
Optimizing Energy Output and Layout Costs for
Large Wind Farms using Particle Swarm

Optimization
Kalyan Veeramachaneni∗, Markus Wagner†, Una-May O’Reilly∗, and Frank Neumann†

∗Massachusetts Institute of Technology, Cambridge, MA, USA
[kalyan,unamay]@csail.mit.edu

†School of Computer Science, University of Adelaide, Australia
[markus.wagner, frank.neumann]@adelaide.edu.au

Abstract—The design of a wind farm involves several complex
optimization problems. We consider the multi-objective opti-
mization problem of maximizing the energy output under the
consideration of wake effects and minimizing the cost of the
turbines and land area used for the wind farm. We present an
efficient particle swarm optimization algorithm that computes a
set of trade-off solutions for the given task. Our algorithm can
be easily integrated into the layout process for developing wind
farms and gives designers new insights into the trade-off between
energy output and land area.

Index Terms—Particle Swarm Optimization, repair strategies,
renewable energy.

I. INTRODUCTION

Evolutionary algorithms are good problem solvers for a vari-
ety of complex optimization problems. This paper contributes
to the application of these techniques to the production of
renewable energy. We are pursuing optimization challenges
arising in wind power generation. The problem we study here
arises during the preliminary phase of a wind turbine farm
project. The “farm layout” problem entails the process of
planning the placement of turbines (and supporting equipment)
on a potential wind farm site, while at the same time engaging
in multiple dialogues with stakeholders (1) to address their
objectives, and (2) to gather their input towards the design
of an “optimal” layout. In this layout, the cost of energy
forecast to be delivered by the farm is to be minimized, when
taking all constraints, costs of generation, and energy capture
into account. Examples of supporting equipment are cables,
service modules and internal roads. The site itself can be
on land or water. Stakeholders include representatives of the
community, financiers, developers and turbine manufacturers.
Constraints include a minimum turbine spacing based upon
rotor diameter, topographical land features. The energy capture
must account for loss of energy due to wake effects. The
creation of a farm layout involves the invocation (usually
more than once) of a software optimization module which
attempts to efficiently place the turbines while adhering to
the constraints and optimizing the stated objectives. Often,
this module is embedded within a specialized tool provided
by wind power consultants such as Garrad Hassan or AWS
TruePower, who offer a product such as OpenWind [1].

Wan et al, [5], [6], [7] used a cell based approach and
compared different bio-inspired algorithms including evolution
strategies and particle swarm optimization on the same set
of wind farm models and parameters. They used successively
more expressive layout representations (and algorithms) and
relaxed the positions where in a cell a turbine can be located.
The options for positioning a turbine where strictly in the
middle of a cell, anywhere in a cell, or anywhere in a cell
subject to proximity constraints with neighbouring turbines.

Kusiak et al, [2], exploited an alternative approach to the
cell placement. Here each turbine’s location is a decision
variable pair of real-valued, spatial (x,y) coordinates. With
this representation, many more layouts are possible. In [2], a
multi-objective evolutionary strategy is used, but only settings
for up to 6 turbines are considered. They used as a second
objective the minimization of turbine proximity constraint
violations. They confine the model farm area to a 500m radius
and cannot identify even one feasible solution in it for a larger
number of turbines. Wagner et al [4] studied a more powerful
evolution strategy, called CMA-ES, for the placement of wind
turbines such that they achieve a maximum amount of energy.
The approach in [4] allows the effective optimization of huge
layouts for up to 1000 turbines. However, in this process, the
number of turbines to be placed, and the available area have
to be set in advance.

In this paper we describe the design of a multi-objective
particle swarm optimization (PSO) algorithm to act as a farm
layout optimization module. An innovative contribution of
this work is that it handles two conflicting objectives: the
maximization of energy capture and the minimization of layout
costs. The former objective is straightforward. It expresses how
much electric power the farm can be expected to generate.
The latter objective reflects the reality of costs in the form of
land, number of turbines, and fixed and variable costs that are
incurred.

