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Course Outline

Generalisation Bounds:
@ Basics
© VC dimensions and bounds
© Rademacher complexity and bounds (Today)
© PAC Bayesian Bounds
© Regret bounds for online learning
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Recap: VC bound

Denote h as the VC dimension. For all n > h (since the
growth function Sg(n) < (£2)"), we have

Theorem (VC bound)

For any § € (0,1), with probability at least1 — o, Vg € G

hlog 28" + log(2
R(g)an(g)+2\/2 0g hn+ 09(5)'

Problems:
@ data dependency only come through training error
@ very loose



Recap: VC dimension

Assume x € R? ®(x) € R? (Note D can be +o).
¢ linear <X7 W>, h= d+ 1
@ polynomial ((x,w) + 1)P, h = (d+p 41

@ Gaussian RBF exp (— M) h = +o.

@ Margin ~, h < min{D, [ ®1}, where the radius

R? = max?_, (d(x;), d(x )> (assuming data are
already centered)



Rademacher complexity (1)

Definition (Rademacher complexity)

Given S = {z;,--- , z,} from a distribution P and a set of
real-valued functions G, the empirical Rademacher
complexity of G is the random variable

Rn(G,S) = [sup

where o = {04, --- ,0p} are independent uniform
{#1}-valued (Rademacher) random variables. The
Rademacher complexity of G is

n

R(S) = EslRn(S, S)] = Es, [sup|2 3" aig()]|
ges§ =1
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Rademacher complexity (2)

SUPgeg |2 X204 019(2)|
@ measures the best correlation between g € § and
random label (i.e. noise) o; ~ U({—1,+1}).
@ ability of G to fit noise.
@ the smaller, the less chance of detected pattern being
spurious

° if|9|:1,Ea[supg€9

,27 > 0i9(2)

| -o.




Rademacher bound

Theorem (Rademacher)

Fix 5 € (0,1) and let G be a set of functions mapping from

Ztola,a+ 1]. Let S ={z}]_, be drawn i.i.d. from P.
Then with probability at least1 —9,¥g € g,

Ep[9(2)] < Elg(2)] + Ra(

E[g(2)] + Rn(S

77

where E[g(z)] = 1 37, g(z)

Note: R,(G, S) is computable whereas R,(S) is not.
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Properties of empirical Rademacher
complexity

LetF, &4,--- ,Fnand G be classes of real functions. Let
S = {z}, i.i.d. from any unknown but fixed P.Then

@ If F C G, then R,(F,S) < Ry(S,S)
© ForeveryceR, R (cfrr S) = |c|Ra(F, S)
Q Ry(X7 51, 8) < T Ra(F, S)
© For any function h,
Rn(F +h, S) < Rn(F, S) +2/E[R2]/n
Q Rn(F,S) = Ry(conv(F), S)
Q If A:R — Ris Lpschitz with constant L > 0 (i.e.

|A(a) — A(d)| < Lla— &|forall a,& € R), and
A(0) = 0, then Rp(A o F, S) < 2LR,(F, S)



An example

Let S={(xi,yi)}y ~P". yie {—1,+1}
One form of soft margin binary SVMs is

i C . 1
min =+ 63 ¢ W
st yi (p(%), w) >y — &.6 > 0, |w|? =1

@ The Rademacher Margin bound (next slide) applies.
@ R,(G,S) is essential, where

)

§ = {—yf(x;w), f(x; w) = (¢(x;), w) , [w]? = 1}.



Rademacher Margin bound

Theorem (Margin)

Fix~ > 0,6 € (0,1), let G be the class of functions
mapping from X x Y — R given by g(x,y) = —yf(x),
where f is a linear function in a kernel-defined feature
space with norm at most 1. Let S = {(x;, yi)}[_, be drawn
iid. from P(X,Y) and let {; = (v — yif(Xi))+- Then with
probability at least 1 — § over sample of size n, we have

In(2/0
IEP[.l,l/?fsgn(f (X)) ] < —ZEI + —\/ n2r{ )

@ data dependency come through training error and
margin

@ tighter than VC bound
(m/tr(K) < vnR2 < 4
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Proof of Margin bound (1)

Let H(a) = 1if a > 0, H(a) = 0 otherwise. Thus
Tysan(r() = H(=yf(X))

Let
1, a>0
A(a)=< 1+a/y, —v<a<o0
0, otherwise.

We can check that 3(a) < A(a) for all a.

Ep[1(y21(x)) — 1] < Ep[A(—yf(x)) — 1]
In(2/0)
2n

< BIA(—yf(x)) = 1]+ Rp((A-1)0G.S) +3
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Proof of Margin bound (2)

Recall §; = (v — yif(Xi))+. Thus

A(—yif(x)) <1 - yif(x) /7 < w ey
eyl < 305 + R4 1)25.8) + 3 T2

Apply property 6 (since (A —1)(0) =0, L =1/v), we have
Rn((A 1) 05, S) < 2R(S, 5)/

12/18



Proof of Margin bound (3)

g iUIYIf(Xi)H

Rn(G,S) =E, [sup -
i=1

feF

Zaf H (if o1 ~ U({—1,+1}), then ayy; ~ U)

el <w,zm¢ o)

H HWM (Cauchy Schwarz ineq)

2

n

2 1/2

=k [wa' (5. %)
ij=1



Proof of Margin bound (4)

n
% E, [Z gioik(xi, Xj)} v
=

N

n 1/2
< —q Egs ioiK(Xi, X;) (Jensen’s ineq)
e[S mwer )]}
n

—%{ZEJ[U;‘Z]k(Xi,Xi)+ Z Ea[af"/]k(x”xf)}vz

i#),i,j=1,

— %(,z:: k(x,-,x,-)>1/2 = %\/ tr(K)
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Proof of Rademacher bound (1)

Br[g(2)] - Brlg(2)] < sup (Erlf(2)] — Erl(2)]) (by sup def)

Erlg(2)] < Belg(2)] +sup (Elf(2)] - Erlf(2)])

— EP[Q(Z)] + nggp (Ep[f(Z)] - %;[f(zl)])

S/

-~

Z:f/(21 PR 7Z’7)

f(z1, - ,2zn) <Eg[f(z1, - ,20)] + In(zzr/)é)(McDiarmid’s ineq;

=

Erlg(2)] < Eelg(2)] + Eslf (21, z0)] + ) et (2)
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Proof of Rademacher bound (2)

Esopn[f'(X1,- -+, Xn)]
— Es [sup (Eeralf(2)] - Brlf(2)])

=Es [SUP< s~P[ Zf ]__Zfz, )}
:Es{supEé [Ezf(ii)—ﬁzf(zi)”

feg
Tom, sy 1o
< EsEQnggp [E ; f(Z,) ~h ; f(zl)]
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Proof of Rademacher bound (3)

n

BsEssup [ 1(2) ~ 5 f(z)

s i=1 i=1
1 n
=E,s58Up |~ i(f(z) — f(zi
assfeg?[niz;a(() ())}

< Eos [sup %Zgif(zi)

feg
= Rn(9)
Via equation (2), we have

2),
Ep[g(2)] < Bplg(2)] + Es[f (X1, , Xn)] + In(2/9)

2n

IN

Belg(2)] + Ro(S) + ) el
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Related concepts

@ PAC bayesian bounds (will be covered in the next
talk)
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