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ABSTRACT
We extend the work of Lehre and Witt (GECCO 2010) on
the unbiased black-box model by considering higher arity
variation operators. In particular, we show that already for
binary operators the black-box complexity of LeadingOnes
drops from Θ(n2) for unary operators to O(n logn). For
OneMax, the Ω(n logn) unary black-box complexity drops
to O(n) in the binary case. For k-ary operators, k ≤ n, the
OneMax-complexity further decreases to O(n/ log k).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Performance, Theory

Keywords
Black-box complexity, runtime analysis, pseudo-Boolean op-
timization, theory

1. INTRODUCTION
When we analyze the optimization time of randomized

search heuristics, we typically assume that the heuristic does
not know anything about the objective function apart from
its membership in a large class of functions, e.g., linear or

∗Supported by Deutsche Forschungsgemeinschaft (DFG)
under grant no. WI 3552/1-1.
†Timo Kötzing was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant NE 1182/5-1.
‡Carola Winzen is a recipient of the Google Europe Fellow-
ship in Randomized Algorithms, and this research is sup-
ported in part by this Google Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOGA’11, January 5–9, 2011, A-6867 Schwarzenberg, Austria.
Copyright 2011 ACM 978-1-4503-0633-1/11/01 ...$10.00.

monotone functions. Thus, the function is typically consid-
ered to be given as a black-box, i.e., in order to optimize the
function, the algorithm needs to query the function values of
various search points. The algorithm may then use the infor-
mation on the function values to create new search points.
We call the minimum number of function evaluations needed
for a randomized search heuristic to optimize any function
f of a given function class F the black-box complexity of F .
We may restrict the algorithm class with respect to how al-
gorithms create new search points from the information col-
lected in previous steps. Intuitively, the stronger restrictions
that are imposed on the search points which the algorithms
can query next, the larger the black-box complexity of the
function class.

Black-box complexity for search heuristics was introduced
in 2006 by Droste, Jansen, and Wegener [DJW06]. We
call their model the unrestricted black-box model as it im-
poses few restrictions on how the algorithm may create new
search points from the information at hand. This model
was the first attempt towards creating a complexity the-
ory for randomized search heuristics. However, the authors
prove bounds that deviate from those known for well-studied
search heuristics, such as random local search and evolu-
tionary algorithms. For example, the well-studied function
class OneMax has an unrestricted black-box complexity of
Θ(n/ logn) whereas standard search heuristics only achieve
a Ω(n logn) runtime. Similarly, the class LeadingOnes has
a linear unrestricted black-box complexity but we typically
observe a Ω(n2) behavior for standard heuristics.

These gaps, among other reasons, motivated Lehre and
Witt [LW10] to propose an alternative model. In their un-
biased black-box model the algorithm may only invoke a
so-called unbiased variation operator to create new search
points. A variation operator returns a new search point
given one or more previous search points. Now, intuitively,
the unbiasedness condition implies that the variation op-
erator is symmetric with respect to the bit values and bit
positions. Or, to be more precise, it must be invariant un-
der Hamming-automorphisms. We give a formal definition
of the two black-box models in Section 2.

Among other problem instances, Lehre and Witt ana-
lyze the unbiased black-box complexity of the two func-
tion classes OneMax and LeadingOnes. They can show
that the complexity of OneMax and LeadingOnes match
the above mentioned Θ(n logn) and, respectively, Θ(n2)
bounds, if we only allow unary operators. I.e., if the varia-



Model Arity OneMax LeadingOnes

unbiased 1 Θ(n logn) [LW10] Θ(n2) [LW10]
unbiased 1 < k ≤ n O(n/ log k) (here) O(n logn) (here)
unrestricted n/a Ω(n/ logn) [DJW06] Ω(n) [DJW06]

O(n/ logn) [AW09]

Table 1: Black-Box Complexity of OneMax and LeadingOnes. Note that upper bounds for the unbiased unary
black-box complexity immediately carry over to higher arities. Similarly, lower bounds for the unrestricted
black-box model also hold for the unbiased model.

tion operator may only use the information from at most one
previously queried search point (1-ary or unary operator),
the unbiased black-box complexity matches the runtime of
the well-known (1 + 1) Evolutionary Algorithm.

In their first work, Lehre and Witt give no results on the
black-box complexity of higher arity models. A variation op-
erator is said to be of arity k if it creates new search points
by recombining up to k previously queried search points. We
are interested in higher arity black-box models because they
include commonly used search heuristics which are not cov-
ered by the unary operators. Among such heuristics are evo-
lutionary algorithms that employ uniform crossover, particle
swarm optimization [KE01], ant colony optimization [DS04]
and estimation of distribution algorithms [LL02].

Although search heuristics that employ higher arity op-
erators are poorly understood from a theoretical point of
view, there are some results proving that situations exist
where higher arity is helpful. For example, Doerr, Klein,
and Happ [DHK08] show that a concatenation operator re-
duces the runtime on the all-pairs shortest path problem.
Refer to the same paper for further references.

Extending the work from Lehre and Witt, we ana-
lyze higher arity black-box complexities of OneMax and
LeadingOnes. In particular, we show that, surprisingly,
the unbiased black-box complexity drops from Θ(n2) in
the unary case to O(n logn) for LeadingOnes and from
Θ(n logn) to an at most linear complexity for OneMax. As
the bounds for unbiased unary black-box complexities im-
mediately carry over to all higher arity unbiased black-box
complexities, we see that increasing the arity of the variation
operators provably helps to decrease the complexity. We are
optimistic that the ideas developed to prove the bounds can
be further exploited to achieve reduced black-box complex-
ities also for other function classes.

