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Course Outline

Generalisation Bounds:
@ Basics
@ VC dimensions and bounds
© Rademacher complexity and bounds
© PAC Bayesian Bounds (Today)
Q.-



Recap: Risk

Given {(x1,¥1),- -+, (Xn, ¥n)} sampled from a unknown but
fixed distribution P(x, y), the goal is to learn a hypothesis
function g : X — Y, for now assume Y = {—1,1}.

A typical g(x) = sign({¢(x), w)), where sign(z) = 1 if
z > 0, sign(z) = —1 otherwise.
Generalisation error

R(9) = Ex.y)~r[1g(x)2y]

Empirical risk for zero-one loss (i.e. training error)



Recap: VC bound

For VC dimension h, we know that Vn > h, the growth
function (i.e. #outputs) Sg(n) < (22)". Thus

Theorem (VC bound)

For any § € (0,1), with probability at least1 — o, Vg € G

hlog 28" + log(2
R(g)an(g)+2\/2 0g hn+ 09(5)'

Problems:
@ data dependency come through training error
@ very loose



Recap: Rademacher bound

Theorem (Rademacher)

Fix 5 € (0,1) and let G be a set of functions mapping from
Ztola,a+ 1]. Let S = {z}_, be drawn i.i.d. from P.
Then with probability at least1 — 9, Vg € G,




Recap: Rademacher Margin bound

Theorem (Margin)

Fix~v > 0,6 € (0,1),Vg € G, let {(x;, yi)}_, be drawn i.i.d.
from P(X,Y) and let & = (v — yig(xi))+-. Then with
probability at least 1 — § over sample of size n, we have

In(2/4
Ply # 9(x) < — Z& +3 %
Problems:
@ data dependency only come through training error
and margin

@ tighter than VC bound, but still loose




PAC-bayes bounds

Assume Q is the prior distribution over classifier g € G
and Q is any (could be the posterior) distribution over the
classifier.

PAC-bayes bounds on:

@ Gibbs classifier: Go(x) = g(x),g ~ Q
risk: R(Ga) = E(xy)~pr.g~allgwz]
(McAllester98,99,01,Germain et al. 09)

@ Average classifier: Bo(x) = sgn[Eg.q g(X)]
risk: R(Ba) = E(xy)~p[1eqla12y]
(Langford01, Zhu&Xing09)

@ Single classifier: g € G.

risk: R(9) = Exy)~p[1g2y]
(Langford01,McAllesterQ7)



Relation between Gibbs, Average and Single

classifier Risks

R(Gg) (original PAC-Bayes bounds)

}.- R(Ba)/2 < R(Ga)

R(Bq) (PAC-Bayes margin bound for boostings)

|} via picking a “good” prior Q and posterior Q over g

R(g) (PAC-Bayes margin bound for SVMs)



PAC-Bayesian bound on Gibbs Classifier (1)

Theorem (Gibbs (McAllester99,03))

For any distributiqn P, for any set G of the classifiers, any
prior distribution Q of G, any § € (0, 1], we have

P {vo on §: R(Gg) < Rs(Ga)+

\/ 1 [KL(QHQ)+|n1+|nn+2]} >1-34.

2n —1 1)

where KL(Q||Q) = Eg.qIn ggg) is the KL divergence.




PAC-Bayesian bound on Gibbs Classifier (2)

Theorem (Gibbs (Seeger02 and Langford05))

For any distribution P, for any set G of the classifiers, any
prior distribution Q of G, any ¢ € (0, 1], we have

P {vo on G : ki(Rs(Ga), R(Ga)) <

1 . n+1
E[KL(O||Q)+In : }} >1-4.
where ’
kl(q.p) = qln%+ (1-9q)ing _Z-
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PAC-Bayesian bound on Gibbs Classifier (3)

Since
ki(q.p) > (g — p)*,
The theorem Gibbs (Seeger02 and Langford05) yields

Pr {vo on §: R(Ga)) < Rs(Ga)+

\/1 [KL(Q||©)+Inn;1]}21—5.

n
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PAC-Bayesian bound on Average Classifier

Theorem (Average (Langford et al. 01))

For any distribution P, for any set G of the classifiers, any
prior distribution Q of G, any § € (0,1], and any v > 0, we
have

Pr{vQon§:RBa) < Pr (yEsalg(x)] <)

-2 e 1
+O(\/7 KL(QIQ)I:n+Inn+In5) }21—6.

