Generalisation Bounds (3): Rademacher average and bounds

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies, The University of Adelaide, Australia

17 Aug. 2012

Course Outline

Generalisation Bounds:

- Basics
- VC dimensions and bounds
- Rademacher complexity and bounds (Today)
- PAC Bayesian Bounds
- Regret bounds for online learning
- **6** . . .

Recap: VC bound

Denote h as the VC dimension. For all $n \ge h$ (since the growth function $S_{\mathbb{S}}(n) \le (\frac{en}{h})^h$), we have

Theorem (VC bound)

For any $\delta \in (0,1)$, with probability at least $1 - \delta$, $\forall g \in \mathfrak{G}$

$$R(g) \leq R_n(g) + 2\sqrt{2rac{h\lograc{2en}{h} + \log(rac{2}{\delta})}{n}}.$$

Problems:

- data dependency only come through training error
- very loose

Recap: VC dimension

Assume $x \in \mathbb{R}^d$, $\Phi(x) \in \mathbb{R}^D$ (Note D can be $+\infty$).

- linear $\langle x, w \rangle$, h = d + 1
- polynomial $(\langle x, w \rangle + 1)^p$, $h = \binom{d+p-1}{p} + 1$
- Gaussian RBF exp $\left(-\frac{\|x-x'\|^2}{\sigma^2}\right)$, $h=+\infty$.
- Margin γ , $h \leq \min\{D, \lceil \frac{4R^2}{\gamma^2} \rceil\}$, where the radius $R^2 = \max_{i=1}^n \langle \Phi(x_i), \Phi(x_i) \rangle$ (assuming data are already centered)

Rademacher complexity (1)

Definition (Rademacher complexity)

Given $S = \{z_1, \dots, z_n\}$ from a distribution P and a set of real-valued functions \mathcal{G} , the empirical Rademacher complexity of \mathcal{G} is the random variable

$$\hat{\mathbb{R}}_n(\mathfrak{G}, S) = \mathbb{E}_{\sigma} \left[\sup_{g \in \mathfrak{G}} \left| \frac{2}{n} \sum_{i=1}^n \sigma_i g(z_i) \right| \right],$$

where $\sigma = \{\sigma_1, \cdots, \sigma_n\}$ are independent uniform $\{\pm 1\}$ -valued (Rademacher) random variables. The Rademacher complexity of $\mathfrak G$ is

$$\Re_n(\mathfrak{G}) = \mathbb{E}_{\mathcal{S}}[\hat{\Re}_n(\mathfrak{G}, \mathcal{S})] = \mathbb{E}_{\mathcal{S}\sigma} \left[\sup_{g \in \mathfrak{G}} \left| \frac{2}{n} \sum_{i=1}^n \sigma_i g(z_i) \right| \right]$$

Rademacher complexity (2)

$$\sup_{g \in \mathcal{G}} \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} g(z_{i}) \right|$$

- measures the best correlation between $g \in \mathcal{G}$ and random label (*i.e.* noise) $\sigma_i \sim U(\{-1, +1\})$.
- ability of g to fit noise.
- the smaller, the less chance of detected pattern being spurious
- if $|\mathfrak{G}| = 1$, $\mathbb{E}_{\sigma}\left[\sup_{g \in \mathfrak{G}} \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} g(z_{i}) \right| \right] = 0$.

Rademacher bound

Theorem (Rademacher)

Fix $\delta \in (0,1)$ and let \mathfrak{G} be a set of functions mapping from Z to [a,a+1]. Let $S=\{z_i\}_{i=1}^n$ be drawn i.i.d. from P. Then with probability at least $1-\delta$, $\forall g \in \mathfrak{G}$,

$$\mathbb{E}_{P}[g(z)] \leq \hat{\mathbb{E}}[g(z)] + \mathcal{R}_{n}(\mathfrak{G}) + \sqrt{\frac{\ln(2/\delta)}{2n}}$$

 $\leq \hat{\mathbb{E}}[g(z)] + \hat{\mathcal{R}}_{n}(\mathfrak{G}, S) + 3\sqrt{\frac{\ln(2/\delta)}{2n}},$

where
$$\hat{\mathbb{E}}[g(z)] = \frac{1}{n} \sum_{i=1}^{n} g(z_i)$$

Note: $\hat{\mathbb{R}}_n(\mathfrak{G}, S)$ is computable whereas $\mathbb{R}_n(\mathfrak{G})$ is not.