In this work, we also prove that increasing the arity further
does again help. In particular, we show that for every k ≤ n,
the unbiased k-ary black-box complexity of OneMax can be
bounded by O(n/ log k). This bound is optimal for k = n,
because the unbiased black-box complexity can always be
bounded below by the unrestricted black-box complexity,
which is known to be Ω(n/ logn) for OneMax [DJW06].

Note that a comparison between the unrestricted black-
box complexity and the unbiased black-box complexity of
LeadingOnes cannot be derived that easily. The asymp-
totic linear unrestricted black-box complexity mentioned
above is only known to hold for a subclass of the class
LeadingOnes considered in this work.

Table 1 summarizes the results obtained in this paper,
and provides a comparison with known results on black-box
complexity of OneMax and LeadingOnes.

2. UNRESTRICTED AND UNBIASED
BLACK-BOX COMPLEXITIES

In this section, we formally define the two black-box mod-
els by Droste, Jansen, and Wegener [DJW06], and Lehre
and Witt [LW10]. We call the first model the unrestricted
black-box model, and the second model the unbiased black-
box model. Each model specifies a class of algorithms. The
black-box complexity of a function class is then defined with
respect to the algorithms specified by the corresponding
model. We start by describing the two models, then pro-
vide the corresponding definitions of black-box complexity.

In both models, one is faced with a class of pseudo-
Boolean functions F that is known to the algorithm. An
adversary chooses a function f from this class. The func-
tion f itself remains unknown to the algorithm. The al-
gorithm can only gain knowledge about the function f by
querying an oracle for the function value of search points.
The goal of the algorithm is to find a globally optimal search
point for the function. Without loss of generality, we con-
sider maximization as objective. The two models differ in
the information available to the algorithm, and the search
points that can be queried.

Let us begin with some notation. Throughout this paper,
we consider the maximization of pseudo-Boolean functions
f : {0, 1}n → R. In particular, n will always denote the
length of the bitstring to be optimized. For a bitstring x ∈
{0, 1}n, we write x = x1 · · ·xn. For convenience, we denote
the positive integers by N. For k ∈ N, we use the notion [k]
as a shorthand for the set {1, . . . , k}. Analogously, we define
[0..k] := [k] ∪ {0}. Furthermore, let Sk denote the set of all
permutations of [k]. With slight abuse of notation, we write
σ(x) := xσ(1) · · ·xσ(n) for σ ∈ Sn. Furthermore, the bitwise
exclusive-or is denoted by ⊕. For any bitstring x we denote
its complement by x. Finally, we use standard notation for
asymptotic growth of functions (see, e.g., [CLRS01]). In
particular, we denote by on(g(n)) the set of all functions f
that satisfy limn→∞ f(n)/g(n) = 0.

The unrestricted black-box model contains all algorithms
which can be formalized as in Algorithm 1. A basic feature
is that this scheme does not force any relationship between
the search points of subsequent queries. Thus, this model
contains a broad class of algorithms.

To exclude some algorithms whose behavior does not re-
semble those of typical search-heuristics, one can impose
further restrictions. The unbiased black-box model (see Al-
gorithm 2) introduced in [LW10] restricts Algorithm 1 in
two ways. First, the decisions made by the algorithm only
depends on the observed fitness values, and not the actual
search points. Second, the algorithm can only query search
points obtained by variation operators that are unbiased in



Algorithm 1: Unrestricted Black-Box Algorithm

1 Choose a probability distribution p0 on {0, 1}n.

2 Sample x0 according to p0 and query f(x0).
3 for t = 1, 2, 3, . . . until termination condition met do
4 Depending on ((x0, f(x0)), . . . , (xt−1, f(xt−1))),

choose
5 a probability distribution pt on {0, 1}n.

6 Sample xt according to pt, and query f(xt).

the following sense. By imposing these two restrictions, the
black-box complexity matches the runtime of popular search
heuristics on example functions.

Definition 1. (Unbiased k-ary variation opera-
tor [LW10]) Let k ∈ N. An unbiased k-ary distribution
D(· | x1, . . . , xk) is a conditional probability distribution over
{0, 1}n, such that for all bitstrings y, z ∈ {0, 1}n, and each
permutation σ ∈ Sn, the following two conditions hold.

(i) D(y | x1, . . . , xk) = D(y ⊕ z | x1 ⊕ z, . . . , xk ⊕ z),

(ii) D(y | x1, . . . , xk) = D(σ(y) | σ(x1), . . . , σ(xk)) .

An unbiased k-ary variation operator p is a k-ary opera-
tor which samples its output according to an unbiased k-ary
distribution.

The first condition in Definition 1 is referred to as ⊕-
invariance, and the second condition is referred to as per-
mutation invariance. Note that the combination of these
two conditions can be characterized as invariance under
Hamming-automorphisms: D(· | x1, . . . , xk) is unbiased if
and only if, for all α : {0, 1}n → {0, 1}n preserving the
Hamming distance and all bitstrings y, D(y | x1, . . . , xk) =
D(α(y) | α(x1), . . . , α(xk)). We refer to 1-ary and 2-ary
variation operators as unary and binary variation opera-
tors, respectively. E.g., the standard bitwise mutation op-
erator is a unary operator, and the uniform crossover oper-
ator is a binary operator. Note however that the one-point
crossover operator is not permutation-invariant, and there-
fore not an unbiased operator. The unbiased k-ary black-
box model contains all algorithms which follow the scheme
of Algorithm 2. While being a restriction of the old model,
the unbiased model still captures the most widely studied
search heuristics, including most evolutionary algorithms,
simulated annealing and random local search.

