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Course Outline

Probabilistic Graphical Models:
1 Representation
2 Inference
3 Learning (Today)
4 Sampling-based approximate inference
5 Temporal models
6 · · ·
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Learning

Learning graph structure
Learning parameters in Bayes Net
Learning parameters in MRFs
Conditional Random Fields
Structured Support Vector Machines
Max Margin Markov Network
Maximum Entropy Discrimination Markov Networks.
. . .

3 / 30



Learning Graph Structure

Manually construct graphs ( as Bayes nets or MRFs)
using relation between independencies and graph
(covered in tutorial 1).
Automatic methods to build the graphs.
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Learning Graph Structure Automatically

Constraint-based: have a distribution that satisfies a
set of independencies, and the goal is to find a
graphical model that represents these
independencies.
disadvantage: sensitive to failure of individual
independency tests.
Score-based: design a scoring function, and compute
the score for all possible models. Pick a model with
highest score.
disadvantage: enumerating scores for all models is
often NP-hard. Resort to heuristic search.
Bayesian model averaging: ensemble of possible
models.
disadvantage: some has no close-form resorting to
approximations.
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Learning parameters in Bayes Net

with discrete variables
An example will be given.
with continuos variables (such as kalman filter)
We will defer this to advance topic dynamic bayes net
(⊂ temporal models).
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An Example
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An Example

Y = Yes. N = No.

Case D I G S L H J
1 Y Y Y Y Y N Y
2 N N Y N N Y N
3 Y N Y N N Y N
...

P(D = d) =
ND=d

Ntotal

P(G = g|D = d , I = i) =
NG=g,D=d ,I=i

ND=d ,I=i

...
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An Example

G
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P(S | I)

P(J | L,S)

P(D)

P(G | D,I)

P(H | G,J)

P(L | G)
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An Example

Problems?
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The Problems

not minimise classification error.
not much flexibility on the features nor the
parameters.
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Learning parameters in MRFs - EF

Exponential Family (EF) (vector parameter form)

P(x |w) =
1

Z (w)
h(x) exp

(
〈η(w),T (x)〉

)
, (1)

with
natural parameter w ∈ Rm,
natural parameter function η(w) : Rm → Rd ,
sufficient statistics T (x) : X→ Rd ,
auxiliary measure h(x) : X→ R+,
partition function Z (w) =

∑
x h(x) exp

(
〈η(w),T (x)〉

)
.

When η(w) = w ,m = d , the EF is said in canonical form.
Special case: normal distribution, binomial distribution . . .
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Learning parameters in MRFs - ERM

Regularised Empirical Risk Minimisation

min
w

J(w) := λΩ(w) + Remp(w),

where Remp(w) :=
1
m

m∑
i=1

`(xi ,yi ,w)

is the empirical risk and (x1,y1), . . . , (xm,ym) ∈ X×Y is
the training sample of input-output pairs and w is a
parameter vector. The model complexity is controlled by
regulariser λΩ(w) (with λ > 0), which usually is
(piecewise) differentiable and cheap to compute. For
instance, let the regulariser Ω(w) = 1

2 ||w ||
2, and the loss

`(xi ,yi ,w) be the binary hinge loss, [1− yi 〈w,xi〉]+, we
recover the soft margin linear SVM.

13 / 30



Probabilistic Approaches - MAP, ML

A likelihood function L(w) is the modelled probability or density for the occurrence of a sample configuration
(x1, y1), . . . , (xm, ym) given the probability density Pw parameterised by w. That is,

L(w) = Pw
(

(x1, y1), . . . , (xm, ym)
)
.

Maximum a Posteriori (MAP) estimates w by maximising L(w) times a prior P(w). That is

w∗ = argmax
w

L(w)P(w). (2)

Assuming {(xi , yi )}1≤i≤m are I.I.D. samples from Pw(x, y), (2) becomes

w∗ = argmax
w

∏
1≤i≤m

Pw(xi , yi )P(w)

= argmin
w

∑
1≤i≤m

− ln Pw(xi , yi )− ln P(w).

Maximum Likelihood (ML) is a special case of MAP when P(w) is uniform. Alternatively, one can replace the joint

distribution Pw(x, y) by the conditional distribution Pw(y | x) that gives a discriminative model called Conditional

Random Fields (CRFs)
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Probabilistic Approaches - ME

Maximum Entropy (ME) estimates w by maximising the
entropy. That is,

w∗ = argmax
w

∑
x∈X,y∈Y

−Pw(x,y) ln Pw(x,y).

