Generalisation Bounds (4): PAC Bayesian Bounds

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies, The University of Adelaide, Australia

31 Aug. 2012

Course Outline

Generalisation Bounds:

- Basics
- VC dimensions and bounds
- Rademacher complexity and bounds
- PAC Bayesian Bounds (Today)
- **⑤** ...

Recap: Risk

Given $\{(x_1, y_1), \dots, (x_n, y_n)\}$ sampled from a unknown but fixed distribution P(x, y), the goal is to learn a hypothesis function $g: \mathcal{X} \to \mathcal{Y}$, for now assume $\mathcal{Y} = \{-1, 1\}$.

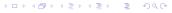
A typical $g(x) = \text{sign}(\langle \phi(x), w \rangle)$, where sign(z) = 1 if z > 0, sign(z) = -1 otherwise.

Generalisation error

$$R(g) = \mathbb{E}_{(x,y)\sim P}[\mathbf{1}_{g(x)\neq y}]$$

Empirical risk for zero-one loss (i.e. training error)

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{g(x_i) \neq y_i}.$$



Recap: VC bound

For VC dimension h, we know that $\forall n \geq h$, the growth function (*i.e.* #outputs) $S_{\mathbb{S}}(n) \leq (\frac{en}{h})^h$. Thus

Theorem (VC bound)

For any $\delta \in (0,1)$, with probability at least $1 - \delta$, $\forall g \in \mathfrak{G}$

$$R(g) \leq R_n(g) + 2\sqrt{2rac{h\lograc{2en}{h} + \log(rac{2}{\delta})}{n}}.$$

Problems:

- data dependency come through training error
- very loose

Recap: Rademacher bound

Theorem (Rademacher)

Fix $\delta \in (0,1)$ and let \mathfrak{G} be a set of functions mapping from Z to [a,a+1]. Let $S=\{z_i\}_{i=1}^n$ be drawn i.i.d. from P. Then with probability at least $1-\delta$, $\forall g\in \mathfrak{G}$,

$$\mathbb{E}_{P}[g(z)] \leq \hat{\mathbb{E}}[g(z)] + \mathcal{R}_{n}(\mathfrak{G}) + \sqrt{\frac{\ln(2/\delta)}{2n}}$$

$$\leq \hat{\mathbb{E}}[g(z)] + \hat{\mathcal{R}}_{n}(\mathfrak{G}, S) + 3\sqrt{\frac{\ln(2/\delta)}{2n}},$$

where $\hat{\mathbb{E}}[g(z)] = \frac{1}{n} \sum_{i=1}^{n} g(z_i)$.

Recap: Rademacher Margin bound

Theorem (Margin)

Fix $\gamma > 0$, $\delta \in (0,1)$, $\forall g \in \mathcal{G}$, let $\{(x_i, y_i)\}_{i=1}^n$ be drawn i.i.d. from P(X, Y) and let $\xi_i = (\gamma - y_i g(x_i))_+$. Then with probability at least $1 - \delta$ over sample of size n, we have

$$P(y \neq g(x)) \leq \frac{1}{n\gamma} \sum_{i=1}^{n} \xi_i + \frac{4}{n\gamma} \sqrt{tr(\mathbf{K})} + 3\sqrt{\frac{\ln(2/\delta)}{2n}}.$$

Problems:

- data dependency only come through training error and margin
- tighter than VC bound, but still loose

PAC-bayes bounds

Assume \hat{Q} is the prior distribution over classifier $g \in \mathcal{G}$ and Q is any (could be the posterior) distribution over the classifier.

PAC-bayes bounds on:

- Gibbs classifier: $G_Q(x) = g(x), g \sim Q$ risk: $R(G_Q) = \mathbb{E}_{(x,y)\sim P,g\sim Q}[\mathbf{1}_{g(x)\neq y}]$ (McAllester98,99,01,Germain *et al.* 09)
- Average classifier: $B_Q(x) = \operatorname{sgn}[\mathbb{E}_{g \sim Q} g(x)]$ risk: $R(B_Q) = \mathbb{E}_{(x,y) \sim P}[\mathbf{1}_{\mathbb{E}_Q[g(x)] \neq y}]$ (Langford01, Zhu&Xing09)
- Single classifier: $g \in \mathcal{G}$. risk: $R(g) = \mathbb{E}_{(x,y) \sim P}[\mathbf{1}_{g(x) \neq y}]$ (Langford01,McAllester07)

