations show that the considered features and evolved instances
are well suited to predict an appropriate choice for setting the parameters « and 5 of
MMAS.

The outline of the paper is as follows. In Section 2, we introduce the algorithm and
the framework of our investigations. In Section 3, we report on easy and hard instances
for different parameter combinations and carry out a feature-based analysis. Subse-
quently, we use these insights to predict parameters for given instances from TSPLIB
in Section 4, and we finish with some concluding remarks.

2 Preliminaries

The Traveling Salesperson problem (TSP) is one of the most famous NP-hard combi-
natorial optimization problems. Given a set of n cities {1, ...,n} and a distance matrix
d = (dij), 1 < 4,5 < n, the goal is to compute a tour of minimal length that visits each
city exactly once and returns to the origin. We consider the still NP-hard Euclidean TSP,
where cities are given by points in the plane and distances are given by the Euclidean
distances between these points.

As above-mentioned, our study is focused on the well-known ACO algorithm called
Max-Min Ant System (MMAS) [18]. Solutions are constructed by ants visiting cities
sequentially, according to a probabilistic formula defined as

o [ri5)* * [mi]°
Pij = o 8\’
(Enew.lrn)® * )
where Ny, represents the set of unvisited nodes of ant k, [7;;,] and [7;5,] having exponents
« and [ that represent pheromone and heuristic information respectively. A detailed
description and analysis of this algorithm on TSP can be found in the textbook of Dorigo
and Stiitzle (Chapter 3) [3].

To evolve easy and hard instances for the ant algorithms we use the evolutionary
algorithm approach previously studied on 2-opt [7] and approximation algorithms [10]
for the TSP. The only difference in the instance generation process here is that we
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consider several algorithm instances with different parameter settings instead of a single
algorithm.
The approximation ratio a4 (1) of an algorithm A for a given instance I is defined as

a(I) = A(I)/ OPT(I)

where A(I) is the tour length produced by algorithm A for the given instance I, and
OPT{(1) is the value of an optimal solution of I. OPT{(I) is obtained by using the exact
TSP solver Concorde [2].

3 Features of Hard and Easy Instances

For each ACO algorithm instance with a specific parameter setting of o and f3, a set
of 100 random TSP instances is generated in two-dimensional unit square [0, 1] and
placed on a discretized grid. The evolutionary algorithm runs on them for 5000 genera-
tions in order to generate a set of hard and a set of easy instances. Each ACO execution
is limited to two seconds. In each iteration, the ACO algorithm is run once on a single
instance, and then the approximation ratio is calculated. In separate runs, either a higher
approximation ratio is favoured to generate hard instances, or a lower ratio is favoured
to generate easy instances. This process is repeated for instances of sizes 25, 50, 100
and 200 with the goal of generating easy and hard instances respectively. The instance
generation is performed on an Unix cluster with 48 nodes where each node has 48 cores
(4 AMD 6238 12-core 2.6Ghz CPUs) and 128GB memory (2.7GB per core).

This study considers 47 features including distances of edge cost distribution, angles
between neighbors, nearest neighbor statistics, mode, cluster and centroid features as
well as features representing minimum spanning tree heuristics and of the convex hull.
A detailed description of these features can be found in [10].

The algorithm parameters considered in this study are the most popular and critical
ones in any ACO algorithm, namely the exponents a and 3, which represent the influ-
ence of the pheromone trails and of the heuristic information respectively. We consider
three parameter settings for our analysis: setting 1 represents default parameters (o = 1,
B = 2), and settings 2 and 3 represent extreme settings with highest and lowest values
in a reasonable range (o = 0, § = 4 and o = 4, § = 0). The general idea behind the
choice is that we have to isolate the conditions to investigate the effect which is usually
considered in traditional scientific experiments. The rest of the parameters are set in
their default values (p = 0.2, ants = 20) as in the original MMAS implementation by
Stiitzle [16].