Note that in line 5 of Algorithm 2, y1, . . . , yk don’t neces-
sarily have to be the k immediately previously queried ones.
That is, the algorithm is allowed to choose any k previously
sampled search points.

We now define black-box complexity formally. We will use
query complexity as the cost model, where the algorithm is
only charged for queries to the oracle, and all other compu-
tation is free. The runtime TA,f of a randomized algorithm
A on a function f ∈ F is hence the expected number of
oracle queries until the optimal search point is queried for
the first time. The expectation is taken with respect to the
random choices made by the algorithm.

Definition 2 (Black-box complexity). The
complexity of a class of pseudo-Boolean functions F
with respect to a class of algorithms A, is defined as
TA(F) := minA∈Amaxf∈F TA,f .

The unrestricted black-box complexity is the complexity
with respect to the algorithms covered by Algorithm 1. For
any given k ∈ N, the unbiased k-ary black-box complexity
is the complexity with respect to the algorithms covered
by Algorithm 2. Furthermore, the unbiased ∗-ary black-box
complexity is the complexity with respect to the algorithms
covered by Algorithm 2, without limitation on the arity of
the operators used.

It is easy to see that every unbiased k-ary operator p
can be simulated by an unbiased (k+1)-ary operator p′ de-
fined as p′(z | x1, . . . , xk, xk+1) := p(z | x1, . . . , xk). Hence,
the unbiased k-ary black-box complexity is an upper bound
for the unbiased (k+1)-ary black-box complexity. Similarly,
the set of unbiased black-box algorithms for any arity is
contained in the set of unrestricted black-box algorithms.
Therefore, the unrestricted black-box complexity is a lower
bound for the unbiased k-ary black-box complexity (for all
k ∈ N).

Algorithm 2: Unbiased k-ary Black-Box Algorithm

1 Sample x0 uniformly at random from {0, 1}n and query

f(x0).
2 for t = 1, 2, 3, . . . until termination condition met do
3 Depending on (f(x0), . . . , f(xt−1)), choose

4 an unbiased k-ary variation operator pt, and

5 k previously queried search points y1, . . . , yk.

6 Sample xt according to pt(y1, . . . , yk), and query

f(xt).

3. THE UNBIASED ∗-ARY BLACK-BOX
COMPLEXITY OF ONEMAX

In this section, we show that the unbiased black-box com-
plexity of OneMax is Θ(n/ logn) with a leading constant
between one and two. We begin with the formal definition
of the function class OneMaxn. We will omit the subscript
“n” if the size of the input is clear from the context.

Definition 3 (OneMax). For all n ∈ N and each
z ∈ {0, 1}n we define Omz : {0, 1}n → N, x 7→ |{j ∈ [n] |
xj = zj}|.1 The class OneMaxn is defined as OneMaxn :=
{Omz | z ∈ {0, 1}n} .

To motivate the definitions, let us briefly mention that we
do not further consider the optimization of specific functions
such as Om(1,...,1), since they would have an unrestricted
black-box complexity of 1: The algorithm asking for the bit-
string (1, . . . , 1) in the first step easily optimizes the function
in just one step. Thus, we need to consider some general-
izations of these functions. For the unrestricted black-box
model, we already have a lower bound by Droste Jansen,
and Wegener [DJW06]. For the same model, an algorithm
which matches this bound in order of magnitude is given by
Anil and Wiegand in [AW09].

Theorem 4. The unrestricted black-box complexity of
OneMaxn is Θ(n/ logn). Moreover, the leading constant
is at least 1.

1Intuitively, Omz is the function of n minus the Hamming
distance to z.



As already mentioned, the lower bound on the complexity
of OneMaxn in the unrestricted black-box model from The-
orem 4 directly carries over to the stricter unbiased black-
box model.

Corollary 5. The unbiased ∗-ary black-box complexity
of OneMaxn is at least n/ logn.

Moreover, an upper bound on the complexity of OneMax
in the unbiased black-box model can be derived using the
same algorithmic approach as given for the unrestricted
black-box model (compare [AW09] and Theorem 4).

Theorem 6. The unbiased ∗-ary black-box complexity of
OneMaxn is at most (1 + on(1)) 2n

logn
.

In return, this theorem also applies to the unrestricted
black-box model and refines Theorem 4 by explicitly bound-
ing the leading constant of the unrestricted black-box com-
plexity for OneMax by a factor of two of the lower
bound. The result in Theorem 6 is based on Algo-
rithm 3. This algorithm makes use of the operator uni-

formSample that samples a bitstring uniformly at ran-
dom, which clearly is an unbiased (0-ary) variation oper-
ator. Further, it makes use of another family of oper-
ators: chooseConsistentu1,...,ut(x

1, . . . , xt) chooses a bit-
string z ∈ {0, 1}n uniformly at random such that, for all
i ∈ [t], Omz(x

i) = ui (if there exists one, and any bit-
string uniformly at random otherwise). In other words, bit-
string z is chosen such that the function values of Omz on
the search points x1, . . . , xt are consistent with the observed
values u1, . . . , ut. It is easy to see that this is a family of
unbiased variation operators.

Algorithm 3: Optimizing OneMax with unbiased variation
operators.

1 input Integer n ∈ N and function f ∈ OneMaxn;

2 initialization t←
⌈(

1 + 4 log logn
logn

)
2n

logn

⌉
;

3 repeat
4 foreach i ∈ [t] do
5 xi ← uniformSample ();

6 w ← chooseConsistentf(x1),...,f(xt)(x
1, . . . , xt);

7 until f(w) = n;
8 output w;

An upper bound of (1 + on(1))2n/ logn for the expected
runtime of Algorithm 3 follows directly from the following
theorem which implies that the number of repetitions of
steps 4 to 6 follows a geometric distribution with success
probability 1− on(1). This proves Theorem 6.