Our new algorithm can efficiently optimize the layout of
hundreds of turbines. This allows it to accommodate the
emerging requirements of larger farms. For example, the Horse
Hollow Wind Energy Center in Texas, USA operates with
735.5 megawatt (MW) capacity and consists of more than

300 turbines spread over nearly 47,000 acres (190 km2). By
using PSO we intend to develop a lighter weight algorithm
that is sufficiently adept at generating layouts that can be
integrated flexibly into the farm layout process which may
result in changes to them anyway. There are two complexities
arising from placing high quantities of turbines. The first is
the increasing frequency of infeasible layouts as the number
of turbines increases. Infeasibility can arise for a number
of reasons. In this contribution, we present two layout
repair strategies that deal with possible infeasible layouts and
compare them. One is a First-Come-First-Removed strategy.
When a turbine is placed in the layout area by reading
its Cartesian spatial coordinates from the particle vector, it
immediately removes that turbine if it is found to be too close
to one already placed in the layout area. Our alternate strategy
is called “Worst-First Removal”. This strategy first places all
the turbines out on the layout area (by reading the particle
vector) then counts, for each turbine, the number of turbines
to which it is too close. It then removes the turbine with the
most violations, re-calculates the violation counts and iterates
until no more violations exist.

The second complexity is the scaling cost of modeling wake
effect when estimating energy capture for increasing numbers
of turbines. To estimate the energy capture of a layout the
optimization module models the free stream wind flowing
through the site in and out of the turbines. Some degree of non-
linear wind turbulence occurs at the outflow of a turbine and
affects the inflow to turbines close enough behind it. Modeling
this effect is necessary because wake has a great effect on
wind resource but the modeling is computationally expensive:
as the number of turbines increases, the cost of modeling
wake effects for a given layout increases quadratically. We
will explain the wake effect modeling in technical detail later.

We proceed as follows: Section II provides a description of
the layout optimization problem. In Section III, we describe
the multi-objective PSO algorithm and two repair strategies.
The results of our experimental investigations are reported in
Section IV. Section V summarizes our findings and mentions
future work.

II. LAYOUT OPTIMIZATION

We now proceed to formulate the farm layout module
optimization problem. Let X = {x1, . . . , xn} and Y =
{y1, . . . , yn} be the x and y coordinates of the n turbines.
Based on these coordinates our objectives are to maximize
energy output of the whole wind farm and to minimize the
costs associated with land area used for the placement of the
turbines and the number of turbines. At this level, the goal of
the optimizer is defined by

max{Efarm},min{Cfarm} (1)

where Efarm is the energy capture achieved by the farm, and
Cfarm is the costs associated with the farm. In the following
subsections we present the mechanisms to evaluate these two
objectives.

A. Energy Output

Depending on the chosen coordinates the overall energy
output of the wind farm varies as we have to take the wake
effects into account. Table I provides a reference of the
symbols we use.

We consider the Park wake model. In this model the wake
effects on a turbine i change the wind resource available to
it along different directions by reducing the scale parameter
c of the Weibull distribution estimated for the entire farm,
which is also called the freestream wind resource. This is
dependent on its location and the location of the rest of the
turbines. Hence, we have a parameter ci for each turbine i
which involves a complex computation. We refer the reader
to [2] for a detailed presentation on the computation of this
parameter when considering wake effects in the Park wake
model. The energy output of the whole wind farm is given by

Efarm[η] =
∑
i

∫
θ

P (θ)

∫
v

p(v(θ), ci(θ,X, Y), k(θ))βi(v).

(2)
In this equation v is the wind speed, and the function

βi(v) is the power curve for turbine i. Wind speed v
however is a random variable with a Weibull distribution,
p(v(θ), ci(θ), k(θ)), which is estimated from wind resource
data and considers the wake effect. This distribution is also
function of the wind direction, θ which varies from 00−3600.
Additionally, wind flows from a certain direction with some
probability P (θ).