Properties of empirical Rademacher complexity

Let $\mathcal{F}, \mathcal{F}_1, \dots, \mathcal{F}_m$ and \mathcal{G} be classes of real functions. Let $S = \{z_i\}_{i=1}^n$ i.i.d. from any unknown but fixed P. Then

- If $\mathfrak{F} \subseteq \mathfrak{G}$, then $\hat{\mathfrak{R}}_n(\mathfrak{F}, \mathcal{S}) \leq \hat{\mathfrak{R}}_n(\mathfrak{G}, \mathcal{S})$
- **②** For every $c \in \mathbb{R}$, $\hat{\mathcal{R}}_n(c\,\mathcal{F},\mathcal{S}) = |c|\hat{\mathcal{R}}_n(\mathcal{F},\mathcal{S})$
- $\hat{\mathbb{R}}_n(\sum_{i=1}^m \mathcal{F}_i, \mathcal{S}) \leq \sum_{i=1}^m \hat{\mathbb{R}}_n(\mathcal{F}_i, \mathcal{S})$
- For any function h, $\hat{\mathbb{R}}_n(\mathfrak{F}+h,\mathcal{S}) \leq \hat{\mathbb{R}}_n(\mathfrak{F},\mathcal{S}) + 2\sqrt{\hat{\mathbb{E}}[h^2]/n}$
- If $\mathcal{A}: \mathbb{R} \to \mathbb{R}$ is Lpschitz with constant L > 0 (*i.e.* $|\mathcal{A}(a) \mathcal{A}(a')| \le L|a a'|$ for all $a, a' \in \mathbb{R}$), and $\mathcal{A}(0) = 0$, then $\hat{\mathcal{R}}_n(\mathcal{A} \circ \mathcal{F}, S) \le 2L\hat{\mathcal{R}}_n(\mathcal{F}, S)$

An example

Let $S = \{(x_i, y_i)\}_{i=1}^n \sim P^n$. $y_i \in \{-1, +1\}$ One form of soft margin binary SVMs is

$$\min_{\boldsymbol{w},\gamma,\xi} -\gamma + C \sum_{i=1}^{n} \xi_{i}$$
s.t. $y_{i} \langle \phi(x_{i}), \boldsymbol{w} \rangle \geq \gamma - \xi_{i}, \xi_{i} \geq 0, \|\boldsymbol{w}\|^{2} = 1$

- The Rademacher Margin bound (next slide) applies.
- $\hat{\mathfrak{R}}_n(\mathfrak{G}, S)$ is essential, where $\mathfrak{G} = \{-yf(x; w), f(x; w) = \langle \phi(x_i), w \rangle, \|w\|^2 = 1\}.$

Rademacher Margin bound

Theorem (Margin)

Fix $\gamma > 0$, $\delta \in (0,1)$, let \mathfrak{G} be the class of functions mapping from $\mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$ given by g(x,y) = -yf(x), where f is a linear function in a kernel-defined feature space with norm at most 1. Let $S = \{(x_i, y_i)\}_{i=1}^n$ be drawn i.i.d. from P(X, Y) and let $\xi_i = (\gamma - y_i f(x_i))_+$. Then with probability at least $1 - \delta$ over sample of size n, we have

$$\mathbb{E}_{P}[\mathbf{1}_{y\neq \operatorname{sgn}(f(x))}] \leq \frac{1}{n\gamma} \sum_{i=1}^{n} \xi_{i} + \frac{4}{n\gamma} \sqrt{\operatorname{tr}(\mathbf{K})} + 3\sqrt{\frac{\ln(2/\delta)}{2n}},$$

- data dependency come through training error and margin
- tighter than VC bound

$$(\frac{4}{n\gamma}\sqrt{tr(\mathbf{K})} \leq \frac{4}{n\gamma}\sqrt{nR^2} \leq 4\sqrt{\frac{R^2}{n\gamma^2}})$$

Proof of Margin bound (1)