Duality between maximum likelihood, and maximum
entropy, subject to moment matching constraints on the
expectations of features.
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Probabilistic Approaches - CRFs - 1
Assume the conditional distribution over Y |X has a form
of exponential families, i.e.,

P(y |x; w) =
exp(〈w,Φ(x,y)〉)

Z (w |x)
, (3)

where

Z (w |x) =
∑
y′∈Y

exp(〈w,Φ(x,y′)〉), (4)

and

Φ(x,y) =
∑
i∈V

Φ1(x,y(i)) +
∑
(ij)∈E

Φ2(x,y(ij)). (5)

via the Hammersley – Clifford theorem if only node and
edge features are considered. More generally speaking,
the global feature can be decomposed into local features
on cliques (fully connected subgraphs).
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Probabilistic Approaches - CRFs - 2
Denote (x1, . . . ,xm) as X, (y1, . . . ,ym) as Y. The classical
approach is to maximise the conditional likelihood of Y on
X, incorporating a prior on the parameters. This is a
Maximum a Posteriori (MAP) estimator, which consists of
maximising

P(w |X,Y) ∝ P(w) P(Y |X; w).

From the i.i.d. assumption we have

P(Y |X; w) =
m∏

i=1

P(yi |xi ; w),

and we impose a Gaussian prior on w

P(w) ∝ exp
(
−||w ||2

2σ2

)
.
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Probabilistic Approaches - CRFs - 3

Maximising the posterior distribution can also be seen as
minimising the negative log-posterior, which becomes our
risk function R(w |X,Y)

R(w |X,Y) = − ln(P(w) P(Y |X; w)) + c

=
||w ||2

2σ2 −
m∑

i=1

(〈Φ(xi ,yi),w〉)− ln(Z (w |xi))︸ ︷︷ ︸
:=`L(xi ,yi ,w)

+c,

where c is a constant and `L denotes the log loss i.e.
negative log-likelihood. Now learning is equivalent to

w∗ = argmin
w

R(w |X,Y).
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Probabilistic Approaches - CRFs- 4

Above is a convex optimisation problem on w since
ln Z (w |x) is a convex function of w. The solution can be
obtained by gradient descent since ln Z (w |x) is also
differentiable. We have

∇wR(w |X,Y) = −
m∑

i=1

(Φ(xi ,yi)−∇w ln(Z (w |xi)).

It follows from direct computation that

∇w ln Z (w |x) = Ey∼P(y | x;w)[Φ(x,y)].
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Probabilistic Approaches - CRFs - 5

Since our sufficient statistics Φ(x,y) are decomposed
over nodes and edges (eq. 5), it is straightforward to show
that the expectation also decomposes into expectations
on nodes V and edges E

Ey∼P(y | x;w)[Φ(x,y)] =∑
i∈V

Ey(i)∼P(y(i) | x;w)[Φ1(x,y(i))] +
∑
(ij)∈E

Ey(ij)∼P(y(ij) | x;w)[Φ2(x,y(ij))],

where the node and edge expectations can be computed
given P(y(i) |x; w) and P(y(ij) |x; w), which can be
computed exactly by variable elimination or junction tree
or approximately using e.g. (loopy) belief propagation.
This is the main computational problem with MAP
estimation, which can be circumvented through sampling.
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Max Margin Approaches

In learning, we look for a F that predicts labels well via

y∗ = max
y∈Y

F (xi ,y).

Margin: a scoring gap between F (xi ,yi) and best F (xi ,y)
for y 6= yi . That is

M(xi ,yi) = F (xi ,yi)− max
y∈(Y− yi )

F (xi ,y)
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Max Margin Approaches- Structured SVM - 1

min
w,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi s.t. (6a)

∀i ,y, 〈w,Φ(xi ,yi)− Φ(xi ,y)〉 ≥ ∆(yi ,y)− ξi . (6b)

or its dual problem in kernels k(, ) := 〈Φ,Φ〉:

max
α

1
2

∑
i,j,y,y′

αi yαj y′ 〈Φ(xi ,y),Φ(xj ,y′)〉 −
∑
i,y

∆(yi ,y)αi y

∀i ,y,
∑

y

αi y ≤ C, αi y ≥ 0.
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Max Margin Approaches- Structured SVM - 2

Cutting plane method needs to find the label for the most
violated constraint in (6b)

y†i = argmax
y∈Y

∆(yi ,y) + 〈w,Φ(xi ,y)〉 . (7)

With y†i , one can solve following relaxed problem (with
much fewer constraints)

min
w,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi s.t. (8a)

