Evolutionary lessons for wind energy efficiency

Markus Wagner School of Computer Science University of Adelaide Adelaide, Australia

Joint work with Frank Neumann (UoA), Una-May O'Reilly (MIT), Kalyan Veeramachaneni (MIT)

Name: Markus Wagner

Field: Computer Science

Motivation

Renewable Energy:

- Has gained increasing interest
- Is clean
- Substantial to decrease CO₂ emission
- Is a huge market
- Large developing effort
- Has many challenging questions.

Wind Energy:

- Major player in renewable energy
- Since 2005 the cumulative installed capacity of wind energy within the EU has almost doubled (from 40 GW to 74 GW).
- In 2009, 39% of all new energy capacity installed in the EU was based on wind.
- Roughly 8800 wind turbines in Europe which helped to save 180 Mio tons of CO_2 since the beginning of 2009.

Largest Wind Farms:

- Roscoe Wind Farm (Texas, 627 turbines, 781 MW)
- Vlorë Wind Farm (Albania, 250 turbines, 500 MW)

Recent News:

- Thanet Wind Farm (Offshore (UK), 100 turbines, 300 MW)
- Ontario's 21,000 Megawatts Offshore Potential
- Google invests 38.8 Mio. USD in Wind Energy

Recent News (9 May 2011):

"Special Report on Renewable Energy Sources and Climate Change Mitigation"

- Renewable energy could make up 77% in 2050
- Wind energy could be responsible for 20%

Source: Wind Power Ninja

Wind Speed and Energy

Wind Speed:

- Most crucial for energy production
- Varies over time
- Depends on seasonal effects
- Weibull distribution gives a good representation of the variation in hourly mean wind speed over a year at many typical sites

Source: Cooperative Institute for Research in Environmental Science

Computation of the wake effect (Kusiak and Song 2010)

Let $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_n\}$ be x and y coordinates of the n turbines for i = 1 to number of turbines **do** for $\theta = 0^0$ to 360^0 do for j = 1 to n-1 and $j \neq i$ do $\delta_{i,j} = \cos^{-1} \{ \frac{o + R/\kappa}{\sqrt{(x_i - x_j + (R/\kappa)\cos\theta)^2 + (y_i - y_j + (R/\kappa)\sin\theta)^2}} \}$ $V def_{(i,j)} = u(\delta_{i,j} - \alpha) \frac{a}{(1+bd_{i,j})^2}$ end for $Vdef_i^{\theta} = \sqrt{\sum_j (Vdef_{(i,j)})^2}$ $c_i(\theta) = c_i(\theta) \times (1 - V def_i)$ end for end for Wake effect only changes scaling parameter of Weibull distribution

Experimental Study

Turbine Placement on wind farm

Wind Scenario (Kusiak and Song, Renewable Energy 2010)

l-1	θ^{l-1}	θ^l	k	c	$P(\theta)$	l-1	θ^{l-1}	θ^l	k	c	$P(\theta)$
0	0	15	2	7	0.0002	12	180	195	2	10	0.1839
1	15	30	2	5	0.008	13	195	210	2	8.5	0.1115
2	30	45	2	5	0.0227	14	210	225	2	8.5	0.0765
3	45	60	2	5	0.0242	15	225	240	2	6.5	0.008
4	60	75	2	5	0.0225	16	240	255	2	4.6	0.0051
5	75	90	2	4	0.0339	17	255	270	2	2.6	0.0019
6	90	105	2	5	0.0423	18	270	285	2	8	0.0012
7	105	120	2	6	0.029	19	285	300	2	5	0.001
8	120	135	2	7	0.0617	20	300	315	2	6.4	0.0017
9	135	150	2	7	0.0813	21	315	330	2	5.2	0.0031
10	150	165	2	8	0.0994	22	330	345	2 4.	5	0.0097
11	165	180	2	9.5	0.1394	23	345	360	2	3.9	0.0317

Kusiak and Song use evolution strategy Only results for up to 6 turbines.

Experimental Studies:

- Use maximal spacing
- Improve by (10,20)-CMA-ES

- Evolutionary Algorithm
 Optimization recipe
 Mimic poture (motion)
- Mimic nature (mating: crossover & mutation)
 - Very robust
- Include mechanism to deal with boundary constraints
- Improves results of Kusiak and Song
- What results do we get for large wind farms?

Problem:

 Evaluation is very costly for large number of turbines (single optimization: two weeks for 1000 turbines)

Assuming 7.2 Cent/kWh:

Can translate into 223.3 Mio / USD 1.4 Bio RMB per year

Summary:

- Renewable energy is an interesting field with challenging optimization problems
- Problems are very complex
- Evolutionary algorithms (our key technology) are well suited for tackling these problems
- There is a lot of money in this field (grants, government support, industry funding)
- Computer Science should play a key role

Future Work:

- Improve simulator: nonlinear power curves, mixed wind farms, more complex wake models
- Combination with other design parameters (cable length)
- Multi-objective problems
- Project at Future SOC Lab of the Hasso-Plattner-Institut

Thank you!