Let
$$\mathcal{H}(a)=1$$
 if $a>0$, $\mathcal{H}(a)=0$ otherwise. Thus $\mathbf{1}_{y\neq \mathrm{sgn}(f(x))}=\mathcal{H}\left(-yf(x)\right)$ Let

$$\mathcal{A}(a) = \left\{ egin{array}{ll} 1, & a > 0 \ 1 + a/\gamma, & -\gamma \leq a \leq 0 \ 0, & ext{otherwise}. \end{array}
ight.$$

We can check that $\mathcal{H}(a) \leq \mathcal{A}(a)$ for all a.

$$\mathbb{E}_{P}[\mathbf{1}_{(y\neq f(x))} - 1] \leq \mathbb{E}_{P}[\mathcal{A}(-yf(x)) - 1]$$

$$\leq \hat{\mathbb{E}}[\mathcal{A}(-yf(x)) - 1] + \hat{\mathcal{R}}_{n}((\mathcal{A} - 1) \circ \mathcal{G}, S) + 3\sqrt{\frac{\ln(2/\delta)}{2n}}$$

Proof of Margin bound (2)

Recall
$$\xi_i = (\gamma - y_i f(x_i))_+$$
. Thus

$$\mathcal{A}(-y_i f(x_i)) \leq 1 - y_i f(x_i)/\gamma \leq \frac{(\gamma - y_i f(x_i))_+}{\gamma} = \xi_i/\gamma$$

$$\mathbb{E}_{P}[\mathbf{1}_{(y\neq f(x))}] \leq \frac{1}{n} \sum_{i=1}^{n} \frac{\xi_{i}}{\gamma} + \hat{\mathbb{R}}_{n}((A-1) \circ \mathcal{G}, S) + 3\sqrt{\frac{\ln(2/\delta)}{2n}}$$

Apply property 6 (since (A-1)(0) = 0, $L = 1/\gamma$), we have

$$\hat{\mathcal{R}}_n((A-1)\circ\mathcal{G},S)\leq 2\hat{\mathcal{R}}_n(\mathcal{G},S)/\gamma$$

Proof of Margin bound (3)

$$\hat{\mathbb{R}}_{n}(S,S) = \mathbb{E}_{\sigma} \left[\sup_{f \in S} \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} y_{i} f(x_{i}) \right| \right] \\
= \mathbb{E}_{\sigma} \left[\sup_{f \in S} \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} f(x_{i}) \right| \right] (\text{if } \sigma_{i} \sim U(\{-1,+1\}), \text{ then } \sigma_{i} y_{i} \sim U) \\
= \mathbb{E}_{\sigma} \left[\sup_{\|w\|^{2}=1} \left| \frac{2}{n} \left\langle w, \sum_{i=1}^{n} \sigma_{i} \phi(x_{i}) \right\rangle \right| \right] \\
\leq \frac{2}{n} \mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^{n} \sigma_{i} \phi(x_{i}) \right\| \cdot \|w\| \right] (\text{Cauchy Schwarz ineq}) \\
= \frac{2}{n} \mathbb{E}_{\sigma} \left[\sum_{i=1}^{n} \sigma_{i} \sigma_{j} k(x_{i}, x_{j}) \right]^{1/2}$$

Proof of Margin bound (4)

$$\frac{2}{n} \mathbb{E}_{\sigma} \left[\sum_{i,j=1}^{n} \sigma_{i} \sigma_{j} k(x_{i}, x_{j}) \right]^{1/2}$$

$$\leq \frac{2}{n} \left\{ \mathbb{E}_{\sigma} \left[\sum_{i,j=1}^{n} \sigma_{i} \sigma_{j} k(x_{i}, x_{j}) \right] \right\}^{1/2} \text{(Jensen's ineq)}$$

$$= \frac{2}{n} \left\{ \sum_{i=1}^{n} \mathbb{E}_{\sigma} [\sigma_{i}^{2}] k(x_{i}, x_{i}) + \sum_{i \neq j, i, j=1,}^{n} \mathbb{E}_{\sigma} [\sigma_{i} \sigma_{j}] k(x_{i}, x_{j}) \right\}^{1/2}$$

$$= \frac{2}{n} \left(\sum_{i=1}^{n} k(x_{i}, x_{i}) \right)^{1/2} = \frac{2}{n} \sqrt{\text{tr}(\mathbf{K})}$$