∀i ,
〈

w,Φ(xi ,yi)− Φ(xi ,y†i )
〉
≥ ∆(yi ,y

†
i )− ξi . (8b)

23 / 30



Max Margin Approaches- Structured SVM - 3

Input: data xi , labels yi , sample size m
Initialise Si = ∅ for all i , and w0 = 0 or a random vector.
repeat

for i = 1 to m do
wt =

∑
i

∑
y∈Si

αi yΦ(xi ,y)

y†i = argmaxy∈Y− yi
〈wt ,Φ(xi ,y)〉+ ∆(yi ,y),

ξi =
[

∆(yi ,y) +
〈

wt ,Φ(xi ,y†i )− Φ(xi ,yi)
〉 ]

+
,

if ξi > 0 then
Increase constraint set St ← St ∪ y†t

end if
end for
α← optimise dual QP with constraint set St .

until S has not changed in this iteration
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Max Margin Approaches- Max Margin
Markov Net - 1

Max Margin Markov Network (M3N) transform the
structured SVM dual into

max
α
− 1

2
‖
∑
i,y

αi y[Φ(xi ,yi)− Φ(xi ,y)]‖2 +
∑
i,y

∆(yi ,y)αi y

∀i ,y
∑

y

αi y = C, αi y ≥ 0.

Now the dual variable αi y
C can be viewed as a distribution

over y given x. Thus the dual object becomes

max
α
− 1

2
‖
∑

i

Ey∼αi y[Φ(xi ,yi)− Φ(xi ,y)]‖2 +
∑

i

Ey∼αi y ∆(yi ,y)

(9)

∀i ,y
∑

y

αi y

C
= 1, αi y ≥ 0.
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Max Margin Approaches- Max Margin
Markov Net - 2

Denote y ∼ y(a) as the value of the component y(a) is consistent with that in y. Decomposing global features into
local node and edge features as (5), we get

Ey∼αi y Φ(xi , y) =
∑

y
αi yΦ(xi , y)

=
∑

y
αi y

∑
a∈V

Φ1(xi , y(a)) +
∑

(ab)∈E
Φ2(xi , y(ab))

=
∑
a∈V

∑
y:y∼y(a)

αi y(y)Φ1(xi , y(a)) +
∑

(ab)∈E

∑
y:y∼y(ab)

αi y(y)Φ2(xi , y(ab))

=
∑
a∈V

∑
y(a)

µxi (y(a))Φ1(xi , y(a)) +
∑

(ab)∈E

∑
y(ab)

µxi (y(ab))Φ2(xi , y(ab)),

where marginals

µxi (y(a)) =
∑

y:y∼y(a)

αi y(y), µxi (y(ab)) =
∑

y:y∼y(ab)

αi y(y).

Similarly if ∆(yi , y) =
∑

a∈V ∆(yi , y(a)), then

Ey∼αi y ∆(yi , y) =
∑
a∈V

µxi (y(a))∆(yi , y(a)).

To ensure the marginals resulting from a valid distribution αi y(y), one must ensure following consistency constraint∑
y(b)

µxi (y(ab)) = µxi (y(a)), ∀(a, b) ∼ E, ∀i.
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Max Margin Approaches- MED

Maximum Entropy Discrimination (MED) that maximises
the entropy — or minimises the KL divergence
KL(Q(w)||P(w)) =

∫
ln Q(w)

P(w)
dQ(w) between the posterior

Q and the prior P — with a constraint that the expected
margin with respect to the posterior Q(w) over model
parameter w is not less than certain threshold (that is a
weighted max margin constraint or weighted hinge loss
via the posterior) for binary classification.
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Max Margin Approaches- MEDN

Maximum Entropy Discrimination Markov Networks
(MEDN)

min
w,ξ

KL(Q(w)||P(w)) + C
m∑

i=1

ξi s.t.

∀i ,y,
∫ [
〈w,Φ(xi ,yi)− Φ(xi ,y)〉 −∆(yi ,y)

]
dQ(w) ≥ −ξi .

Again y can be replaced by the most-violated yi .
Apparently letting y be scalar y , MEDN recovers MED.
Letting P(w) be a zero mean, identity variance gaussian
over w, MEDN recovers M3N.
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Recap

Introduction to Probabilistic Graphical Models
1 representation (tutorial 1)
2 inference (tutorial 2)
3 learning (tutorial 3, today)
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Next tutorial:
Particle (or sampling)-based approximate inference
(importance sampling, markov chain monte carlo)
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