B. Cost of a Layout

For a more realistic scenario a layout has associated costs.
The simplest case incorporates the costs associated with the
land area and the number of turbines in the layout. In this
contribution we associate these two costs with the layout. We
form a second objective that is a sum of these costs. The
second objective is given by

Cfarm = Area+N, (3)

where Area is in km2 and N is the number of turbines. This
implies that one turbine contributes to the layout cost in the
same way as 1 km2 of land.

The objective of the optimization problem is to find layouts
that maximize Equation 2 and minimize Equation 3.

In the following subsection, we present the constraints and
assumptions we made for the optimization problem.

C. Constraints and Assumptions

We have the following constraints placed on our
optimization function:

• Upper bound on the area of the farm: This constraint
ensures that we can only place a turbine within a
certain area, which is a realistic constraint for most
layout problems. For a circular farm with radius r and
the origin as the center, this constraint is satisfied iff
sqrt(x2i + y2i) ≤ r, ∀i. For a rectangular farm with

TABLE I
SYMBOL DEFINITIONS

Number of turbines N
Wind velocity v

Wind direction 00 < θ < 3600

Farm radius r
Rotor diameter R

Weibull distribution for wind speed p(v, k, c) = k/c(v/c)k−1e−(v/c)k

Weibull shape parameter k

Weibull scale parameter c

Wind direction distribution P (θ)

Expected power of a single turbine Ei[η]

Piecewise power curve of turbine β(v) =

0 v < vcut in

λv + γ vcut in ≤ v ≤ vrated
Prated vrated < v < vcut out

length l and width w this constraint is satisfied iff
0 ≤ xi ≤ l & 0 ≤ yi ≤ w,∀i.

• Proximity constraint: This constraint ensures a minimal
distance between any pair of turbines. The constraint
is satisfied iff

√
(xi − xj)2 + (yi − yj)2 ≥ MR,∀i∀j

where R is the rotor radius and M is a proximity factor
usually decided ahead of the optimization based on the
make and model of the turbines used. We use M = 8
based on the industry standard.

In addition to the above constraints, we assume that all turbines
have the same power curves (approximated as piecewise linear
functions) and that the same wind resource spans the entire
farm.1 The assumptions can be revised in a very straight
forward manner to generate more realistic scenarios.

III. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
FOR THE WIND FARM LAYOUT PROBLEM

We design particle swarm optimization algorithm for the
wind layout problem. Each particle is a potential solution to
the problem, i.e. a layout. Therefore, a particle is a vector of
N (x, y) coordinates implying 2N search variables. The search
space is continuous and of dimension 2N. The ith particle in
the swarm is represented as a vector Zi = (zi1, zi2 . . . zi2N).
The algorithm starts out by initializing each particle randomly.
Each particle maintains in its memory the personal best
particle Pi it has found so far. Furthermore the global best
particle Pg which represents the best solution found so far is
stored as a vector Pg . Each particle is evaluated using the
objective function and adapted using velocity and position
update equations. The velocity update equation for the velocity
ith particle is given by

V
(t+1)
i = ωV

(t)
i + ψ1(P

(t)
i − Z

(t)
i)U [0, 1] +

ψ2(P (t)
g − Z

(t)
i)U [0, 1] (4)

1For additional accuracy, these resources can be estimated for different parts
in the farm.

where ψ1 and ψ2 are parameters determining the influence
of the personal best and the global best particle. Furthermore,
U [0, 1] is a real value that is chosen in every velocity uniformly
from the interval [0, 1].

The position of particle i in the next iteration is given by

Z
(t+1)
i = Z

(t)
i + V

(t+1)
i . (5)

Once all particles are updated using the above two equations,
they are again evaluated using the objective function and a
particle’s Pivector is updated if it is the best layout the particle
has yet found. The best performing layout of the swarm Pg
is appropriately updated too. The entire process iterates until
a termination condition is fulfilled.