Lemma 7. Let n be sufficiently large (i. e., let n ≥ N0 for
some fixed constant N0 ∈ N). Let z ∈ {0, 1}n and let X be
a set of t ≥

(
1 + 4 log logn

logn

)
2n

logn
samples chosen from {0, 1}n

uniformly at random and mutually independent. Then the
probability that there exists an element y ∈ {0, 1}n such
that y 6= z and Omy(x) = Omz(x) for all x ∈ X is bounded

from above by 2−t/2.

The previous lemma is a refinement of Theorem 1
in [AW09], and its proof follows the proof of Theorem 1

in [AW09], clarifying some inconsistencies2 in that proof.
To show Lemma 7, we first give a bound on a combina-
torial quantity used later in its proof (compare Lemma 1
in [AW09]).

Proposition 8. For sufficiently large n,

t ≥
(

1 +
4 log logn

logn

)
2n

logn
,

and even d ∈ {2, . . . , n}, it holds that(
n

d

)((
d
d/2

)
2−d

)t
≤ 2−3t/4. (1)

Proof. By Stirling’s formula, we have
(
d
d/2

)
≤(

πd
2

)−1/2
2d. Therefore,(
n

d

)((
d
d/2

)
2−d

)t
≤

(
n

d

)(
πd

2

)−t/2
. (2)

We distinguish two cases. First, we consider the case 2 ≤
d < n/(logn)3. By Stirling’s formula, it holds that

(
n
d

)
≤(

en
d

)d
. Thus, we get from (2) that(

n

d

)((
d
d/2

)
2−d

)t
≤
(en
d

)d(πd
2

)−t/2
= 2( 2d

t
log( end )−log(πd2 )) t2 .

(3)

We bound d by its minimal value 2 and maximal
value n/(logn)3, and t by 2n/ logn to obtain

2d

t
log

en

d
− log

πd

2
≤ 1

(logn)2
log

en

2
− log π.

Since the first term on the right hand side converges to 0 and
since log π > 3/2, the exponent in (3) can be bounded from
above by -3t/4, if n is sufficiently large. Thus, we obtain
inequality (1) for 2 ≤ d < n/(logn)3.

Next, we consider the case n/(logn)3 ≤ d ≤ n. By the
binomial formula, it holds that

(
n
d

)
≤ 2n. Thus,(

n

d

)(
πd

2

)−t/2
≤ 2n

(
πd

2

)−t/2
= 2( 2n

t
−log πd

2 ) t2 . (4)

We bound πd/2 by n/(logn)3 and t by
(
1 + 4 log logn

logn

)
2n

logn
to obtain

2n

t
− log

πd

2
≤ logn

1 + 4 log logn
logn

− log(n/(logn)3)

=
logn

1 + 4 log logn
logn

− logn+ 3 log logn

=
3 log logn+ 4 log logn

logn
(− logn+ 3 log logn)

1 + 4 log logn
logn

= − logn− 12 log logn

logn+ 4 log logn
log log n.

2For example, in the proof of Lemma 1 in [AW09] the fol-
lowing claim is made. Let d(n) be a monotone increasing se-
quence that tends to infinity. Then for sufficient large n the

sequence hd(n) = (πd(n)
8

)1/(2 lnn) is bounded away from 1 by
a constant b > 1. Clearly, this is not the case. For example,
for d(n) = logn, the sequence hlog(n) converges to 1.



Again, for sufficiently large n the right hand side becomes
smaller than −3/2. We combine the previous inequality
with inequalities (2) and (4) to show inequality (1) for
n/(logn)3 ≤ d ≤ n.

With the previous proposition at hand, we finally prove
Lemma 7.

Proof of Lemma 7. Let n be sufficiently large, z ∈
{0, 1}n, and X a set of t ≥

(
1 + 4 log logn

logn

)
2n

logn
samples

chosen from {0, 1}n uniformly at random and mutually in-
dependent.

For d ∈ [n], let Ad := {y ∈ {0, 1}n
∣∣ n − Omz(y) = d}

be the set of all points with Hamming distance d from z.
Let d ∈ [n] and y ∈ Ad. We say the point y is consistent
with x if Omy(x) = Omz(x) holds. Intuitively, this means
that Omy is a possible target function, given the fitness of
x. It is easy to see that y is consistent with x if and only
if x and y (and therefore x and z) differ in exactly half of
the d bits that differ between y and z. Therefore, y is never
consistent with x if d is odd and the probability that y is
consistent with x is

(
d
d/2

)
2−d if d is even.

Let p be the probability that there exists a point y ∈
{0, 1}n \ {z} such that y is consistent with all x ∈ X. Then,

p = Pr
( ⋃
y∈{0,1}n\{z}

⋂
x∈X

“y is consistent with x”
)
.

Thus, by the union bound, we have

p ≤
∑

y∈{0,1}n\{z}

Pr
( ⋂
x∈X

“y is consistent with x”
)
.

Since, for a fixed y, the events “y is consistent with x” are
mutually independent for all x ∈ X, it holds that

p ≤
n∑
d=1

∑
y∈Ad

∏
x∈X

Pr(“y is consistent with x”).

We substitute the probability that a fixed y ∈ {0, 1}n is con-
sistent with a randomly chosen x ∈ {0, 1}n as given above.
Using |Ad| =

(
n
d

)
, we obtain

p ≤
∑

d∈{1,...,n} : d even

(
n

d

)((
d
d/2

)
2−d

)t
Finally, we apply Proposition 8 and have p ≤ n2−3t/4 which
concludes the proof since n ≤ 2t/4 for sufficiently large n (as
t in Ω(n/ logn)).