3.1 Feature Analysis

Our experimental results for the MMAS with the first parameter setting (o« = 1, § =
2) show the following.! For the first and the second parameter settings, the standard
deviation of angles of the easy instances are significantly smaller than the values of the

! Due to space limitations here we present only a few significant findings. We refer to Nallape-
ruma et al. [9] for some preliminary results of the feature analysis.
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Fig. 1. Boxplots of the standard deviations of the angles between adjacent cities on the optimal
tour for parameter setting 2 (v = 0, = 4) on the left and setting 3 (o = 4, 8 = 0) on the right
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Fig. 2. Feature variation with instance difficulty for mean (left) and standard deviation (right) of
distances for the three parameter settings 1 (top), 2 (middle) and 3 (bottom)

hard instances. With increasing instance size, these values change differently for easy
and hard instances. Interestingly, this structural difference is even obvious to a human
observers who perceive different “shapes” for easy/hard and smaller/larger instances. In
contrast to the patterns of the first two parameter settings, the third combination (o =
4, B = 0) shows an increasing pattern of standard deviation values (with increasing
instance size), whereas these values follow a decreasing pattern in the case of the second
setting (see Figure 1).

We also study the feature variation for the instances of intermediate difficulty. In
order to do this, it is required to generate instances with varying difficulty levels in-
between the two extreme difficulties hard and easy. This can be achieved through
morphing, where we create instances with varying difficulty levels by forming con-
vex combinations of easy and hard instances. Here, the point matching is done using
a greedy strategy where the points of minimum Euclidian distance are matched. These
matched instances are then used to produce a set of instances with intermediate diffi-
culty by taking the convex combination based on the convex combination parameter
a. €{0,0.2,...,0.8,1} where 0 represents hardest instances and 1 easiest.

Generally, for all three considered parameter settings, most features show similar
patterns exhibiting systematic nonlinear relationships with instance difficulty. However,
there are a few “contrast patterns” (the feature is increasing in value over instance diffi-
culty for one parameter setting and decreasing for another parameter setting) observed
among different parameter settings. For example, the distance mean and the standard
deviation show contrast patterns for the second parameter setting (o = 0, § = 4) from
the other two (see Figure 2). Moreover, we observe that the sharp increasing pattern
over instance difficulty for the third parameter setting (o = 4, 6 = 0) has slowed down
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Fig. 3. Performance of the second parameter setting (top) and the third (bottom) on the easy (grey)
and hard (black) instances of the first parameter setting

for the default parameter setting, and even converted to a decreasing pattern for the sec-
ond setting. This provides strong evidence on the impact of parameters. Similar contrast
patterns are observed in the other feature groups as well, such as convex hull and near-
est neighbour. These contrast patterns suggest the dependence of problem hardness on
the algorithm parameters. This dependence further indicates that algorithms with dif-
ferent settings can have complimentary problem-solving capabilities. We believe that
such capabilities can provide insights to automatic parameter configuration. Therefore,
we further investigate these capabilities by comparing the approximation ratios of the
three algorithms achieved on each others’ easy and hard instances.

3.2 Comparison of Parameter Settings

As shown in Figure 3, both the second (o« = 0, 8 = 4) and the third (o« = 4, § = 0)
parameter settings have obtained worse approximation ratios for the easy instances of
the first parameter setting (o« = 1, 5 = 2) than the first parameter setting. In the case
of the hard instances, the second parameter setting has achieved better approximation
ratios than the first parameter setting itself. The outcomes of the other two cross-checks
are comparable: given the hard instances of one algorithm configuration, the other two
settings achieve better results. This is strong support for our previous conjecture on the
complimentary capabilities of different parameter settings.

4 Parameter Prediction

In order to build a reliable model, we significantly extend our collection of data
gained from the experiments in Section 3. We generate 1500 instances: 10 hard and
easy ones, with sizes 25, 50 and 100, and for each of the 25 parameter combinations
a,0€{0,1,2,3,4}.
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Fig. 4. Prediction Model. It predicts the algorithm performance based on the problem features c;,
1 <9 < p and the possible algorithm parameters 6;, 1 < j < g.

4.1 Prediction Model

We build a simple prediction model merely as a proof of concept that a problem hard-
ness model can be used for ACO parameter prediction. Therefore, we use a popular
basic technique for model building. A high level overview of the model is shown in
Figure 4. Instead of predicting the allegedly optimal parameters, we actually predict the
approximation values given the 25 possible parameter combinations. Then, we select
amongst those 25 the combination that achieves the best approximation as the model’s
output. Hence, the actual model construction is based on the approximation ratio as the
dependent variable. Note that a similar model architecture is used in the recent work
of Munoz et al. [8] for the prediction of algorithm performance based on landscape
features and parameters.