A. Multi-Objective PSO

We want to apply PSO to multi-objective wind farm lay-
out problems. The multi-objective particle swarm algorithm
(MOPSO) for turbine layout is described in Algorithm 2
and relies on the general approach of multi-objective particle
swarm optimization presented in [3]. To deal with multi-
objective problems, we change the way the Pi particles are up-
dated and the way Pg is selected. Our goal is to ensure that the
particles are forced to progress towards each objective during
the run of the algorithm. To update the Pg usually a crowding
distance measurement or a niche count measurement is used
ensuring a diverse set of solutions in the objective space.
However, in this paper we use the Pg as the particle with the
highest energy capture. This works well with the techniques
we designed in this paper to generate layouts from particles
while satisfying all the layout constraints. Algorithm 1 is used
to update the personal best position Pi of particle i.

B. Constraint Handling

One constraint of the layout optimization is that no turbine
can be less than 4 rotor diameters from any other. To check
whether the constraint is violated we first construct a matrix D

Algorithm 2: Multi-objective particle swarm optimizer for Wind Farm Layout Optimization

1 Initialize the particles Z(0)
i , 1 ≤ i ≤ n, uniformly at random within the range for each dimension.;

2 Set personal best particle P (0)
i = Z

(0)
i and initial velocity V (0)

i = 0, 1 ≤ i ≤ n;
3 Initialize parameters of PSO, ω = 0.8, ψ1 = 1, ψ2 = 1;
4 Randomly initialize P (0)

g and g;
5 for i = 1 to n do
6 Evaluate Efarm and Cfarm for Zi;

7 for t = 0 to maxiter − 1 do
8 for i = 1 to n do
9 V

(t+1)
i = ωV

(t)
i + ψ1(P

(t)
i − Z

(t)
i)U [0, 1] + ψ2(P

(t)
g − Z(t)

i)U [0, 1];
10 Z

(t+1)
i = Z

(t)
i + V

(t+1)
i ;

11 Evaluate Efarm and Cfarm for Z(t+1)
i ;

12 Compute the set P̄ (t+1) = {P (t+1)
i | 1 ≤ i ≤ n}, using Algorithm 1;

13 Identify P (t+1)
g : particle with maximum energy capture found so far;

14 Store P (t+1)
g for iteration t+ 1 ;

15 t← t+ 1 ;

16 Output P (maxiter)
g ;

Algorithm 1: Computation of the set of personal best
particles P̄ (t+1) = {P (t+1)

i | 1 ≤ i ≤ n}
1) Initialize P̄ t+1 to be empty.
2) Let Z̄C = Z̄ ∪ P̄ where Z̄ = {Z(t)

i | 1 ≤ i ≤ n}, and
P̄ = {P (t)

i | 1 ≤ i ≤ n}.
3) Identify the set of non-dominated solutions N̄D in

Z̄C.
4) Add N̄D to P̄ t+1.
5) If |P̄ t+1| < n, remove N̄D from Z̄C and goto Step 3).

in which dkj represents the euclidean distance between turbine
k and turbine j. Then

c =

{
true if

∑
∀k,j,k 6=j u(dk,j − δ) ≥ 1

false otherwise
(6)

where u is the unit step function and δ is the minimum distance
constraint imposed by the designer. We have designed two
strategies that repair an infeasible layout where this constraint
is violated.

1) First-Come-First-Removed: We generate a layout,
Li by scanning the particle, Zi from left to right
(j = i . . . N) and incrementally placing a turbine in
the layout area according to its Cartesian coordinates (
zij = (xij , yij)). We check whether this turbine is too
close to any other turbine already in the layout area. If
it is, it is removed from the layout and the number of
turbines goes down by one. This removal algorithm is
described in Algorithm 3.

