
Better Huffman Coding via Genetic Algorithm

Cody Boisclair
Artificial Intelligence Center

University of Georgia
Athens, Georgia 30605

United States of America
Email: codemanb@uga.edu

Telephone: +1 706 389–6188

Markus Wagner
Artificial Intelligence Research Group

University of Koblenz-Landau
56016 Koblenz, Germany

Email: wagnermar@uni-koblenz.de
Telephone: +49 (0) 1577–4506194

Abstract—We present an approach to compress arbi-
trary files using a Huffman-like prefix-free code generated
through the use of a genetic algorithm, thus requiring no
prior knowledge of substring frequencies in the original
file. This approach also enables multiple-character sub-
strings to be encoded.

We demonstrate, through testing on various different
formats of real-world data, that in some domains, there is
some significant advantage to using this genetic approach
over the traditional Huffman algorithm and other existing
compression methods.

Index Terms—Genetic algorithm, data structures, appli-
cation, Huffman coding.

I. INTRODUCTION

A. Background

Huffman coding, as initially described by David
Huffman [2], is a particular method of compressing
data through the use of a code table with encodings
of variable lengths. A Huffman code is an opti-
mum, or minimum-redundancy, code, which means
that messages which occur with greater probability
have shorter encodings; in addition, it is prefix-
free, meaning that no code in the table may be the
beginning part of any other code.

Huffman describes an algorithm which can be
used to generate a binary Huffman code from
a collection of messages, or strings, ordered by
probability. To generate a code, one starts with a
collection of all messages in order of probability.
The two least probable messages are removed from
the collection and combined into a “composite mes-
sage,” with probability equal to the sum of the mes-
sages comprising it. This process is repeated until
there is only a single composite message left in the

collection, with a probability of 1; that composite
message represents the entire Huffman code. This is
easily converted to a tree-based approach, in which
the initial messages are represented as leaf nodes,
each edge represents a digit 0 or 1 in the encoding,
and “composite messages” are subtrees created by
assigning a common parent to the merged messages.

B. Research Goals

We wanted to see whether it was possible to gen-
erate a relatively efficient prefix-free code without
knowing in advance the probabilities of substrings
in a source file, by means of a genetic algorithm.

There is the definite possibility that substrings
of several bytes in length may be more probable
as a whole than the individual bytes that comprise
them—for instance, ‘qu’ is likely to be more com-
mon in English text than ‘q’ alone. Determining
the probabilities of these longer substrings for a
given file, however, can be quite costly. To calculate
the probabilities of single-byte substrings, one must
simply scan through the file and increment one of
256 counters for each byte value found. Considering
both single-byte and two-byte strings, there must be
2562 + 256 = 65 792 counters used; additionally, at
each byte in the file, two different comparisons must
be made. Adding three-byte strings to the probabil-
ity table requires the use of 2563 + 2562 + 256 =
16 843 008 different counters, with three different
comparisons made at each byte of the file.

C. Related Work

This is not the first experiment that has been done
to determine whether evolutionary computation may

be applicable to Huffman-style compression.
Üçoluk and Toroslu [6] demonstrated a system

to determine the optimal Huffman coding for a
corpus of Turkish text via a genetic algorithm. In
Üçoluk and Toroslu’s experiment, the set of all
possible syllables was known ahead of time, and
the genetic algorithm was simply used to select the
most efficient set of syllables to use in the encoding;
this is in contrast to our experiment, which attempts
to originate the substrings via evolution.

Oroumchian et al [4] used a genetic algorithm
to compress a single file of Persian text. At first,
they computed the frequencies of n-grams (i.e., n-
character strings) with a maximum length of five;
they then used a genetic algorithm to trade off the
amount of n-grams versus filesize.

Another evolutionary approach using unspecified
values was taken by Polian et al [5]. A string of bits
can be represented as a collection of fixed-length
‘matching vectors’ containing the bits 0, 1, and un-
specified; each matching vector is assigned a prefix-
free code, and so a string may be represented as a
collection of matching-vector codings followed by
the values of the unspecified locations. In Polian’s
experiment, a set of matching vectors is generated
by a genetic algorithm and then used to compress
the data, with more optimal compression producing
better fitness for that set of vectors.

II. EXPERIMENTAL METHODOLOGY

A. Experimental Details
Our genetic algorithm uses a genome containing

a binary tree structure, with each genotype repre-
senting a particular prefix-free encoding. The initial
population consists of a set of trees, each containing
all of the 256 possible bytes as leaf nodes, with each
byte having an encoding of equal length.

