
Probabilistic User Models for the Verification of
Human-Computer Interaction

Markus Wagner

wagnermar@uni-koblenz.de

Abstract: We present a method that allows the formalization, analysis, and verifi-
cation of probabilistic human-computer interaction (HCI) with the support of model
checking tools. Based on a method for the formalization of HCI under security as-
pects, our method allows us to model probabilistic user behavior as well as to offer
support for the computation of the interaction’s cost. It enables us to verify quantita-
tive aspects of the interaction and to answer questions like “what is the probability that
the user will send confidential information to unauthorized individuals” and “will the
user (on average) be able to send the email within a given amount of time?”

1 Introduction

Interaction between computer and user is a two-way communication process, where the
user enters commands and the system responds to the input. This is referred to as inter-
active control [ASO+07]. Unfortunately, this control does not always work perfectly and
errors in HCI occur. An error can be regarded as a deviation of the achieved result from the
intended result. A huge number of errors in HCI can be traced back to user interfaces that
are insufficiently secured against these errors, irrespective of whether the user interacted
incorrectly with the computer, or someone attacked the system. The consideration of user
errors and their overall impact on the system should form an important part of an analysis
of a system’s usability, safety, and security.

Several techniques available can be used to verify the functional correctness of a system.
Examples of such techniques are theorem proving, simulation/testing and model checking.
We focus on the last technique, namely formal verification by means of model checking
[CGP99]. The goal of our technique is to proof properties of the interaction, or more
specifically, to formally prove that all possible ways of HCI in a given scenario conform
to the requirements. The method of [BB06] allows the formalization, analysis, and verifi-
cation of secure user interfaces and serves as the basis of our work. It is based on GOMS
[JK96], which is a well-established user modeling method. In [BB06], the formal GOMS
models are augmented with formal models of the application and the user’s assumptions,
finally allowing formal reasoning about the security of user interfaces.

2 Erroneous Interaction

The user of an application is not always aware of all possible consequences of his/her
interaction potential. While in most cases only “time” is lost due to incorrect interaction,
money is lost as well, or even humans injured. To distinguish between the different effects



of actions the term of action costs is introduced. This term is used to take quantities
like “amount of time”, “amount of money” or “amount of resources” into consideration.
Later, this is used to reason about the effects of minor errors, such as mistyping characters
when writing an email, and major errors, such as sending confidential data to unauthorized
individuals. In order to undo errors, additional actions have to be carried out, introducing
error costs. In other words, human errors add extra costs to the total sum of the sequence
of actions. Based on the total interaction cost and on the idea that the user has an amount of
resources he is willing to invest during the interaction, the sequences can be classified into
three categories: (1) optimal sequences with minimal total costs, (2) acceptable sequences
with total costs that do not exceed the budget, and (3) unacceptable sequences with total
costs that exceed the user’s budget.

The designers of systems often consider human frailty and try to reduce errors and us-
ability problems. A popular approach is to stick to informal lists of design rules [Shn98,
ASO+07, Lev97]. In general, most rules are obtained reflectively from experience, mean-
ing that they are based on a combination of expert knowledge and empirical approaches to
refine the rules. Furthermore, a number of techniques is known to help in making predic-
tions about the reliability of a system when humans interact with it [SG83, Kir94]. They
consist mainly of databases containing probabilities of different kinds of human errors.
The error data comes from many sources, e.g. nuclear power plants, simulator studies,
laboratory experiments etc. A method is provided for combing the data in order to pro-
duce estimations of the erroneous executions of tasks.

3 Formal Analysis of Erroneous Actions

In the following, we present our approach to the formalization, analysis, and verification
of probabilistic HCI. Following [BB06], we assume that a user can only interact correctly
with a system if he always has a correct assumption about the configuration of the applica-
tion, including the internal state and relevant data. This means in terms of Linear Tempo-
ral Logic G((a0 ↔ c0) ∧ (a1 ↔ c1) ∧ · · · ∧ (an ↔ cn)), where a0, . . . , an represent the
critical properties of the application, and c0, . . . , cn represent the user’s assumption about
critical properties. If a user fulfills this requirement, he is not error-prone. If he does not,
the following scenarios are possible: (1) parts of the user’s assumptions are wrong, and (2)
parts of the user’s assumptions are missing (over-abstraction).

In [BB06], Input Output Labeled Transition Systems (IOLTS) are used to model the com-
ponents of the interaction. An IOLTS is a tupel L = (S, Σ, s0,→) where S is a set of
states, s0 ∈ S is an initial state,→ ⊆ S × Σ× S is a transition relation, and a set of la-
bels Σ = Σ? ∪ Σ! ∪ ΣI . We call Σ? the input alphabet, Σ! the output alphabet, and ΣI
the internal alphabet. For example, the software’s state is represented by its internal state
and data. Whenever the user executes an action, the corresponding state transition is per-
formed. The corresponding edges in the automaton are annotated with a label denoting the
action.