2) Worst-First Removal: Like First-Come-First-Removed,
we remove turbines that cause violations. In this method,

however, we rank the turbines based on their number of
proximity violations. Let Li be the ith particle and is
equivalent to

Li = {T1, . . . Tn} (7)

where Tk is the kth turbine located at = (xk, yk). Let
D = {dk,j}, ∀j, j 6= k be the set of its Euclidean
distances from all the other turbines. The rank of the
turbine k is given by

ρk =
∑
j,j 6=i

u(dk,j − δ), (8)

where δ is the minimum distance constraint imposed by
the designer and is MR as mentioned in Section II-C. u
is a unit step function. We then remove the turbine with
highest rank and re-iterate calculation of violations and
rankings with the new smaller (by one) set of turbines.
Ranking removes turbines from the most crowded re-
gions in the layout. The stepwise details of this method
are presented in Algorithm 4.

The constraint on the maximum area the layout can occupy
is addressed by expressing area in terms of its cost within the
layout cost then minimizing layout cost as the second objective
of the optimization algorithm.

IV. EXPERIMENTAL INVESTIGATIONS

To evaluate our alternate repair methods and the optimiza-
tion, we set up two scenarios with the wind resources defined
as in [2] (see Table II).

The wind direction is binned in 150 intervals. Scenario 1 has
the same scale and shape parameters for the Weibull distribu-
tion for all bins. Scenario 2 has the same shape parameter for
the bins, but different scale parameters. The shape parameter
k increases the spread of the Weibull distribution as it gets

TABLE II
WIND SCENARIO 1 AND SCENARIO 2

l θl θl+1 Scenario 1 Scenario 2
l θl θl+1 Scenario 1 Scenario 2

k c P (θ) k c P (θ) k c P (θ) k c P (θ)

0 0 15 2 13 0 2 7 0.0002 12 180 195 2 13 0.01 2 10 0.1839
1 15 30 2 13 0.01 2 5 0.008 13 195 210 2 13 0.01 2 8.5 0.1115
2 30 45 2 13 0.01 2 5 0.0227 14 210 225 2 13 0.01 2 8.5 0.0765
3 45 60 2 13 0.01 2 5 0.0242 15 225 240 2 13 0.01 2 6.5 0.008
4 60 75 2 13 0.01 2 5 0.0225 16 240 255 2 13 0.01 2 4.6 0.0051
5 75 90 2 13 0.2 2 4 0.0339 17 255 270 2 13 0.01 2 2.6 0.0019
6 90 105 2 13 0.6 2 5 0.0423 18 270 285 2 13 0.01 2 8 0.0012
7 105 120 2 13 0.01 2 6 0.029 19 285 300 2 13 0.01 2 5 0.001
8 120 135 2 13 0.01 2 7 0.0617 20 300 315 2 13 0.01 2 6.4 0.0017
9 135 150 2 13 0.01 2 7 0.0813 21 315 330 2 13 0.01 2 5.2 0.0031
10 150 165 2 13 0.01 2 7 0.0994 22 330 345 2 13 0.01 2 4.5 0.0097
11 165 180 2 13 0.01 2 9.5 0.1394 23 345 360 2 13 0 2 3.9 0.0317

Algorithm 3: First-Found-First-Removed Repair of a lay-
out

1 Li = {};
2 for j = 1 to N do
3 Add turbine Tj to Li;
4 c = Check(Li) for constraint violations;
5 if c then
6 Remove turbine Tj from Li;

7 Return Li;

Algorithm 4: Worst-First Removal Repair of a layout

1 Li = ith particle ;
2 while g=1 do
3 ρ = Rank(Li);
4 Remove turbine Tj where j = max of ρ ;
5 c = Check(Li) for constraint violations;
6 if c = 0 then
7 g=2;

8 return Li;

larger. In Scenario 1, the dominant wind directions are 750

- 900 (with P (θ) = 0.2) and 900- 1050 (with P (θ) = 0.6).
There is no wind coming from 00- 150, and 3450- 3600. For
the rest of the bins the P (θ) = 0.01.