The genetic operators used were inspired by, but
are not identical to, those used in genetic program-
ming. One mutation, which we have named ‘swap’,
is identical to that used in genetic programming: two
nodes within the tree, each of which may be either
a leaf or an internal node, are swapped with one
another, so long as one node is not an ancestor of
the other. Swapping a node and its ancestor is not
allowed. An example of a swap mutation, in this
case between a leaf node and an internal node, can
be seen in Figures 1 and 2.

e

t

i na o

Fig. 1. A simplified prefix-free tree before the ‘swap’ mutation has
been applied.

e

t

a

o

i n

Fig. 2. The tree from Figure 1 after the ‘combine’ mutation has
been applied, with the node ‘a’ swapped with the parent of nodes ‘i’
and ‘n’.

Another mutation, known as ‘combine’, has been
added to provide the functionality of creating the
longer substrings described above. Here, two leaf
nodes are randomly selected for combination; the
strings in them are combined into a new string, and
a new node is created to contain that string. One
of the two selected leaf nodes is randomly chosen,
brought down a level, and the new node is made its
sibling. Figures 3 and 4 are an illustration of one
particular case of the ‘combine’ mutation.

No crossover operator is used in this particular
genetic algorithm, unlike in genetic programming;
by the nature of the trees used in this algorithm, any
crossover would have significant potential to cause
some strings in the tree to occur twice while others
disappeared entirely.

The fitness of a chromosome is determined by
the length of a file, in bits, as compressed using the
encoding it represents; in this experiment, therefore,
fitness is to be minimized. This length is the sum
of:

e

t

a o

Fig. 3. A simplified prefix-free tree before the ‘combine’ mutation
has been applied.

e

a ot ta

Fig. 4. The tree from Figure 3 after the ‘combine’ mutation has
been applied, with the nodes ‘t’ and ‘a’ chosen for combination and
‘t’ chosen to be the new node’s sibling.

• 2n−1 bits to represent the tree structure, for n
leaf nodes. A prefix-free encoding tree can be
represented in its entirety by taking a preorder
traversal of the tree and identifying whether
each of the nodes visited is a leaf node or an
internal node; as it is a full binary tree, there is
always one fewer internal node than there are
leaf nodes.

• 8k bits for each uncompressed string in the
encoding, where k is the length of the string
in bytes.

• The length of the compressed data, as deter-
mined by looking up each character in the
code table and summing the lengths of their
respective encodings.

This algorithm was implemented using the JGAP
(Java Genetic Algorithms Package) library [1]. A
100% probability was used for mutation; in each
mutation, there was a 50% probability as to whether
‘swap’ or ‘combine’ would be used. Only the fittest
10% of individuals after mutation were selected
to move on to the next generation; any remaining
individuals in the new generation were duplicates of
those selected chromosomes.

TABLE I
TEST SUITE

File Original Size in Bit

Genome1 322 416

Genome2 9 421 872

Genome3 103 071 904

Image1bit 5 947 888

Image4bit 23 790 512

Image8bit 47 587 760

Log 1 857 560

Exe1 380 512

Exe2 2 009 472

Exe3 8 282 112

Exe4 160 465 216

Population size and number of generations varied
from experiment to experiment, and will be dis-
cussed in detail in the experimental analysis below.

B. Test Suite
A total of eleven test files were used – see

Table I. The first three files are specially selected
from the genome domain, in order to limit the size
of the alphabet, thus making human observations
during the evolutionary process easier. These files
are samples of chromosome regions of the human
genome and are available from the National Center
for Biotechnology Information [3].

The next three files are versions of a landscape
photograph with an original color depth of 24 bit.
Limiting the color depth to at most 8 bit implicitly
limits the actual alphabet.

The remaining five files were selected from a pool
of real-life data: four different executable files, and
one log file containing timestamps and English text.

In contrast to the experiments on the genome
data, we did not assume any kind of limitations on
the size of the alphabet for the rest of the test suite.

III. TEST RESULTS

In the following sections, we will use the term
space saving to quantify the reduction in size rela-
tive to the uncompressed size:

SpaceSavings = 1− CompressedSize

UncompressedSize
(1)

The higher the value for the space saving is, the
better the compression performs.

A. Genome Data

The balanced binary tree with four leaves resulted
in savings of 75 % for each of the three files. In fact,
this was expected to be the case, because the four
8-bit-symbols A, C, G and T can be encoded using
only 2 bits, i.e. 00, 01, 10 and 11.

When we started with the tree containing only
four code points, we did not observe any growth in
the tree. The theoretical explanation for this: In a
balanced tree with four leaves, the space saving is
1 - (2 bits / 8 bits) = 75%. As soon as a new leaf is
introduced, a new internal node has to be inserted,
resulting in new and worse space saving for one of
the old leaves of 1 - (3 bits / 8 bits) = 62.5%.

