Generalisation Bounds (5): Regret bounds for online learning

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies, The University of Adelaide, Australia

2 Nov. 2012

Course Outline

Generalisation Bounds:

- Basics
- VC dimensions and bounds
- Rademacher complexity and bounds
- PAC Bayesian Bounds
- Regret bounds for online learning (Today)
- **6** ...

Online Convex Optimisation

Online Convex Optimisation (OCO) can be seen as "an online player iteratively chooses a point from a non-empty, bounded, closed and convex set $\mathcal{C} \subset \mathbb{R}^{n^{n}1}$

¹Zinkevich03 and Hazan&Agarwal&Kale08 (Log regret algorithms for OCO)

OCO (2)

At iteration t, the algorithm \mathcal{A} (the online player) chooses $\theta_t \in \mathcal{C}$. After committing to this choice, a convex cost function $f_t : \mathcal{C} \to \mathbb{R}$ is revealed (*i.e.* $f_t(\theta_t)$ is the cost). That is (in general)

$$\theta_t = \mathcal{A}(\{f_1, \cdots, f_{t-1}\})$$

OCO (3)

Denote the number of iterations by T, the goal of OCO is to minimise the Regret

$$\mathsf{Regret}(\mathcal{A}, \{f_1, \cdots, f_T\}) = \sum_{t=1}^T f_t(\theta_t) - \min_{\theta} \sum_{t=1}^T f_t(\theta). \tag{1}$$

Online Learning

Online Learning (OL)²:

At iteration t, the algorithm \mathcal{A} receives a instance $x_t \in \mathbb{R}^n$ and is then required to predict the output $\hat{y}_t = h(x_t; \theta_t)$. After predicting \hat{y}_t , the true output y_t is revealed and a loss $\ell(\theta_t; (x_t, y_t))$ occurs. Then $\ell(\theta; (x_t, y_t)) \to \theta_{t+1}$. Denote # iter. by T, the goal of OL is to minimise the Regret

Regret(
$$A$$
, { (x_1, y_1) , ..., (x_T, y_T) }) =
$$\sum_{t=1}^{T} \ell(\theta_t; (x_t, y_t)) - \min_{\theta} \sum_{t=1}^{T} \ell(\theta; (x_t, y_t)).$$
 (2)

View OL as an OCO: $\ell(\theta; (x_{t-1}, y_{t-1})) \to \theta_t$ is essentially picking θ_t in OCO. $\ell(\theta_t; (x_t, y_t))$ is the cost function $f_t(\theta_t)$.

²more general OL can be described without θ and h

³label in classification, or response in regression () () ()

Online Learning — Loss functions

The loss ℓ can be any loss function in Empirical Risk Minimisation (ERM).

Table 5: Scalar loss functions and their derivatives, depending on $f := \langle w, x \rangle$, and y.

	Loss $l(f, y)$	Derivative $l'(f, y)$
Hinge (Bennett and Mangasarian, 1992)	$\max(0, 1 - yf)$	$0 \text{ if } yf \ge 1 \text{ and } -y \text{ otherwise}$
Squared Hinge (Keerthi and DeCoste, 2005)	$\frac{1}{2} \max(0, 1 - yf)^2$	0 if $yf \ge 1$ and $f - y$ otherwise
Exponential (Cowell et al., 1999)	$\exp(-yf)$	$-y \exp(-yf)$
Logistic (Collins et al., 2000)	log(1 + exp(-yf))	$-y/(1 + \exp(-yf))$
Novelty (Schölkopf et al., 2001)	$max(0, \rho - f)$	0 if $f \ge \rho$ and -1 otherwise
Least mean squares (Williams, 1998)	$\frac{1}{2}(f - y)^2$	f - y
Least absolute deviation	f-y	sgn(f - y)
Quantile regression (Koenker, 2005)	$\max(\tau(f - y), (1 - \tau)(y - f))$	τ if $f > y$ and $\tau - 1$ otherwise
ϵ -insensitive (Vapnik et al., 1997)	$\max(0, f - y - \epsilon)$	$0 \text{ if } f - y \le \epsilon, \text{ else } \operatorname{sgn}(f - y)$
Huber's robust loss (Müller et al., 1997)	$\frac{1}{2}(f - y)^2$ if $ f - y \le 1$, else $ f - y - \frac{1}{2}$	$ f - y \le 1$, else $sgn(f - y)$
Poisson regression (Cressie, 1993)	$\exp(f) - yf$	$\exp(f) - y$

Table 6: Vectorial loss functions and their derivatives, depending on the vector f := Wx and on y.