Scenario 2 is more complex and realistic. The shape param-
eter is the same for all bins, however, the scale parameter is
different for different bins and ranges from 4 - 10. Similarly,
P (θ) also varies over the range 0.001 to 0.1839. It is more
difficult to nominally identify competent layouts as there is no
prominent wind direction. In Scenario 1 one can optimize for
the prominent directions and not lose significant efficiency.
In Scenario 2, one has to optimize the layout to work with
minimum wake loss along all the wind directions.

A. Algorithm settings

To successfully run a particle swarm optimization on this
constrained optimization problem we have to specify a variety
of settings including initialization.
• Initialization of particles: In our layout optimization

problem we are attempting to search for turbine
positions and at the same time shrink the search area
and reduce the number of search variables while still
not violating the constraints. Due to this complexity,
initialization of the particles plays an important role. We
tried different initialization strategies including a grid
based initilization. However our results were best when
turbines were placed randomly. Initializing in a grid
provided a local optimal solution and the particles could
not move without breaking a constraint. We chose two
different initialization cases. In Case 1 we initialize 200
turbines in a 20km × 20km grid. In Case 2 the grid is
sized 10km × 10km. No other restrictions were placed
on the location of turbines.

• Maximum velocity: Since there is a possibility that
particles can attempt to move large distances, an upper
and lower bound on the maximum velocity is placed.
If the velocity update and hence position update is not
bounded, particles can quickly become infeasible due
to large displacements in turbine positions. We used
[−38.5, 38.5] as the limits for the velocity (and hence
the position update). This value is equivalent to the rotor
radius.

• Algorithm parameters: Both social and cognitive learning
factors, ψ1 and ψ2 were set equal to 1. We used a pop-
ulation size of 100 and ran the swarm for 200 iterations
giving us 20000 fitness evaluations. A inertia weight of
0.8 was used.

In the following we compare the two different con-
straint violation repair strategies: First-Come-First-Removed
and Worst-First Removal on Case 1. Afterwards, we use

Worst-First Removal repair and explore both initialization
cases.

B. Comparison of Repair Strategies

Here we compare the two different constraint violation
repair methods: First-Come-First-Removed and Worst-First
Removal on Case 1. We collected the results in terms of the
Pareto front plots from each run and then constructed what
we call a super Pareto front plot for each method. A super
Pareto Front is the non-dominated solutions of the union of all
final iteration pareto fronts of the runs. Figure 1 shows them.
The Worst-First Removal approach works slightly better than
the First-Come-First-Removed approach. For the rest of the
experiments we focused on the Worst-First Removal approach.

4.9 5 5.1 5.2 5.3 5.4 5.5 5.6
x 108

1.2

1.25

1.3

1.35

1.4 x 106

Cost

Po
we

r C
ap

tu
re

 in
 k

W

First−Found−First−Removed Repair
Worst−First Removal Repair

Fig. 1. Super Pareto plots generated for the two repair methods. Worst-
First Removal approach performs slightly better than the First-Come-First-
Removed approach.

Figure 2 shows the progress of the Pareto front estimate
from the 1st iteration, to the 50th and final one of 200 itera-
tions, when using Wind Scenario 2. We notice that majority of
the improvements are achieved in the first 50 iterations, more
so for Case 1. This is because Case 1 initializes the swarm in a
larger area and this makes it easier to navigate and make good
progress. However, the progress stagnates after 100 iterations.
For Case 2, the smaller land area initialization, the MOPSO
still achieve improvements but to a lesser degree. In Figure 3
we present the super Pareto front plots aggregated over 5
independent runs of the algorithm. Because the algorithm
stagnated when initialized with the larger area the resulting
layouts used a higher area for the same power capture versus
initialization with the small area (Case 2). An expert layout
designer would prefer the results from Case 2 because they
have lower layout cost for approximately the same energy
capture. From this we conclude that initialization plays an
important role for the multi-objective layout optimization
problem. This stems from the fact that the second objective
works to shrink the layout area during optimization.