Relation between Gibbs, Average and Single classifier Risks

 $R(G_Q)$ (original PAC-Bayes bounds)

$$\Downarrow : R(B_Q)/2 \leq R(G_Q)$$

 $R(B_Q)$ (PAC-Bayes margin bound for boostings)

 \Downarrow via picking a "good" prior $\hat{ extit{Q}}$ and posterior $extit{Q}$ over $extit{g}$

R(g) (PAC-Bayes margin bound for SVMs)

PAC-Bayesian bound on Gibbs Classifier (1)

Theorem (Gibbs (McAllester99,03))

For any distribution P, for any set \mathfrak{G} of the classifiers, any prior distribution \hat{Q} of \mathfrak{G} , any $\delta \in (0,1]$, we have

$$\Pr_{S\sim P^n}\Big\{orall Q \ on \ \mathfrak{G}: R(G_Q)\leq R_{\mathcal{S}}(G_Q)+\Big\}$$

$$\sqrt{\frac{1}{2n-1}\Big[\mathit{KL}(Q||\hat{Q})+\ln\frac{1}{\delta}+\ln n+2\Big]\Big\}}\geq 1-\delta.$$

where $\mathit{KL}(Q||\hat{Q}) = \mathbb{E}_{g \sim Q} \ln \frac{Q(g)}{\hat{Q}(g)}$ is the KL divergence.

PAC-Bayesian bound on Gibbs Classifier (2)

Theorem (Gibbs (Seeger02 and Langford05))

For any distribution P, for any set \mathfrak{G} of the classifiers, any prior distribution \hat{Q} of \mathfrak{G} , any $\delta \in (0,1]$, we have

$$\Pr_{S \sim P^n} \left\{ \forall Q \text{ on } \mathfrak{G} : kl(R_S(G_Q), R(G_Q)) \leq \frac{1}{n} \left[kL(Q||\hat{Q}) + \ln \frac{n+1}{\delta} \right] \right\} \geq 1 - \delta.$$

where

$$kl(q,p)=q\ln\frac{q}{p}+(1-q)\ln\frac{1-q}{1-p}.$$

PAC-Bayesian bound on Gibbs Classifier (3)

Since

$$kI(q,p) \geq (q-p)^2$$

The theorem Gibbs (Seeger02 and Langford05) yields

$$\Pr_{S \sim P^n} \left\{ \forall Q \text{ on } \mathfrak{G} : R(G_Q) \right) \leq R_S(G_Q) + \sqrt{\frac{1}{n} \left[\mathsf{KL}(Q || \hat{Q}) + \ln \frac{n+1}{\delta} \right]} \right\} \geq 1 - \delta.$$

PAC-Bayesian bound on Average Classifier

Theorem (Average (Langford et al. 01))

For any distribution P, for any set $\mathfrak G$ of the classifiers, any prior distribution \hat{Q} of $\mathfrak G$, any $\delta \in (0,1]$, and any $\gamma > 0$, we have

$$\Pr_{S \sim P^n} \left\{ \forall Q \text{ on } \mathfrak{G} : R(B_Q) \leq \Pr_{(\mathbf{x}, y) \sim S} \left(y \mathbb{E}_{g \sim Q}[g(x)] \leq \gamma \right) + O\left(\sqrt{\frac{\gamma^{-2} KL(Q||\hat{Q}) \ln n + \ln n + \ln \frac{1}{\delta}}{n}} \right) \right\} \geq 1 - \delta.$$

Zhu& Xing09 extended to structured output case.

PAC-Bayesian bound on Single Classifier

Assume $g(x) = \langle w, \phi(x) \rangle$ and rewrite R(g) as R(w).

Theorem (Single (McAllester07))

For any distribution P, for any set $\mathfrak G$ of the classifiers, any prior distribution \hat{Q} over w, any $\delta \in (0,1]$, and any $\gamma > 0$, we have

$$\Pr_{S \sim P^n} \left\{ \forall w \sim \mathcal{W} : R(w) \leq \Pr_{(\mathbf{x}, \mathbf{y}) \sim S} \left(\mathbf{y} \langle \mathbf{w}, \phi(\mathbf{x}) \rangle \leq \gamma \right) \right.$$
$$\left. + O\left(\sqrt{\frac{\gamma^{-2} \frac{\|\mathbf{w}\|^2}{2} \ln(n|\mathcal{Y}|) + \ln n + \ln \frac{1}{\delta}}{n}} \right) \right\} \geq 1 - \delta.$$

Proofs

Germain *et al.* icml09 (Thm 2.1) significantly simplified the proof of PAC-Bayes bounds. Here

$$R_{\mathcal{S}}(g) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}} \mathbf{1}_{g(x) \neq y}.$$