In our approach, three components are needed in order to apply automated reasoning to
HCI: (1) a formal GOMS model and its corresponding IOLTS, (2) a component represent-
ing the user’s assumptions of the software’s state and its corresponding IOLTS, and (3) a
component representing the application itself and its corresponding IOLTS. The method



of [BB06] uses these three components to produce a complete model of the interaction,
which can be used as input for a model checker.

Figure 1: Extended model of the interaction.

In our expansion, we continue to
model the GOMS description using
an IOLTS. The application’s model
is extended by numerical values, rep-
resenting the costs for the execution
of each single step. We use a prob-
abilistic IOLTS with costs to model
the user’s assumptions. Thus, not
only the probabilistic behavior can be
modeled, but also “personal” arising
costs. As sources for the statistical data, we suggest databases that are mentioned in the
previous section. However, this is not mandatory and the analyst can come up with his/her
own values. For the component representing the application itself, an IOLTS with costs
is used. Now, the mutual composition of these three components provides the expanded
model of the HCI (see Figure 1), incorporating probabilistic user behavior as well as the
interaction’s costs.

The probabilistic model that is the output of our method can be used to prove quantita-
tive aspects of the interaction. In general, probabilistic model checking is an automatic
formal verification technique for the analysis of systems that exhibit stochastic behavior
[HKNP06]. In our setting, properties of the HCI are expressed in Probabilistic Computa-
tion Tree Logic (PCTL) [HJ94] and verified using the probabilistic model checker PRISM
[KNP02].

For demonstration purposes, let us think of a scenario where a user interacts with an email
program. She intends to write a confidential email and send it to Alice. However, with a
certain probability, she can choose Bob as well, which will result in high costs. For ex-
ample, the following situations are possible: (1) the user accidentally selects Bob as the
addressee, notices her mistake, and corrects her mistake, (2) she selects Bob again, but does
not notice her mistake, and sends the email to Bob, and (3) she selects Bob, notices it, but
fails to change the addressee, and sends the email to Bob. Once the model of the interaction
is constructed using our method, properties of the interaction can be formulated in PCTL
and then checked by PRISM. For example, if the property P≥0.95[true U sentTo(Alice)]
holds, it is formally proven that the email is sent to Alice in at least 95% of the the inter-
actions. The property, P≤0.20[chosen(Bob) U sentTo(Bob)] can be used to express that
“with a probability of at most 0.20, the selection of Bob as the addressee is not corrected”.
A way to lower the probability of sending the email to Bob would be to introduce addi-
tional dialogue boxes that would require the user to confirm her selection. If the user is
modeled to react “reasonably” (versus “inattentively”) to a confirmation, it can be proven
that the probability to send the email to Bob is lowered. Finally, with PRISM’s support of
cost analysis, the average total cost for sending an email can be computed by the property
R =? [F email sent]. Due to the possibility of erroneous interaction, the average total
cost here will be higher than in a scenario where errors do not result in additional cost.



References

[ASO+07] Larry W. Avery, Thomas F. Sanquist, Peter A. O‘Mara, Anthony P. Shepard, and
Daniel T. Donohoo. U.S. Army weapon systems human-computer interface style guide.
Version 2, April 30 2007.

[BB06] Bernhard Beckert and Gerd Beuster. A Method for Formalizing, Analyzing, and Veri-
fying Secure User Interfaces. In ICFEM, volume 4260 of Lecture Notes in Computer
Science, pages 55–73. Springer, 2006.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[HJ94] Hans Hansson and Bengt Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[HKNP06] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: A
Tool for Automatic Verification of Probabilistic Systems. In TACAS, volume 3920 of
Lecture Notes in Computer Science, pages 441–444. Springer, 2006.

[JK96] Bonnie E. John and David E. Kieras. The GOMS family of user interface analysis tech-
niques: comparison and contrast. ACM Transactions on Computer-Human Interaction,
3(4):320–351, December 1996.

[Kir94] Barry Kirwan. A Guide to Practical Human Reliability Assessment. Taylor and Francis,
London, UK, 1994.

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic Sym-
bolic Model Checker. Lecture Notes in Computer Science, 2324:200–204, 2002.

[Lev97] Nancy G. Leveson. Analyzing Software Specifications for Mode Confusion Potential.
In Proc. of the Workshop on Human Error and System Development. 1997.

[SG83] Alan Swain and H. E. Guttman. Handbook of Human Reliability Analysis with Emphasis
on Nuclear Power Plant Applications. Sandia National Laboratories, 1983.

[Shn98] Ben Shneiderman. Designing the User Interface. Addison Wesley Longman, third
edition, 1998.