For the Wind Scenario 1, we use Worst-First Removal
repair and explore the smaller initialization case (an area only
20X10km2). The results are shown in Figure 4. We are able

to achieve higher power than in Scenario 2 because the wind
has two dominant directions and turbines can be placed in an
position ideal for the majority of the time.

V. CONCLUSIONS

The design of a wind farm involves a lot of (possible
conflicting) optimization problems. In this paper, we have
considered the goal of maximizing the energy output under
the consideration of wake effects as well as minimizing the
layout costs incurred due to the turbines and the land area used.
We designed strategies to overcome the infeasible solutions in
the search space and developed a particle swarm optimization
algorithm that is able to deal with this complex multi-objective
optimization problem. Our approach was tested on a 200
turbine layout problem. The results give new insights into
the trade-off of these two optimization goals and present
multiple competent layouts. Multiple competent layouts are
useful in wind farm design since often many constraints and
objectives are not expressed prior to the optimization. Our
algorithm can be easily used as a tool for helping designers to
trade-off these conflicting goals. Further studies should take
into account other relevant optimization goals such as cable
lengths, electrical subsystems and infrastructure costs.

REFERENCES

[1] AWS openwind www.awsopenwind.org.
[2] A. Kusiak and Z. Song. Design of wind farm layout for maximum wind

energy capture. Renewable Energy, 35(3):685 – 694, 2010.
[3] X. Li. A non-dominated sorting particle swarm optimizer for multi-

objective optimization. In Lecture Notes in Computer Science, volume
2723/2003, page 198. Springer, 2003.

[4] M. Wagner, K. Veeramachaneni, F. Neumann, and U.-M. O’Reilly.
Optimizing the layout of 1000 wind turbines. In European Wind Energy
Association Annual Event, 2011.

[5] C. Wan, J. Wang, G. Yang, X. Li, and X. Zhang. Optimal micro-siting of
wind turbines by genetic algorithms based on improved wind and turbine
models. In Decision and Control, pages 5092–5096, 2009.

[6] C. Wan, J. Wang, G. Yang, X. Li, and X. Zhang. Optimal siting of wind
turbines using real coded genetic algorithms. Proceedings of European
Wind Energy Association Conference and Exhibition, 2009.

[7] C. Wan, J. Wang, G. Yang, and X. Zhang. Optimal micro-siting of wind
farms by particle swarm optimization. In Advances in Swarm Intelligence,
volume 6145 of Lecture Notes in Computer Science, pages 198–205.
Springer, 2010.

Fig. 2. Wind scenario 2: Estimated pareto front for Case 1 (left) and Case 2 (right). Notice the significant reduction in costs for the same energy capture as
iterations progress.

4 4.5 5 5.5
x 108

1

1.1

1.2

1.3

1.4 x 106

Cost

Po
we

r C
ap

tu
re

 in
 k

W

2.5 3 3.5 4
x 108

0.8

0.9

1

1.1

1.2

1.3 x 106

Cost

Po
we

r C
ap

tu
re

 in
 k

W

Fig. 3. Wind scenario 2: Super Pareto front aggregrated from 5 independent runs for Cases 1(l) and 2(r).

2.6 2.8 3 3.2 3.4 3.6 3.8
x 108

1.6

1.8

2

2.2

2.4

2.6 x 106

Cost

Po
we

r c
ap

tu
re

 in
 k

W

120 130 140 150 160 170 180 190
1.6

1.8

2

2.2

2.4

2.6 x 10
6

Number of turbines

P
ow

er
 c

ap
tu

re
d

kW

Fig. 4. Results achieved for Wind Scenario 1: Case 1(l) and 2(r).