Theorem (Simplified PAC-Bayes (Germain09))

For any distribution P, for any set $\mathfrak G$ of the classifiers, any prior distribution $\hat Q$ of $\mathfrak G$, any $\delta \in (0,1]$, and any convex function $\mu:[0,1]\times [0,1]\to \mathbb R$, we have

$$\begin{split} &\Pr_{S\sim P^n}\left\{\forall Q \ on \ \Im: \mu(R_S(G_Q),R(G_Q)) \leq \\ &\frac{1}{n}\Big[\mathit{KL}(Q||\hat{Q}) + \ln(\frac{1}{\delta} \operatorname{\mathbb{E}}_{S\sim P^n} \operatorname{\mathbb{E}}_{g\sim \hat{Q}} e^{n\mu(R_S(g),R(g))})\Big] \Big\} \geq 1-\delta, \\ &\textit{where } \mathit{KL}(Q||\hat{Q}) = \operatorname{\mathbb{E}}_{g\sim Q} \ln \frac{Q(g)}{\hat{Q}(g)} \textit{ is the KL divergence}. \end{split}$$

4 D > 4 B > 4 E > 4 B > 9 Q Q

Proof of Gibbs (Seeger02 and Langford05)

Let $\mu(q, p) = kl(q, p)$, where

$$kl(q,p)=q\ln\frac{q}{p}+(1-q)\ln\frac{1-q}{1-p}.$$

The fact that

$$\mathbb{E}_{S\sim P^n}\,\mathbb{E}_{g\sim \hat{Q}}\,e^{n\mathrm{kl}(R_S(g),R(g))}\leq n+1.$$

The Simplified PAC-Bayes theorem yields PAC-bayes bound on Gibbs Classifier (Seeger02 and Langford05).

Proof of Gibbs (McAllester99,03)

Let $\mu(q, p) = 2(q - p)^2$, the theorem will yield the PAC-Bayes bound of McAllester99,03.

Proof of Single (McAllester07)

It's essentially how to get a bound on Single Classifier, from a existing bound on Average Classifier.

By choosing the weight prior $\hat{Q}(\mathbf{w}) = \frac{1}{Z} \exp(-\frac{\|\mathbf{w}\|^2}{2})$ and the posterior $Q(\mathbf{w}') = \frac{1}{Z} \exp(-\frac{\|\mathbf{w}' - \mathbf{w}\|^2}{2})$, one can show $\mathbb{E}_{(x,y)\sim P}[\mathbf{1}_{y\langle w,\phi(x)\rangle\leq 0}] = \mathbb{E}_{(x,y)\sim P}[\mathbf{1}_{\mathbb{E}_Q\,y\,\mathbb{E}_{g\sim Q}[g(x)]\leq 0}]$ by symmetry argument proposed in Langford *et al.* 01 and McAllester07. The fact that $\mathrm{KL}(Q||\hat{Q}) = \frac{\|\mathbf{w}\|^2}{2}$ yields the theorem of Single (McAllester07).

Proof of the Simplified PAC-Bayes thm (1)

To prove

$$\Pr_{S \sim P^n} \left\{ \forall Q : \mu(R_S(G_Q), R(G_Q)) \le \frac{1}{n} \left[\mathsf{KL}(Q || \hat{Q}) + \mathsf{In}(\frac{1}{\delta} \mathbb{E}_{S \sim P^n} \mathbb{E}_{g \sim \hat{Q}} e^{n\mu(R_S(g), R(g))}) \right] \right\} \ge 1 - \delta,$$

Realise that $\mathbb{E}_{g\sim\hat{Q}}\,e^{n\mu(R_S(g),R(g))}$ is a random variable (due to randomness of S). Let $z=\mathbb{E}_{g\sim\hat{Q}}\,e^{n\mu(R_S(g),R(g))}$. Obviously z can take only non-negative values.