To build our prediction model, we use the classical pattern classification technique
introduced by Aha et al. [1], as implemented in the Weka data mining framework [4].
In the training phase, we feed the generated instances into this nearest neighbour search
based classifier. As we have seen in the previous hardness analysis, not all problem
features appear to be significantly different for easy and hard instances. Consequently, a
smaller subset with 15 strong features out of the whole (47) feature set is selected: angle
mean, angle median, angle sd, centroid mean distance to centroid, centroid max distance
to centroid, points on hull, distance mean, distance median, distance max, distance sd,
mst distance mean, mst distance max, mst distance sd, nearest neighbour distance sd
and nearest neighbour distance coefficient of variance.

4.2 Prediction Results

First, we test our model on a set of 30 randomly generated TSP instances of instance
size 100. In the first step, their approximation values are calculated (by averaging the
outcomes of 50 repetitions) for all (25) considered parameter combinations. Then the
actual best-performing parameter setting is found based on those 25 approximation
values (see Table 1 (a) for results).

For more than half of the 30 instances, the model predicts the correct minimal ap-
proximation ratio, as both winning parameters are the best actual values. Almost all
remaining predictions are close to the optimal combination, predicting the actual sec-
ond best parameter combination. Even though our model is relatively simple, we believe
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Table 1. (a): Predicted and actual parameter settings («, () for 30 random test instances of
size 100. The columns “best” and ”second” show the parameter combinations for which the best
approximation and second best approximations are achieved in both prediction and actual exper-
iments. (b): Results of the Wilcoxon signed rank tests on the predicted and actual approximation
ratios for same instances for the hypothesis “actual > predicted” (Test 1) and “’predicted > actual”
(Test 2), positive rank sum (W) and confidence (p) values are displayed accordingly.

(a) (b)

. predicted actual . Test 1 Test 2

st best/second  best/second match second match mnst w p-value w p-value
1 “4.,4/1,4) (1,4) no yes 1 99 0.9305 201 0.0714
2 (1,2) (1,3)/(1,2)  no yes 2 565.5 0.6797 659.5  0.3221
3 4,3) 4,3) yes 3 1296.5 0.5371 13315  0.4639
4 (1,3) (1,3) yes 4 2191 0.6233 2369 0.3774
5 (1,4) (1,4) yes 5 3404 0.6666 3736 0.3339
6 (1,4) (1,4) yes 6 4956.5 0.7049 54835  0.2954
7 (1,4) (1,4) yes 7 6808.5 0.7276  7556.5  0.2727
8 (1,4) (1,4) yes 8 8735 0.8028 9986 0.1973
9 (1,3) (1,3) yes 9 11117 0.7959 12536  0.2042
10 (2,3) (2,3) yes 10 142745 0.5590 144055 0.4411
11 (1,3) (1,3) yes 11 16863  0.6171 17328  0.3831
12 (1,3) (1,4/(1,3) no yes 12 202735 0.6086 20767.5 0.3915
13 (1,3) (1,3) yes 13 243085 0.4869 23896.5 0.5132
14 4,4 (1,4)/(4,4)  no yes 14 28605 04325 27675  0.5676
15 (1,2) (1,4/(1,2)  no yes 15 32799.5 0.4094 314615 0.5907
16 3,4) 3,4 yes 16 37968.5 03269 35567.5 0.6732
17 (1, 4) (1,3)/(1,4)  no yes 17 43214 0.2709 39814  0.7291
18 (1,2) (1,3)/(1,2) no yes 18 49679  0.1532 43849  0.8468
19 4,4 (2,4)/ (4,4 no yes 19 54671  0.1863 49069  0.8138
20 (1,3) (1,2)/(1,3)  no yes 20 61524  0.1248 53916  0.8753
21 4,4) 4.4 yes 21 684915 0.0712 58264.5 0.9288
22 (1,4) (1,4) yes yes 22 75075  0.0710 64053  0.9290
23 (1,1 (1,3) no no 23 80356.5 0.1497 71719.5 0.8504
24 (1, 1) (L, 1 yes 24 88700.5 0.0856 76899.5 0.9144
25 (1,4) (1,3)/(1,4)  no yes 25 96134  0.0750 82967  0.9250
26 (1,4) (1,4) yes 26 104622.5 0.0627 89753.5 0.9373
27 (1,2) (1,2) yes 27 113339 0.0552 96937  0.9449
28 (1,3) (1,3) yes 28  122681.5 0.0362 103446.5 0.9639
29 (1,3) (1,3) yes 29 130368  0.0564 112188  0.9436
30 (3,4/(1,4) (1,4) no yes 30 140646.5 0.0394 119634.5 0.9606

that this first result already supports our initial claim that parameters can be predicted
based on preceding instance analyses.