4. THE UNBIASED K-ARY BLACK-BOX
COMPLEXITY OF ONEMAX

In this section, we show that higher arity indeed enables
the construction of faster black-box algorithms. In particu-
lar, we show the following result.

Theorem 9. For every k ∈ [n] with k ≥ 2, the unbiased
k-ary black-box complexity of OneMaxn is at most linear
in n. Moreover, it is at most (1 + ok(1))2n/ log k.

This result is surprising, since in [LW10], Lehre and Witt
prove that the unbiased unary black-box complexity of the
class of all functions f with a unique global optimum is
Ω(n logn). Thus, we gain a factor of logn when switching
from unary to binary variation operators.

To prove Theorem 9, we introduce two different algo-
rithms interesting on their own. Both algorithms share the
idea to track which bits have already been optimized. That
way we can avoid flipping them again in future iterations of
the algorithm.

The first algorithm proves that the unbiased binary black-
box complexity of OneMaxn is at most linear in n if the
arity is at least two. For the general case, with k ≥ 3,
we give a different algorithm that provides asymptotically
better bounds for k growing in n. We use the idea that
the whole bitstring can be divided into smaller substrings,
and subsequently those can be independently optimized. We
show that this is possible, and together with Theorem 6, this
yields the above bound for OneMaxn in the k-ary case for
k ≥ 3.

4.1 The Binary Case
We begin with the binary case. We use the three un-

biased variation operators uniformSample (as described in
Section 3), complement and flipOneWhereDifferent de-
fined as follows. The unary operator complement(x) re-
turns the bitwise complement of x. The binary operator
flipOneWhereDifferent(x, y) returns a copy of x, where one
of the bits that differ in x and y is chosen uniformly at ran-
dom and then flipped. It is easy to see that complement and
flipOneWhereDifferent are unbiased variation operators.

Algorithm 4: Optimizing OneMax with unbiased binary
variation operators.

1 input Integer n ∈ N and function f ∈ OneMaxn;
2 initialization x← uniformSample();
3 y ← complement(x);
4 repeat
5 Choose b ∈ {0, 1} uniformly at random;
6 if b = 1 then
7 x′ ← flipOneWhereDifferent(x, y);
8 if f(x′) > f(x) then x← x′;

9 else
10 y′ ← flipOneWhereDifferent(y, x);
11 if f(y′) > f(y) then y ← y′;

12 until f(x) = n;
13 output x;

Lemma 10. With exponentially small probability of fail-
ure, the optimization time of Algorithm 4 on the class
OneMaxn is at most (1 + ε)2n, for all ε > 0. The algo-
rithm only involves binary operators.

Proof. We first prove that the algorithm is correct. As-
sume that the instance has optimum z, for some z ∈ {0, 1}n.
We show that the following invariant is satisfied in the be-
ginning of every iteration of the main loop (steps 4-12): for
all i ∈ [n], if xi = yi, then xi = zi. In other words, the
positions where x and y have the same bit value are opti-
mized. The invariant clearly holds in the first iteration, as
x and y differ in all bit positions. A bit flip is only accepted
if the fitness value is strictly higher, an event which occurs
with positive probability. Hence, if the invariant holds in
the current iteration, then it also holds in the following it-
eration. By induction, the invariant property now holds in
every iteration of the main loop.



We then analyze the runtime of the algorithm. Let T be
the number of iterations needed until n bit positions have
been optimized. Due to the invariant property, this is the
same as the time needed to reduce the Hamming distance
between x and y from n to 0. An iteration is successful, i.e.,
the Hamming distance is reduced by 1, with probability 1/2
independently of previous trials. The random variable T is
therefore negative binomially distributed with parameters
n and 1/2. It can be related to a binomially distributed
random variable X with parameters 2n(1 + ε) and 1/2 by
Pr(T ≥ 2n(1 + ε)) = Pr(X ≤ n). Finally, by applying
a Chernoff bound with respect to X, we obtain Pr(T ≥
2n(1 + ε)) ≤ exp(−ε2n/2(1 + ε)).

It is easy to see that Algorithm 4 yields the same bounds
on the class of monotone functions, which is defined as fol-
lows.

Definition 11 (Monotone functions). Let n ∈ N
and let z ∈ {0, 1}n. A function f : {0, 1}n → R is said
to be monotone with respect to z if for all y, y′ ∈ {0, 1}n
with {i ∈ [n] | yi = zi} ( {i ∈ [n] | y′i = zi} it holds that
f(y) < f(y′). The class Monotonen contains all such func-
tions that are monotone with respect to some z ∈ {0, 1}n.

Now, let f be a monotone function with respect to z and
let y and y′ be two bitstrings which differ only in the i-th
position. Assume that yi 6= zi and y′i = zi. It follows from
the monotonicity of f that f(y) < f(y′). Consequently, Al-
gorithm 4 optimizes f as fast as any function in OneMaxn.

Corollary 12. The unbiased binary black-box complex-
ity of Monotonen is O(n).

Note that Monotonen strictly includes the class of linear
functions with non-zero weights.

4.2 Proof of Theorem 9 for Arity k ≥ 3

For the case of arity k ≥ 3 we analyze the following Algo-
rithm 5 and show that its optimization time on OneMaxn
is at most (1 + ok(1))2n/ log k. Informally, the algorithm
splits the bitstring into blocks of length k. The n/k blocks
are then optimized separately using a variant of Algorithm 3,
each in expected time (1− ok(1))2k/ log k.