Proof of Rademacher bound (1)

$$\begin{split} &\mathbb{E}_{P}[g(z)] - \hat{\mathbb{E}}_{P}[g(z)] \leq \sup_{f \in \mathbb{S}} \Big(\mathbb{E}_{P}[f(z)] - \hat{\mathbb{E}}_{P}[f(z)] \Big) \text{(by sup def)} \\ &\mathbb{E}_{P}[g(z)] \leq \hat{\mathbb{E}}_{P}[g(z)] + \sup_{f \in \mathbb{S}} \Big(\mathbb{E}_{P}[f(z)] - \hat{\mathbb{E}}_{P}[f(z)] \Big) \\ &= \hat{\mathbb{E}}_{P}[g(z)] + \underbrace{\sup_{f \in \mathbb{S}} \Big(\mathbb{E}_{P}[f(z)] - \frac{1}{n} \sum_{i=1}^{n} [f(z_{i})] \Big)}_{:=f'(z_{1}, \dots, z_{n})} \end{split}$$

$$f'(z_1,\cdots,z_n) \leq \mathbb{E}_{\mathcal{S}}[f'(z_1,\cdots,z_n)] + \sqrt{\frac{\ln(2/\delta)}{2n}}$$
 (McDiarmid's ineq)

$$\Rightarrow$$

$$\mathbb{E}_{P}[g(z)] \leq \hat{\mathbb{E}}_{P}[g(z)] + \mathbb{E}_{S}[f'(z_{1}, \cdots, z_{n})] + \sqrt{\frac{\ln(2/\delta)}{2n}} \quad (2)$$

Proof of Rademacher bound (2)

$$\begin{split} &\mathbb{E}_{S \sim P^n}[f'(x_1, \cdots, x_n)] \\ &= \mathbb{E}_{S} \left[\sup_{f \in \mathbb{S}} \left(\mathbb{E}_{z \sim P(z)}[f(z)] - \hat{\mathbb{E}}_{P}[f(z)] \right) \right] \\ &= \mathbb{E}_{S} \left[\sup_{f \in \mathbb{S}} \left(\mathbb{E}_{\tilde{S} \sim P^n} \left[\frac{1}{n} \sum_{i=1}^{n} f(\tilde{z}_i) \right] - \frac{1}{n} \sum_{i=1}^{n} f(z_i) \right) \right] \\ &= \mathbb{E}_{S} \left\{ \sup_{f \in \mathbb{S}} \mathbb{E}_{\tilde{S}} \left[\frac{1}{n} \sum_{i=1}^{n} f(\tilde{z}_i) - \frac{1}{n} \sum_{i=1}^{n} f(z_i) \right] \right\} \\ &\leq \mathbb{E}_{S} \mathbb{E}_{\tilde{S}} \sup_{f \in \mathbb{S}} \left[\frac{1}{n} \sum_{i=1}^{n} f(\tilde{z}_i) - \frac{1}{n} \sum_{i=1}^{n} f(z_i) \right] \end{split}$$

Proof of Rademacher bound (3)

$$\mathbb{E}_{\mathcal{S}} \mathbb{E}_{\tilde{\mathcal{S}}} \sup_{f \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^{n} f(\tilde{z}_{i}) - \frac{1}{n} \sum_{i=1}^{n} f(z_{i}) \right]$$

$$= \mathbb{E}_{\sigma S \tilde{\mathcal{S}}} \sup_{f \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} (f(\tilde{z}_{i}) - f(z_{i})) \right]$$

$$\leq \mathbb{E}_{\sigma S} \left[\sup_{f \in \mathcal{G}} \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} f(z_{i}) \right| \right]$$

$$= \mathcal{R}_{n}(\mathcal{G})$$

Via equation (2), we have

$$\mathbb{E}_{P}[g(z)] \leq \hat{\mathbb{E}}_{P}[g(z)] + \mathbb{E}_{S}[f'(x_{1}, \cdots, x_{n})] + \sqrt{\frac{\ln(2/\delta)}{2n}}$$

$$\leq \hat{\mathbb{E}}_{P}[g(z)] + \mathcal{R}_{n}(\mathfrak{I}) + \sqrt{\frac{\ln(2/\delta)}{2n}}$$

Related concepts

 PAC bayesian bounds (will be covered in the next talk)