Proof of the Simplified PAC-Bayes thm (2)

Markov inequality states that for any a > 0, $\Pr(z \ge a) \le \frac{\mathbb{E}[z]}{a}$. This is because

$$\mathbb{E}[z] = \int_0^\infty z p(z) dz = \int_0^a z p(z) dz + \int_a^\infty z p(z) dz$$

$$\geq 0 + \int_a^\infty z p(z) dz \geq a \int_a^\infty p(z) dz = a \Pr(z \geq a)$$

Let $a = \frac{\mathbb{E}[z]}{\delta}$, we have $\Pr(z \geq \frac{\mathbb{E}[z]}{\delta}) \leq \delta$. Thus

$$\Pr(z < \frac{\mathbb{E}[z]}{\delta}) \le 1 - \delta$$
 (1)

Proof of the Simplified PAC-Bayes thm (3)

Recall
$$z = \mathbb{E}_{q \sim \hat{Q}} e^{n\mu(R_S(g), R(g))}$$
, eq(1) is

$$\Pr_{S \sim P^n} \Big(\operatorname{\mathbb{E}}_{g \sim \hat{Q}} e^{n\mu(R_S(g), R(g))} \leq \frac{\operatorname{\mathbb{E}}_{S \sim P^n} \big[\operatorname{\mathbb{E}}_{g \sim \hat{Q}} e^{n\mu(R_S(g), R(g))} \big]}{\delta} \Big) \geq 1 - \delta$$

Taking log on both sides in Pr yields

$$\Pr_{S \sim P^n} \Big(\ln \Big[\, \mathbb{E}_{g \sim \hat{Q}} \, e^{n\mu(R_S(g), R(g))} \Big] \leq \ln \Big[\frac{\mathbb{E}_{S \sim P^n} \big[\mathbb{E}_{g \sim \hat{Q}} \, e^{n\mu(R_S(g), R(g))} \big]}{\delta} \Big] \Big) \geq 1 - \delta$$

Proof of the Simplified PAC-Bayes thm (4)

Since $\mathbb{E}_{q \sim \hat{Q}} f(g) = \mathbb{E}_{g \sim Q} rac{Q(g)}{Q(g)} f(g)$ (same trick in importance sampling)

$$\Pr_{S \sim P^n} \left(\forall Q : \ln \left[\mathbb{E}_{g \sim Q} \frac{\hat{Q}(g)}{Q(g)} e^{n\mu(R_S(g), R(g))} \right] \leq \ln \left[\frac{\mathbb{E}_{S \sim P^n} \left[\mathbb{E}_{g \sim \hat{Q}} e^{n\mu(R_S(g), R(g))} \right]}{\delta} \right] \right)$$

$$> 1 - \delta$$

$$\begin{split} & \ln \left[\mathbb{E}_{g \sim Q} \, \frac{\ddot{Q}(g)}{Q(g)} e^{n\mu(R_S(g),R(g))} \right] \\ & \geq \mathbb{E}_{g \sim Q} \ln \left[\frac{\dot{Q}(g)}{Q(g)} e^{n\mu(R_S(g),R(g))} \right] \quad \text{(concavity of log)} \\ & \geq -\mathbb{E}_{g \sim Q} \ln (\frac{Q(g)}{\dot{Q}(g)}) + \mathbb{E}_{g \sim Q} [n\mu(R_S(g),R(g))] \\ & \geq -\text{KL}(Q||\, \hat{Q}) + n\mu(\mathbb{E}_{g \sim Q} \, R_S(g),\mathbb{E}_{g \sim Q} \, R(g)) \quad \text{(convexity of } \mu) \\ & \geq -\text{KL}(Q||\, \hat{Q}) + n\mu(R_S(G_Q),R(G_Q)) \end{split}$$

Proof of the Simplified PAC-Bayes thm (5)

 $\forall Q$, with probability at least $1 - \delta$, below holds

$$-\mathsf{KL}(Q||\hat{Q}) + n\mu(R_S(G_Q), R(G_Q)) \leq \ln(\frac{1}{\delta}\mathbb{E}_{S \sim P^n} \,\mathbb{E}_{g \sim \hat{Q}} \,e^{n\mu(R_S(g), R(g))})$$

Thus

$$\mu(R_{\mathcal{S}}(G_Q), R(G_Q)) \leq \frac{1}{n} \Big[\mathsf{KL}(Q||\hat{Q}) + \mathsf{In}(\frac{1}{\delta} \, \mathbb{E}_{S \sim P^n} \, \mathbb{E}_{g \sim \hat{Q}} \, e^{n\mu(R_{\mathcal{S}}(g), R(g))}) \Big],$$

which is

$$\Pr_{S \sim P^n} \left\{ \forall Q : \mu(R_S(G_Q), R(G_Q)) \le \frac{1}{n} \left[\mathsf{KL}(Q || \hat{Q}) + \mathsf{In}(\frac{1}{\delta} \mathbb{E}_{S \sim P^n} \mathbb{E}_{g \sim \hat{Q}} e^{n\mu(R_S(g), R(g))}) \right] \right\} \ge 1 - \delta,$$

Related concepts

 Regret bounds for online learning (will be covered in the next talk)