Although the model cannot produce the best parameter setting for all instances, the
raw approximation values for the predicted and the actual performance are very similar.
Therefore, we conduct a rank test to observe any significant difference between the
predicted values. We choose the Wilcoxon signed rank test [21], as there is no guarantee
about the distribution, and the results are paired as they are based on the TSP instance
on which the approximation ratio is obtained. For each TSP instance the predicted and
actual approximation ratios obtained for all parameter settings are considered for the
test. For the first test we set the hypothesis that the actual values are greater than the
predicted values, and then the test is repeated with the counter hypothesis. For both
tests and for most instances, the resulting p values are reasonably large, hence both
of the alternative hypothesis are rejected (see Table 1 (b)). Thus, we fail to reject the
null hypothesis, meaning that both distributions are equal. Only for two instances we
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Table 2. Predicted and actual parameter settings («, /3) for 25 TSPLIB instances of size in range
51-264. Note, that the underlying model is based only on our analysis of instances of size 100.

inst predicted actual
best/second best/second match second match

bier127.tsp 2,3) 2,3) yes

ch150.tsp (1, 3)/(2,3) 2,3) no yes
eil51.tsp (1, 3) (1,3) yes
kroA100.tsp  (3,3)/(1,3) (1,3) no yes
kroB100.tsp (1,3) (1,3) yes
kroC100.tsp (1,3) (1,3) yes
kroD100.tsp (1,2) (1,2) yes

pr107.tsp 2,4) 2,4) yes

pr76.tsp (2,3) 2,3) yes

st70.tsp (1, 1) (1, 1) yes

ch130.tsp 2,3) (2,4)/(2,3) no yes
eill01.tsp (2,2)/(2,3) 2,3) no yes
kroA150.tsp 2,2) 2,2) yes

lin105.tsp (3,2)/(1,3) (1,3) no yes
pri24.tsp (4,3)/(1,3) (1,3) no yes
rat99.tsp 2, H(1,2)  1,4/(1,3) no no
kroB150.tsp  (1,2)/(1,3)  (2,3)/(3,4) no no
eli79.tsp G4/(1,2)  (1,3)/(1,2) no yes
kroE100.tsp  (1,1)/(1,3) (1, 4)/(1,3) no yes
kroA200.tsp 3,3) A3,3) yes
kroB200.tsp 3,4 3,4 yes

tsp225.tsp 2,3)/ (3,4 (4,4)/3,4) no yes
pr264.tsp 4,4) “4,4) yes

gil262.tsp 2,3)/(1,4) 4,4/4,3) no no
pr226.tsp (2,3)/(1,3) (4,3)/(3,3) no no

observe p values less than 0.05, and thus we fail to reject the alternative hypothesis with
95% significance (thus reject the null hypothesis) that they are different.

Second, we test our model on a set of famous benchmark instances from
TSPLIB [13] and the results are shown in Table 2. Interestingly, they are qualitatively
similar to the results of the test on random TSP instances (Table 1), even though these
“real world” instances have never been part of the model building process. Therefore,
this second investigation provides further evidence on the accuracy of the model-based
performance predictions. We conjecture that the reasons for this strong performance are
(1) the large distribution of the training set varying from extreme hard to extreme easy
TSP instances and (2) the strength of the selected feature set in expressing problem
hardness for ACO algorithm instances with specified parameter settings. In order to use
this model for prediction, a very short prepossessing step is required that calculates the
15 above-mentioned feature values for the input instance.

5 Conclusions

In this paper, we have shown how to predict the parameter setting of ACO algorithms
based on features of evolved problem instances. We considered the parameters o and
B which determine the importance of the pheromone concentration and heuristic infor-
mation, respectively. Based on instance features for the classical Traveling Salesperson
Problem, we built a prediction model to determine the values of « and /3. Our investiga-
tions on a wide range of instances from TSPLIB show that the instance features allow
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for a reliable prediction of well-performing algorithm setups. For future work, we plan
on improving the prediction model by integrating other ACO parameters such as the
number of ants and the pheromone update strength.
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