In detail, Algorithm 5 maintains its state using three bit-
strings x, y and z. Bitstring x represents the preliminary
solution. The positions in which bitstrings x and y differ
represent the remaining blocks to be optimized, and the po-
sitions in which bitstrings y and z differ represent the current
block to be optimized. Due to permutation invariance, it can
be assumed without loss of generality that the bitstrings
can be expressed by x = αβγ, y = αβγ, and z = αβγ,
see Step 6 of Algorithm 5. The algorithm uses an operator
called flipKWhereDifferent` to select a new block of size `
to optimize. The selected block is optimized by calling the
subroutine optimizeSelectedn,`, and the optimized block
is inserted into the preliminary solution using the operator
update.

The operators in Algorithm 5 are defined as follows.
The operator flipKWhereDifferentk(x, y) generates the
bitstring z. This is done by making a copy of y, choosing
` := min{k,H(x, y)} bit positions for which x and y dif-
fer uniformly at random, and flipping them. The operator
update(a, b, c) returns a bitstring a′ which in each position

i ∈ [n] independently, takes the value a′i = bi if ai = ci, and
a′i = ai otherwise. Clearly, both these operators are unbi-
ased. The operators uniformSample and complement have
been defined in previous sections.

Algorithm 5:Optimizing OneMax with unbiased k-ary vari-
ation operators, for k ≥ 3.

1 input Integers n, k ∈ N, and function f ∈ OneMaxn;

2 initialization x1 ← uniformSample(),

y1 ← complement(x), and τ ← dn
k
e;

3 foreach t ∈ [τ ] do
4 `(t)← min{k, n− k(t− 1)};
5 z ← flipKWhereDifferent`(t)(x

t, yt);

6 Assume that xt = αβγ, yt = αβγ, and z = αβγ;

7 wtβγ ← optimizeSelectedn,`(t)(αβγ, αβγ);

8 wtβγ ← update(αβγ,wtβγ, αβγ);

9 xt+1 ← wtβγ and yt+1 ← wtβγ;

10 output xτ+1;

It remains to define the subroutine optimizeSelectedn,k.
This subroutine is a variant of Algorithm 3 that only opti-
mizes a selected block of bit positions, and leaves the other
blocks unchanged. The block is represented by the bit posi-
tions in which bitstrings y and z differ. Due to permutation-
invariance, we assume that they are of the form y = ασ and
z = ασ, for some bitstrings α ∈ {0, 1}k, and σ ∈ {0, 1}n−k.
The operator uniformSample in Algorithm 3 is replaced by
a 2-ary operator defined by: randomWhereDifferent(x, y)
chooses z, where for each i ∈ [n], the value of bit zi
is xi or yi with equal probability. Note that this oper-
ator is the same as the standard uniform crossover op-
erator. The operator family chooseConsistent in Algo-
rithm 3 is replaced by a family of (r + 2)-ary operators de-
fined by: chsConsSelu1,...,ur (x1, . . . , xr, ασ, ασ) chooses zσ,
where the prefix z is sampled uniformly at random from the
set Zu,x = {z ∈ {0, 1}k | ∀i ∈ [t] Omz(x

i
1x
i
2 · · ·xik) = ui}. If

the set Zu,x is empty, then z is sampled uniformly at random
among all bitstrings of length k. Informally, the set Zu,x cor-
responds to the subset of functions in OneMaxn that are
consistent with the function values u1, u2, . . . , ur on the in-
puts x1, x2, . . . , xr. It is easy to see that this operator is
unbiased.

Algorithm 6: optimizeSelected used in Algorithm 5.

1 input Integers n, k ∈ N, and bitstrings ασ and ασ,

where α ∈ {0, 1}k and σ ∈ {0, 1}n−k;

2 initialization r ← min
{
k − 2,

⌈(
1 + 4 log log k

log k

)
2k

log k

⌉}
,

fσ ← f(ασ)+f(ασ)−k
2

;
3 repeat
4 foreach i ∈ [r] do
5 xiσ ← randomWhereDifferent(ασ, ασ);

6 wσ ←
chsConsSelf(x1σ)−fσ,...,f(xrσ)−fσ (x1σ, . . . , xrσ, ασ, ασ);

7 until f(wσ) = k + fσ;
8 output wσ;

Proof of Theorem 9 for arity k ≥ 3. To prove the



correctness of the algorithm, assume without loss of gen-
erality the input f = OneMax for which the correct output
is 1n.

We first claim that a call to optimizeSelectedn,k(ασ, ασ)
will terminate after a finite number of iterations with out-
put 1kσ almost surely. The variable fσ is assigned in
line 2 of Algorithm 6, and it is easy to see that it takes
the value fσ = f(0kσ). It follows from linearity of f
and from f(α0n−k) + f(α0n−k) = k, that f(w0n−k) =
f(wσ) − f(0kσ) = f(wσ) − fσ. The termination condi-
tion f(wσ) = k + fσ is therefore equivalent to the con-
dition wσ = 1kσ. For all x ∈ {0, 1}k, it holds that
Om(1,...,1)(x) = f(x), so 1k is member of the set Zu,x. Hence,

every invocation of chsConsSel returns 1kσ with non-zero
probability. Therefore, the algorithm terminates after every
iteration with non-zero probability, and the claim holds.

We then prove by induction the invariant property that
for all t ∈ [τ + 1], and i ∈ [n], if xti = yti then xti = yti = 1.
The invariant clearly holds for t = 1, so assume that the
invariant also holds for t = j ≤ τ . Without loss of generality,
xj = αβγ, yj = αβγ, xj+1 = wjβγ, and yj+1 = wjβγ.
By the claim above and the induction hypothesis, both the
common prefix wj and the common suffix γ consist of only
1-bits. So the invariant holds for t = j+1, and by induction
also for all t ∈ [τ + 1].