	, 1	
	Loss	Derivative
Soft-Margin Multiclass (Taskar et al., 2004)	$\max_{y'} (f_{y'} - f_y + \Delta(y, y'))$	$e_{y^*} - e_y$
(Crammer and Singer, 2003)		where y^* is the argmax of the loss
Scaled Soft-Margin Multiclass	$\max_{y'} \Gamma(y, y')(f_{y'} - f_y + \Delta(y, y'))$	$\Gamma(y, y')(e_{y^*} - e_y)$
(Tsochantaridis et al., 2005)		where y^* is the argmax of the loss
Softmax Multiclass (Cowell et al., 1999)	$\log \sum_{y'} \exp(f_{y'}) - f_y$	$\left[\sum_{y'} e_{y'} \exp(f'_y)\right] / \sum_{y'} \exp(f'_y) - e_y$
Multivariate Regression	$\frac{1}{2}(f - y)^{\top}M(f - y)$ where $M \succeq 0$	M(f - y)

Typical regret bounds

For OCO algorithms, if the f_t is strongly-convex and differentiable (sometimes twice differentiable), we often have

Regret(
$$A$$
, { f_1 , \cdots , f_T }) $\leq O(\log T)$.

Typical assumptions

Denote D the diameter of the underlying convex set \mathcal{C} . *i.e.*

$$D = \max_{\theta, \theta' \in \mathcal{C}} \|\theta - \theta'\|_2$$

Assume f_t

- differentiable (twice differentiable needed when the Hessian is used (e.g. Newton method))
- bounded gradient by G i.e.

$$\sup_{\theta \in \mathfrak{C}, t \in [T]} \|\nabla f_t(\theta)\|_2 \leq G$$

H-strongly convex

$$f_t(\theta) - f_t(\theta') \geq \nabla f_t(\theta')^T (\theta - \theta') + \frac{H}{2} \|\theta - \theta'\|_2^2$$

Online Gradient Descent

Input: Convex Set $\mathcal{C} \subset \mathbb{R}^n$, step sizes $\eta_1, \eta_2, \dots \geq 0$, initial $\theta_1 \in \mathcal{C}$. In iteration 1, use θ_1 .

In iteration t > 1: use

$$\theta_t = \Pi_{\mathcal{C}}(\theta_{t-1} - \eta_t \nabla f_{t-1}(\theta_{t-1})).$$

Here $\Pi_{\mathfrak{C}}$ denotes the projection onto nearest point in \mathfrak{C} , that is

$$\Pi_{\mathcal{C}}(\theta) = \operatorname*{argmin}_{\theta' \in \mathcal{C}} \|\theta - \theta'\|_{2}.$$

Regret bound for OGD

Let $\theta^* \in \operatorname{argmin}_{\theta \in \mathcal{C}} \sum_{t=1}^{T} f_t(\theta)$, recall regret def (*i.e.* (1)),

$$\mathsf{Regret}_T(OGD) = \sum_{t=1}^T f_t(\theta_t) - \sum_{t=1}^T f_t(\theta^*).$$

Theorem (Regret on OGD)

For OGD with step sizes $\eta_t = \frac{1}{H(t-1)}$, $2 \le t \le T$, for all $T \ge 2$,

$$Regret_T(OGD) \le \frac{G^2}{2H}(1 + \log T).$$
 (3)

 f_t is H-strongly convex, we have

$$f(\theta^*) - f(\theta_t) \ge \nabla f_t(\theta_t)^T (\theta^* - \theta_t) + \frac{H}{2} \|\theta^* - \theta_t\|_2^2$$

$$\Rightarrow f(\theta_t) - f(\theta^*) \le \nabla f_t(\theta_t)^T (\theta_t - \theta^*) - \frac{H}{2} \|\theta^* - \theta_t\|_2^2.$$

Claim:

$$\nabla f_t(\theta_t)^T(\theta_t - \theta^*) \le \frac{\|\theta_t - \theta^*\|^2 - \|\theta_{t+1} - \theta^*\|^2}{2\eta_{t+1}} + \frac{\eta_{t+1}G^2}{2}$$
(4)

$$f(\theta_t) - f(\theta^*) \le \frac{\|\theta_t - \theta^*\|^2 - \|\theta_{t+1} - \theta^*\|^2}{2\eta_{t+1}} + \frac{\eta_{t+1}G^2}{2} - \frac{H}{2}\|\theta^* - \theta_t\|_2^2.$$
(5)

Sum up (5) for $t = 1, \dots, T$, we have

$$\begin{split} &\sum_{t=1}^{T} (f(\theta_{t}) - f(\theta^{*})) \leq \frac{1}{2} (\frac{1}{\eta_{2}} - H) \|\theta_{1} - \theta^{*}\|^{2} - \frac{1}{2\eta_{T+1}} \|\theta_{T+1} - \theta^{*}\|^{2} \\ &+ \frac{1}{2} \sum_{t=2}^{T} (\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}} - H) \|\theta_{t} - \theta^{*}\|^{2} + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t+1} \\ &\leq 0 + \frac{G^{2}}{2H} \sum_{t=1}^{T} \frac{1}{t} \qquad (\text{recall } \eta_{t} = \frac{1}{H(t-1)}, \text{ blue} = 0, \text{ red} \leq 0) \\ &\leq \frac{G^{2}}{2H} (1 + \log T). \end{split}$$

To prove the Claim:

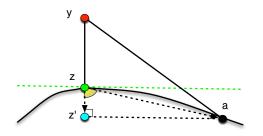
$$\nabla f_{t}(\theta_{t})^{T}(\theta_{t} - \theta^{*}) \leq \frac{\|\theta_{t} - \theta^{*}\|^{2} - \|\theta_{t+1} - \theta^{*}\|^{2}}{2\eta_{t+1}} + \frac{\eta_{t+1}G^{2}}{2}$$

$$\begin{split} &\|\theta_{t+1} - \theta^*\|^2 \\ &= \|\Pi_{\mathcal{C}}(\theta_t - \eta_{t+1} \nabla f_t(\theta_t)) - \theta^*\|^2 \\ &\leq \|(\theta_t - \eta_{t+1} \nabla f_t(\theta_t)) - \theta^*\|^2 \quad \text{(a property of proj onto a convex set)} \\ &= \|\theta_t - \theta^*\|^2 + \eta_{t+1}^2 \|\nabla f_t(\theta_t)\|^2 - 2\eta_{t+1} \nabla f_t(\theta_t)^T (\theta_t - \theta^*) \\ &\leq \|\theta_t - \theta^*\|^2 + \eta_{t+1}^2 G^2 - 2\eta_{t+1} \nabla f_t(\theta_t)^T (\theta_t - \theta^*). \end{split}$$

Rearrange the inequality and divide by $2\eta_{t+1}$ yields the claim.

A property of projection onto a convex set: Let $\mathcal{C} \subset \mathbb{R}^n$ be a convex set, $y \in \mathbb{R}^n$ and $z = \Pi_{\mathcal{C}} y$ be the projection of y onto \mathcal{C} . The for any point $a \in \mathcal{C}$,

$$||y-a||^2 \ge ||z-a||^2$$
.



Intuition: Convexity of $\mathcal{C} \Rightarrow (z-y)^T(a-z) \geq 0$ (*i.e.* yellow angle acute). $\Rightarrow \|y-a\|^2 \geq \|z-a\|^2$. (See Lemma 8 of Hazan et al 08 for proof)

Non-necessary assumptions

Relax OGD assumptions on f_t to following

- non-differentiable (pick a good sub-gradient)
- bounded (sub)-gradient by G i.e.

$$\sup_{\theta \in \mathcal{C}, t \in [T]} \|\nabla f_t(\theta)\|_2 \le G$$

H-strongly convex (for (sub)-gradient)

$$f_t(\theta) - f_t(\theta') \geq \nabla f_t(\theta')^T (\theta - \theta') + \frac{H}{2} \|\theta - \theta'\|_2^2$$

Non-necessary projection step

In OGD, the projection step *i.e.*

$$\theta_t = \Pi_{\mathcal{C}}(\theta_{t-1} - \eta_t \nabla f_{t-1}(\theta_{t-1})),$$

may be removed. Projection is just to ensure every θ_t is still a feasible point. If this is not a problem, without projection, we still have

$$\begin{split} &\|\theta_{t} - \theta^{*}\|^{2} - \|\theta_{t+1} - \theta^{*}\|^{2} \\ &= \|\theta_{t} - \theta^{*}\|^{2} - \|\theta_{t} - \eta_{t}\nabla f_{t}(\eta_{t}) - \theta^{*}\|^{2} \\ &= \|\theta_{t} - \theta^{*}\|^{2} - \|(\theta_{t} - \theta^{*}) - \eta_{t}\nabla f_{t}(\eta_{t})\|^{2} \\ &= 2\eta_{t+1}\nabla f_{t}(\theta_{t})^{T}(\theta_{t} - \theta^{*}) - \eta_{t+1}^{2}(\nabla f_{t}(\eta_{t}))^{2} \\ &\geq 2\eta_{t+1}\nabla f_{t}(\theta_{t})^{T}(\theta_{t} - \theta^{*}) - \eta_{t+1}^{2}G^{2} \end{split}$$

Above still yields the claim

$$\nabla f_{t}(\theta_{t})^{T}(\theta_{t} - \theta^{*}) \leq \frac{\|\theta_{t} - \theta^{*}\|^{2} - \|\theta_{t+1} - \theta^{*}\|^{2}}{2\eta_{t+1}} + \frac{\eta_{t+1}G^{2}}{2}$$

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM

Pegasos (Shalev-Shwartz&Singer&Srebro07 and Shalev-Shwartz&Singer&Srebro&Cotter09) can be seen as OGD with

$$f_t(\theta) = \frac{H}{2} \|\theta\|^2 + [1 - y_t \langle \theta, x_t \rangle]_+,$$

However $f_t(\theta)$ is not differentiable at where $1 - y_t \langle \theta, x_t \rangle = 0$, which violates the old assumptions of OGD.

Remedy: pick sub-Gradient $\nabla f_t(\theta_t) = 0$ where $1 - y_t \langle \theta, x_t \rangle = 0$ and let $\nabla f_t(\theta_t)$ be the gradient where differentiable. Now even when $1 - y_t \langle \theta, x_t \rangle = 0$, H-strongly convexity (from $\frac{H}{2} \|\theta\|^2$) and bounded (sub-)gradient still hold.

See Lemma 1 of Shalev-Shwartz&Singer&Srebro07 which gives the same regret bound as OGD.