Zhu& Xing09 extended to structured output case.
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PAC-Bayesian bound on Single Classifier

Assume g(x) = (w, ¢(x)) and rewrite R(g) as R(w).
Theorem (Single (McAllester07))

For any distribution P, for any set G of the classifiers, any
prior distribution Q over w, any § € (0,1], and any v > 0,
we have

Pr{vw~ Wi RW) < Pr (y(w.o00) <)

2 |lwl? 1
+o(\/7 2w |n(n|yn)+|nn+|n5)}>1d
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Proofs

Germain et al. icml09 (Thm 2.1) significantly simplified
the proof of PAC-Bayes bounds. Here

Rs(g) = ,1‘7 Z(x,y)es 19002y-

Theorem (Simplified PAC-Bayes (Germain09))

For any distribution P, for any set G of the classifiers, any
prior distribution Q of G, any ¢ € (0, 1], and any convex
function . : [0,1] x [0,1] — R, we have

r{‘v’QOHS:u( s(Ga), R(Gq)) <

i enu(Rs(g)ﬁ(g)))]} >1_4,

S~ P

[KL(QHQ) N Eg K

) g~

where KL(Q||Q) = Eyq In IS the KL divergence.
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Proof of Gibbs (Seeger02 and Langford05)

Let (g, p) = kl(q, p), where

q 1-q
K(gq,p)=gIin=+(1—g)ln .
(g.p)=q b (1-9q) o

The fact that
Es-pE, o e™Fs@ARO) < ny 1.

The Simplified PAC-Bayes theorem yields PAC-bayes
bound on Gibbs Classifier (Seeger02 and Langford05).
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Proof of Gibbs (McAllester99,03)

Let 1(q, p) = 2(q — p)?, the theorem will yield the
PAC-Bayes bound of McAllester99,03.
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Proof of Single (McAllesterQ7)

It's essentially how to get a bound on Single Classifier,
from a existing bound on Average Classifier.

By choosing the weight prior Q(w) = & exp(—1%%) and
the posterior Q(w’') = %exp(—w), one can show
Exyy~p[ywot0r<o] = Eey)~p[1egy e, lo(x)<o] DY
symmetry argument proposed in Langford etal. 01 and
McAllester07. The fact that KL(Q||Q) = ™  yields the
theorem of Single (McAllester07).
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Proof of the Simplified PAC-Bayes thm (1)

To prove

iy {VQ : 1(Rs(Ga), R(Gaq)) <

1 5 1
- [KL(QHQ) + |n(g EswpEy g enu(Rs(g),R(Q)))] } >,
Realise that E,,_, e™("s(9)-A(9)) is a random variable (due

to randomness of S). Let z = E,_ e"(s(9)5(9),
Obviously z can take only non-negative values.
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Proof of the Simplified PAC-Bayes thm (2)

Markov inequality states that for any a > 0,
Pr(z > a) < ™4 This is because

o0 a o0
E[z] = / zp(z)dz = / zp(z)dz + / zp(z)dz
0 0 a
>0+ / zp(z)dz > a/ p(z)dz = aPr(z > a)
Leta= @, we have Pr(z > %) < 6. Thus

Pr(z<¥)§1—6 (1)
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Proof of the Simplified PAC-Bayes thm (3)

Recall z = E,,_g e"(Rs(0)}R(9), eq(1) is

n . @r(Rs(9),R(9))
Pr (]Eg Oe”/t(ﬁ‘s(g)ﬁ(g)) < Es~p []Eg~O§ ]

P )21—5

Taking log on both sides in Pr yields

Espn []EQNO e”M(Hs(g)ﬁ(g))]
0

Pr (ln [ngo enu(Rs(g)ﬂ(g))] < |n{

S )21_5
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Proof of the Simplified PAC-Bayes thm (4)

Since ngf) f(g) = EQNQ %f(g) (same trick in importance sampling)

Es-pn []EQNQ e"(As(9).R(9))] } )

(VQ 1N [EgN o a’(g)enums(g)ﬁ(g))} <In { -

9)

Pr
S~pn
>1-9

Q9) _ru(rs(a)Ae)
In | Eg-q 20" }

> Egqln {gggg]; e”“(RS(g)’H(g))] (concavity of log)

> _Egeq m(gg’;) +Eg-alm(Rs(9). R(9))]

> —KL(Q||Q) + nu(Eg~q Rs(9), Eg~q R(g))  (convexity of )
> —KL(QI|Q) + nu(Rs(Ga). R(Ga))
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Proof of the Simplified PAC-Bayes thm (5)

V@, with probability at least 1 — 4, below holds

~ 1
—KL(Q||Q) + nu(Rs(Ga). R(Ga)) < IN(5Es.pr By g e"(As(9).R(9)))

Thus

A 1
#(Rs(Ga), R(Ga)) < —[KL(QIQ) + In(5 Es.pm E,, o €™ (Fe(01A))],

SI=

which is
sELn {VQ : 11(Rs(Ga), R(Gq)) <

1 A 1
~[KL(QIIQ) +In(5 Bgpr B, g e A AL > 1 5,
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Related concepts

@ Regret bounds for online learning (will be covered in
the next talk)

23/23