It is easy to see that for all t ≤ τ , the Hamming distance
between xt+1 = wtβγ and yt+1 = wtβγ is H(xt+1, yt+1) =
H(αβγ, αβγ) − `(t) = H(xt, yt) − `(t). By induction, it
therefore holds that

H(xτ+1, yτ+1) = H(x1, y1)−
τ∑
t=1

`(t)

= n−
τ∑
t=1

min{k, n− k(t− 1)} = 0.

Hence, by the invariant above, the algorithm returns the
correct output xτ+1 = yτ+1 = 1n.

The runtime of the algorithm in each iteration
is dominated by the subroutine optimizeSelected.
Note that by definition, the probability that
chsConsSelf(x1σ)−fσ,...,f(xrσ)−fσ (x1σ, . . . , xrσ, ασ, ασ)
chooses zσ in {0, 1}n, is the same as the probability
that chooseConsistentf(x1),...,f(xr)(x

1, . . . , xr) chooses z

in {0, 1}k. To finish the proof, we distinguish between two
cases.

Case 1: k ≤ 53. In this case, it suffices3 to prove that
the runtime is O(n). For the case k = 2, this follows from
Lemma 10. For 2 < k ≤ 53, it holds that r = k − 2. Each
iteration in optimizeSelected uses r + 1 = k − 1 = O(1)
function evaluations, and the probability that chsConsSel

optimizes a block of k bits is at least 1− (1− 2−k)r = Ω(1)
(when w = 1k). Thus, the expected optimization time for
a block is O(1), and for the entire bitstring it is at most
(n/k) ·O(1).

Case 2: k ≥ 54. In this case, r =
⌈(

1 + 4 log log k
log k

)
2k

log k

⌉
holds. Hence, with an analysis analogous to that in the proof
of Theorem 6, we can show that the expected runtime of
optimizeSelected is at most (1+ok(1))2(k−2)/ log(k−2).

3 Assume that the expected runtime is less than cn for some
constant c > 0 when k ≤ 53. It is necessary to show that
cn ≤ 2n/ log k + h(k)2n/ log k, for some function h, where
limk→∞ h(k)→ 0. This can easily be shown by choosing any
such function h, where h(k) ≥ c log k/2 for k ≤ 53.

Thus, the expected runtime is at most n/k · (1+ok(1))2(k−
2)/ log(k − 2) = (1 + ok(1))2n/ log k.

5. THE COMPLEXITY OF LEADING-
ONES

In this section, we show that allowing k-ary variation op-
erators, for k > 1, greatly reduces the black-box complexity
of the LeadingOnes functions class, namely from Θ(n2)
down to O(n logn). We define the class LeadingOnes as
follows.

Definition 13 (LeadingOnes). Let n ∈ N. Let σ ∈
Sn be a permutation of the set [n] and let z ∈ {0, 1}n. The
function Loz,σ is defined via Loz,σ(x) := max{i ∈ [0..n] |
zσ(i) = xσ(i)}. We set LeadingOnesn := {Loz,σ | z ∈
{0, 1}n, σ ∈ Sn} .

The class LeadingOnes is well-studied. Already in 2002,
Droste, Jansen and Wegener [DJW02] proved that the clas-
sical (1+1) EA has an expected optimization time of Θ(n2)
on LeadingOnes. This bound seems to be optimal among
the commonly studied versions of evolutionary algorithms.
In [LW10], the authors prove that the unbiased unary black-
box complexity of LeadingOnes is Θ(n2).

Droste, Jansen and Wegener [DJW06] consider a subclass
of LeadingOnesn, namely LeadingOnes0

n := {Loz,id |
z ∈ {0, 1}n}, where id denotes the identity mapping on [n].
Hence their function class is not permutation invariant. In
this restricted setting, they prove a black-box complexity
of Θ(n). Of course, their lower bound of Ω(n) is a lower
bound for the unrestricted black-box complexity of the gen-
eral LeadingOnesn class, and consequently, a lower bound
also for the unbiased black-box complexities of this class.

The following theorem is the main result in this section.

Theorem 14. The unbiased binary black-box complexity
of LeadingOnesn is O(n logn).

The key ingredient of the two black-box algorithm which
yields the upper bound is an emulation of a binary search
which determines the (unique) bit that increases the fitness
and does flip this bit. Surprisingly, this can be done already
with a binary operator. This works in spite of the fact that
we also follow the general approach of the previous section of
keeping two individuals x and y such that for all bit positions
in which x and y agree, the corresponding bit value equals
the one of the optimal solution.

We will use the two unbiased binary variation op-
erators randomWhereDifferent (as described in Sec-
tion 4.2) and switchIfDistanceOne. The operator
switchIfDistanceOne(y, y′) returns y′ if y and y′ differ in
exactly one bit, and returns y otherwise. It is easy to see
that switchIfDistanceOne is an unbiased variation opera-
tors.

We call a pair (x, y) of search points critical, if the follow-
ing two conditions are satisfied. (i) f(x) ≥ f(y). (ii) There
are exactly f(y) bit-positions i ∈ [n] such that xi = yi. The
following is a simple observation.

Lemma 15. Let f ∈ LeadingOnesn. If (x, y) is a critical
pair, then either f(x) = n = f(y) or f(x) > f(y).

If f(x) > f(y), then the unique bit-position k such that
flipping the k-th bit in x reduces its fitness to f(y) – or



equivalently, the unique bit-position such that flipping this
bit in y increases y’s fitness – shall be called the critical
bit-position. We also call f(y) the value of the pair (x, y).