1) Short-time runs: Each short-time run was
stopped after 100 generations, each containing 60
individuals, resulting in a total of 6 000 evaluations.
Based on Genome1, 30 runs were done, which were
divided into two sets of 15 runs each. Each run took
about 40 seconds.1

For the first 15 runs, the trees were initialized
with the complete set of all 16 2-character strings
that were likely to occur in the file. The average
space saving of 75.3% is an almost negligible
improvement over the 75% of the very first runs,
even though one must keep in mind that the tree
representation is part of the file as well. The smallest
size of the compressed file was 79 731 bits. The
standard deviation over all best individuals of the
runs is only 136 bits.

In the next 15 runs, the four single-character code
points were added to the initial individuals, resulting
in trees with 20 code points. These code points
were injected to provoke productive concatenations
resulting in three-character strings, which would
have been impossible with two-character strings
alone. As an effect of this bloating, the average
fitness of the initial population was even worse, but
on average, a space saving of 75.0% was reached,
resulting in a minimum file size of 80 682 bits and
a standard deviation of 292 bits.

The runs were repeated for Genome2 and
Genome3. The performance of the evolved trees is
compared in Table II with ZIP compression. In the
table, ‘GA Savings’ refers to space saving achieved

1The underlying system is a 1.6 GHz Dualcore notebook with 2GB
RAM and the Java Runtime Environment 1.6.

TABLE II
PERFORMANCE OF SPECIALIZED TREES ON THE GENOME DATA

File GA Savings ZIP Savings

Genome1 75.3 % 65.1 %

Genome2 75.2 % 66.4 %

Genome3 75.3 % 66.0 %

by the GA-generated trees, while ‘ZIP Savings’
refers to those achieved by the ZIP method using
the program WinAce 2 and the setting “normal
compression”.

2) Long-time runs: In the next test set, we used
Genome1 again to let the Huffman tree evolve,
but the population was enlarged to 600 individuals,
while keeping the limit of 100 generations, resulting
in 60 000 evaluations per run. Every run took about
seven minutes. Again, 15 repetitions were done for
the versions using 16 initial code points and 20
initial code points.

For the first setup, no new minimal file size was
found. For the second setup, a new minimal file
size of 80 004 bits was found. In both setups, the
standard deviations decreased to 5 bits and 209 bits.

It is remarkable that the best solution with the
fitness of 79 731 had no code points in its tree with
a length greater than 2. This means that the tree was
only an adjustment to the relative frequencies of the
2-character strings in Genome1.

The longest substring found in the 12 best-so-
far solutions was five characters long and used an
encoding of 8 bits, thus resulting in a space saving
of 80% for that specific string. In the fittest tree
of each run, the longest encodings belonged to the
single-character code points.

If the tree is balanced and only the four charac-
ters appearing in genome data are used, the space
savings are 75% for that data. The approaches using
trees which contained all 16 of the 2-character com-
binations, with or without the addition of the four
single-character code points, showed no significant
improvement in compression.

To see how well the specialized trees from the
previous experiments could be used in general, we
compressed the other files with the evolved trees.

2The used test-version of WinAce 2.69 can be downloaded from
http://www.winace.com/.

TABLE III
PERFORMANCE ON THE IMAGE TEST SUITE

File GA Saving GIF Saving JPEG Saving

Image1bit 81.4 % 28.8 % -42.4 %

Image4bit 47.7 % 76.2 % 49.4 %

Image8bit 32.4 % 65.7 % 72.0 %

The evolved tree for Image1bit resulted in space
savings of 19.5 % for Image4bit and 8.9 % for
Image8bit. When comparing these values to 47.7
% and 32.4 % that were achieved using specialized
tree, the generalization was not as big as we ex-
pected it to be.

B. Image Data

In the next set of runs, we used the set of
images of a maximum color depth of 8 bit and
compared the performance of the GA to state-of-
the-art image compression methods. The Graphics
Interchange Format (GIF) is a wide-spread graphics
format and has a maximum color depth of 8 bit.
It stores the defined colors in a palette and the
files are compressed using the Lempel-Ziv-Welch
compression technique. In contrast to GIF, which
can be considered as a lossless compression algo-
rithm in our case, the JPEG Interchange Format is
a lossy file format using a color depth of 24 bit. We
used a high-quality setting of 90% for the JPEG
compression. For each of the three files, specialized
trees with an initial set of 256 leaves were evolved
using 6 000 evaluations. In Table III, the results of
evolved trees for the images are shown. On average,
the GA performs quite well in the lower color
depths in comparison to the other methods. For the
first image, it clearly outperforms the others, but
it does not reach the savings achieved by the other
methods for the third image. Surprisingly, the JPEG
compression of the image with the lowest color
depth resulted in a blow-up of the file size by about
40%.

