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Course Outline

Generalisation Bounds:
@ Basics
© VC dimensions and bounds
© Rademacher complexity and bounds
© PAC Bayesian Bounds
© Regret bounds for online learning (Today)
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Online Convex Optimisation

Online Convex Optimisation (OCO) can be seen as
“an online player iteratively chooses a point from a
non-empty, bounded, closed and convex set € ¢ R™"

1Zinkevich03 and Hazan&Agarwal&Kale08 (Log regret algorithms
for OCO)



OCO (2)

At iteration t, the algorithm A (the online player) chooses
0y € C. After committing to this choice, a convex cost
function f; : € — R is revealed (i.e. f;(0;) is the cost).
That is (in general)

0= A({h,+ f1})



OCO (3)

Denote the number of iterations by T, the goal of OCO is
to minimise the Regret

T T
Regret(A, {fi, - fr}) = 3 (0) —min 3" £(0). (1)
t=1 t=1



Online Learning

Online Learning (OL)2:

At iteration t, the algorithm A receives a instance x; € R”
and is then required to predict the output ® j; = h(x;; 0;).
After predicting j, the true output y; is revealed and a
loss ¢(6; (X, yr)) occurs. Then £(6; (X, yt)) — 6:1. Denote
# iter. by T, the goal of OL is to minimise the Regret

Regret(A, {(x1, y1), - - (Xr,yr)}) =

;
Zf(et; (Xt: ¥1)) manE (Xt: ¥1)) (2)
1—1

View OL as an OCO: ¢(¢; (x;—1, Y1—1)) — 6; is essentially
picking 0; in OCO. ¢(6;; (x:, 1)) is the cost function £(6;).

2more general OL can be described without 6 and h
3label in classification, or response in regression



Online Learning — Loss functions

The loss ¢ can be any loss function in Empirical Risk

Minimisation (ERM).

Table 5: Scalar loss functions and their derivatives, depending on f := (w, z), and y.

Loss I(f,y)

Derivative I'(f, y)

Hinge (Bennett and Mangasarian, 1992)

max(0,1—yf)

0if yf > 1 and —y otherwise

Squared Hinge (Keerthi and DeCoste, 2005)

T max(0,1—yf)

0if yf > 1 and f — y otherwise

Exponential (Cowell et al., 1999)

exp(—yf)

—yexp(=yf)

Logistic (Collins et al., 2000)

log(1 + exp(—yf))

—y/(1 +exp(=yf))

Novelty (Scholkopf et al., 2001) max(0,p — f) 0 if f > p and —1 otherwise
Least mean squares (Williams, 1998) I(f—y)? f-y
Least absolute deviation |f =yl sgn(f —y)

Quantile regression (Koenker, 2005)

max(r(f —y), (1 = 7)(y — f))

7 if f >y and 7 — 1 otherwise

e-insensitive (Vapnik et al., 1997)

max(0, |f —y[—¢)

0if [f —y| <e, else sgn(f —y)

Huber’s robust loss (Miiller et al., 1997)

3~y if[f —y[ <L else [f —y[— ]

S—yif [f —yl <1, else sgn(f —y)

Poisson regression (Cressie, 1993)

exp(f) —yf

exp(f) —y

Table 6: Vectorial loss functions

and their derivatives, depending on the vector f := Wz and on y.

Loss

Derivative

Soft-Margin Multiclass (Taskar et al., 2004)
(Crammer and Singer, 2003)

maxy (fy — fy + Ay, y))

ey — ey
where y* is the argmax of the loss

Scaled Soft-Margin Multiclass
(Tsochantaridis et al., 2005)

maxy (y,y/)(fy — fy + Av,¥)

T,y ) (e —ey)
where y* is the argmax of the loss

Softmax Multiclass (Cowell et al., 1999)

log 3=, exp(fy) = fy

[Z, ev o] /5, explsy) e

Multivariate Regression

I(f —y)"M(f — y) where M >~ 0

M)

Table 5 in TeoVisSmo09 bundle method for risk minimisation. Note f here is not the cost function f in OCO.




Typical regret bounds

For OCO algorithms, if the f; is strongly-convex and
differentiable (sometimes twice differentiable), we often
have

Regret(A, {fi,--- ,fr}) < O(log T).



Typical assumptions

Denote D the diameter of the underlying convex set C. i.e.

D= maxH@ )2
0,0'e

Assume f;

e differentiable (twice differentiable needed when the
Hessian is used (e.g. Newton method ))

@ bounded gradient by G i.e.
sup ||VA(0)]2 < G

0eC,te[T]

@ H-strongly convex

/ / / H /
fi(6) —f(8') = V() (6 — ) + 510 ¢/



Online Gradient Descent

Input: Convex Set € C R”, step sizes 1,1, -- > 0,
initial 64 € C.