Note that the above definition does only use some func-
tion values of f , but not the particular definition of f . If
f = Loσ,z, then the above implies that x and y are equal
on the bit-positions σ(1), . . . , σ(f(y)) and are different on
all other bit-positions. Also, the critical bit-position is
σ(f(y) + 1), and the only way to improve the fitness of y
is flipping this particular bit-position (and keeping the po-
sitions σ(1), . . . , σ(f(y)) unchanged). The central part of
Algorithm 7, which is contained in lines 3 to 9, manages to
transform a critical pair of value v < n into one of value v+1
in O(logn) time. This is analyzed in the following lemma.

Lemma 16. Assume that the execution of Algorithm 7 is
before line 4, and that the current value of (x, y) is a criti-
cal pair of value v < n. Then after an expected number of
O(logn) iterations, the loop in lines 5-9 is left and (x, y) or
(y, x) is a critical pair of value v + 1.

Proof. Let k be the critical bit-position of the pair (x, y).
Let y′ = x be a copy of x. Let J := {i ∈ [n] | yi 6= y′i}. Our
aim is to flip all bits of y′ with index in J \ {k}.

We define y′′ by flipping each bit of y′ with index in
J with probability 1/2. Equivalently, we can say that
y′′i equals y′i for all i such that y′i = yi, and is ran-
dom for all other i (thus, we obtain such y′′ by applying
randomWhereDifferent(y, y′)).

With probability exactly 1/2, the critical bit was not
flipped (“success”), and consequently, f(y′′) > f(y). In this
case (due to independence), each other bit with index in J
has a chance of 1/2 of being flipped. So with constant prob-
ability at least 1/2, {i ∈ [n] | yi 6= y′′i } \ {k} is at most half
the size of J \ {k}. In this success case, we take y′′ as new
value for y′.

In consequence, the cardinality of J \ {k} does never in-
crease, and with probability at least 1/4, it decreases by
at least 50%. Consequently, after an expected number of
O(logn) iterations, we have |J | = 1, namely J = {k}. We
check this via an application of switchIfDistanceOne.

We are now ready to prove the main result of this section.

Proof of Theorem 14. We regard the following invari-
ant: (x, y) or (y, x) is a critical pair. This is clearly satisfied
after execution of line 1. From Lemma 16, we see that a
single execution of the outer loop does not dissatisfy our in-
variant. Hence by Lemma 15, our algorithm is correct (pro-
vided it terminates). The algorithm does indeed terminate,
namely in O(n logn) time, because, again by Lemma 16,
each iteration of the outer loop increases the value of the
critical pair by one.

6. CONCLUSION AND FUTURE WORK
We continue the study of the unbiased black-box model

introduced in [LW10]. For the first time, we analyze varia-
tion operators with arity higher than one. Our results show
that already two-ary operators can allow significantly faster
algorithms.

The problem OneMax cannot be solved in shorter time
than Ω(n logn) with unary variation operators [LW10].
However, the runtime can be reduced to O(n) with bi-
nary operators. The runtime can be decreased even further

Algorithm 7: Optimizing LeadingOnes with unbiased bi-
nary variation operators.

1 initialization x← uniformSample();
y ← complement(x);

2 repeat
3 if f(y) > f(x) then (x, y)← (y, x);
4 y′ ← x;
5 repeat
6 y′′ ← randomWhereDifferent(y, y′);
7 if f(y′′) > f(y) then y′ ← y′′;
8 y ← switchIfDistanceOne(y, y′);

9 until f(y) = f(y′);

10 until f(x) = f(y);
11 output x;

with higher arities than two. For k-ary variation operators,
2 ≤ k ≤ n, the runtime can be reduced to O(n/ log k), which

for k = nΘ(1) matches the lower bound in the classical black-
box model. A similar positive effect of higher arity variation
operators can be observed for the function class Leading-
Ones. While this function class cannot be optimized faster
than Ω(n2) with unary variation operators [LW10], we show
that the runtime can be reduced to O(n logn) with binary,
or higher arity variation operators.

Despite the restrictions imposed by the unbiasedness con-
ditions, our analysis demonstrates that black-box algorithms
can employ new and more efficient search heuristics with
higher arity variation operators. In particular, binary varia-
tion operators allow a memory mechanism that can be used
to implement binary search on the positions in the bitstring.
The algorithm can thereby focus on parts of the bitstring
that has not previously been investigated.

An important open problem arising from this work is to
provide lower bounds in the unbiased black-box model for
higher arities than one. Due to the greatly enlarged com-
putational power of black-box algorithms using higher ar-
ity operators (as seen in this paper), proving lower bounds
in this model seems significantly harder than in the unary
model.
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[LL02] P. Larrañaga and J. A. Lozano, Estimation of
distribution algorithms: a new tool for
evolutionary computation, Kluwer Academic
Publishers, 2002.

[LW10] P. K. Lehre and C. Witt, Black-box search by
unbiased variation, Proc. of Genetic and
Evolutionary Computation Conference
(GECCO’10), ACM, 2010, (Please see
http://eccc.hpi-web.de/report/2010/102/ for an
updated version.), pp. 1441–1448.

http://eccc.hpi-web.de/report/2010/102/

	Introduction
	Unrestricted and Unbiased Black-Box Complexities
	The Unbiased -Ary Black-Box Complexity of OneMax
	The Unbiased k-Ary Black-Box Complexity of OneMax
	The Binary Case
	Proof of Theorem 9 for Arity k3

	The Complexity of LeadingOnes
	Conclusion and Future Work
	References