C. Real-World Data

In our last tests, we used the set of executable
files to study the compression behavior with trees
containing all 256 possible 8-bit ASCII characters.
Again, the achieved space savings were compared to
ratios that can be achieved using ZIP compression.

TABLE IV
PERFORMANCE OF THE SPECIALIZED TREE ON THE COMPLETE

TEST SUITE

File GA Savings ZIP Savings

Genome1 6.1 % 65.6 %

Genome2 6.2 % 66.4 %

Genome3 6.4 % 66.0 %

Image1bit 5.2 % 83.7 %

Image4bit 6.1 % 73.1 %

Image8bit 6.7 % 65.8 %

Log -10.1 % 85.8 %

Exe1 11.6 % 56.2 %

Exe2 12.2 % 43.7 %

Exe3 8.6 % 51.6 %

Exe4 9.2 % 47.1 %

First, we performed 15 runs using Exe1 and let
each run for 60 000 total evaluations, which took
about 21 minutes for every run. The biggest saving
achieved was 18.7%, resulting in a file size of
309 301 bits, while the standard deviation was again
very low with 1 917 bits.

In a modification of that experiment, Log was
compressed with space savings of at most 21.6 %,
while ZIP compression achieves 81.2 %.

In the final run, we used Exe2 to produce a tree
for the compression and applied that tree to all files
from the test suite. Again, we used a run time of
60 000 evaluations, which took about 48 minutes.
Table IV presents the results of applying the Exe2-
based tree to all files.

The evolution of the tree added 24 code points
with a length of two bytes or more to the existing
256 code points of one byte each. The longest code-
point found in the tree encoded 48 bits using only 8
bits, while, on the other hand, a 13-bit long encoding
for a single 8-bit character was found as well.

The performance of the generated tree based
on Exe2 was constant over the other executable
files. This suggests that this particular tree can be
classified as specialized for executable files. The
worse compression of the log file and the picture
using this tree supports this statement as well.

Considering the results for the genome data, it is
remarkable that even though the ZIP compression
outperformed the unoptimized tree in this applica-
tion, a specialized tree from the first short-run test

would outperform ZIP with space savings of at most
75%.

IV. CONCLUSIONS AND FUTURE WORK

We have developed a Genetic Algorithm that is
capable of extending the standard Huffman coding
to multiple-character encodings for better space
saving.

Several times, we observed the productive con-
catenation of strings as well as reasonable ordering
of the code points in the tree. Measured over all
comparable runs, the standard deviation was always
very low, with values consistently less than 1% of
the average.

Once the trees have been generated, the compres-
sion of a file can be done very quickly in a single
pass. Using a domain-specific tree generated in ad-
vance by evolution can prove faster than most other
compression techniques, but we must not neglect the
facts that finding the tree may take unacceptably
long and that the compression is fairly poor in
comparison to existing compression software.

In some of the tested domains, existing compres-
sion algorithms outperform our technique in time
consumption and space saving. For the compression
of data that uses a limited alphabet, such as genome
data and images of low color depth, we recommend
the use of our genetic approach.

Future work will include the application of multi-
objective optimization techniques in order to im-
prove the performance of single trees over an entire
domain.

REFERENCES

[1] D.-Y. Chen, T.-R. Chuang, and S.-C. Tsai. JGAP: a java-based
graph algorithms platform. Softw, Pract. Exper, 31(7):615–635,
2001.

[2] D. Huffman. A method for construction of minimum-redundancy
codes. Proc. of IRE, 40(9):1098–1101, September 1952.

[3] National Center for Biotechnology Information. Web-
site. http://www.ncbi.nlm.nih.gov/mapview/seq reg.cgi?taxid=
9606&chr=1&from=1&to=247249719.

[4] F. Oroumchian, E. Darrudi, F. Taghiyareh, and N. Angoshtari.
Experiments with persian text compression for web. In WWW
Alt. ’04: Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, pages 478–479,
New York, NY, USA, 2004. ACM Press.

[5] I. Polian, A. Czutro, and B. Becker. Evolutionary optimization
in code-based test compression. In DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe,
pages 1124–1129, Washington, DC, USA, 2005. IEEE Computer
Society.

[6] G. Ucoluk and I. H. Toroslu. A genetic algorithm approach
for verification of the syllable-based text compression technique.
Journal of Information Science, 23(5):365–372, 1997.