In iteration 1, use 64.

In iteration t > 1: use

Or = Ne(0i—1 — 0V hi_1(0-1)).

Here e denotes the projection onto nearest point in C,
that is

Me(f) = argmin |6 — &'|2.
f'ce
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Regret bound for OGD

Let 0" € argmin, ZL f:(0), recall regret def (i.e. (1)),

-
Regret(OGD) = Z f:(0 Z Al
t=1

Theorem (Regret on OGD)

For OGD with step sizes n; =
T>2,

T 1),2 <t<T, forall

2

Regret;(OGD) < %(1 +log 7). (3)
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Regret bound for OGD — proof

fy is H-strongly convex, we have
H
f(67) — £(6r) > VH(6:)T (6" — 1) + 50"~ 013
H,
= £(0r) = £(07) < VA(0) (01 = 07) = S (10" — 01][3.

Claim:

0%[|2 — (1041 — 67|12 UES G?

4
21t 11 2 )

0 _
Vft(et)T(GI—e*) < H t
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Regret bound for OGD — proof

16 — 6%[|2 = |61 — 0712 | 041 GP
f(0;) — f(6*) < —
(6:) = 1(7) < 21t 41 T

H. .
§||9 — 03

(5)
Sumup (5) fort=1,---, T, we have
r 1,1
(00 = 1(6") < 5~ = H)lIo - e*ut—nem — 0|7
t=1
o T

G
ZZ | /B CRE- e

Nt+1 Nt —1

1 1
<: - — - —_— = <:
_0+2H ; (recall n; H(t_1),blue 0,red<0)
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Regret bound for OGD — proof

To prove the Claim:

0%[|2 — ||0+1 — 07|12 n Ner1 G?
20)t-+1 2

9 _
Vft(et)r(et—g*) < || t

1621 — 672

= INe(0; — ner1 VE(0:)) — 0712

< ||(8r — ne41 VH(6:)) — 60%||2  (a property of proj onto a convex set)
= [10e = 0" 117 + nF 1 VRO — 20601V H(00) T (0 — 67)

< (100 = %12 + 17,1 G — 2ne1 V(O (6 — 0%).

Rearrange the inequality and divide by 27;, 1 yields the claim.
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Regret bound for OGD — proof

A property of projection onto a convex set:
Let @ C R" be a convex set, y € R” and z = lNMgy be the
projection of y onto €. The for any point a € €,

2 2
ly —all* = ||z - al*.

y

Intuition: Convexity of @ = (z — y)T(a— z) > 0 (i.e. yellow
angle acute). = |y — al* > ||z — a||*.
(See Lemma 8 of Hazan etal 08 for proof)
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Non-necessary assumptions

Relax OGD assumptions on f; to following
@ non-differentiable (pick a good sub-gradient)
@ bounded (sub)-gradient by G i.e.

sup [|VH(0)]. < G

0ee,te[T]

@ H-strongly convex (for (sub)-gradient)

Hio o
h(0) — #(0) = V() (0~ 0) + 510~ ¢/l
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Non-necessary projection step

In OGD, the projection step i.e.
0t = Ne(Ot—1 — ntVH_1(0t—1)),

may be removed. Projection is just to ensure every 6; is still a
feasible point. If this is not a problem, without projection, we still
have

16 — 6%||% = (16144 — 67|
= 116: — 6*117 — 10 — eV () — 0%
= [16: — 6% = |(6: — 6") — eV r(me) |12
= 20t A VAO) (0 — 07) — 4 (VHi(mr))?
> 2041 VIH(0)T (0 — 0%) — 1%, G
Above still yields the claim
< 10 = 0712 = [|0r41 — 07|12 n N1 G2

V1 (0:) (0 — 0%) T 5
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Pegasos: Primal Estimated sub-GrAdient

SOlver for SVM

Pegasos (Shalev-Shwartz&Singer&Srebro07 and
Shalev-Shwartz&Singer&Srebro&Cotter09) can be seen as
OGD with

W0) = 51017 + 11— ye 0. )]

However f;(9) is not differentiable at where 1 — y; (0, x;) =0,
which violates the old assumptions of OGD.

Remedy: pick sub-Gradient Vf;(6;) = 0 where 1 — y; (0, x;) =0
and let Vf;(0;) be the gradient where differentiable. Now even
when 1 — y; (6, x;) = 0, H-strongly convexity (from gH&HZ ) and
bounded (sub-)gradient still hold.

See Lemma 1 of Shalev-Shwartz&Singer&Srebro07 which
gives the same regret bound as OGD.
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