Lecture 7: PGM — Representation

Qinfeng (Javen) Shi

8 September 2014

Intro. to Stats. Machine Learning COMP SCI 4401/7401

Table of Contents I

- Probability Introducation
 - Probability space
 - Conditional probability
 - Random Variables and Distributions
 - Independence and conditional independence
- Probabilistic Graphical Models
 - History and books
 - Representations
 - Factorisation
 - Independences

Dice rolling game

Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 = ?

Dice rolling game

Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 = ? 1/6 Chance of getting a 5 or 4 = ?

Dice rolling game

Rolling a die (with numbers 1, ..., 6). Chance of getting a 5 = ? 1/6 Chance of getting a 5 or 4 = ? 2/6

Events and confidence

Probability \approx a degree of confidence that an outcome or an event (a number of outcomes) will occur.

Probability space (a.k.a Probability triple) (Ω, \mathcal{F}, P) :

- Sample space or outcome space, denoted Ω (read "Omega"): the set of all possible outcomes (of the problem that you are considering).
 - roll a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$. flip a coin: $\Omega = \{Head, Tail\}$.
- A set of events, a σ -Field (read "sigma-field") denoted \mathcal{F} : Each even $\alpha \in \mathcal{F}$ is a set containing zero or more outcomes (*i.e.* subset of Ω).
 - Event: roll a die to get 1: $\alpha = \{1\}$; to get 1 or 3: $\alpha = \{1,3\}$
 - Event: roll a die to get an even number: $\alpha = \{2,4,6\}$
- Probability measure P: the assignment of probabilities to the events; i.e. a function returning an event's probability; i.e. a function P from events to probabilities

Probability measure

Probability measure (distribution) P over (Ω, \mathcal{F}) : a function from \mathcal{F} (events) to [0,1] (range of probabilities), such that,

- $P(\alpha) \geq 0$ for all $\alpha \in \mathcal{F}$
- $P(\Omega)=1$
- If $\alpha, \beta \in \mathcal{F}$ and $\alpha \cap \beta = \emptyset$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$

Probability measure

Probability measure (distribution) P over (Ω, \mathcal{F}) : a function from \mathcal{F} (events) to [0,1] (range of probabilities), such that,

- $P(\alpha) \ge 0$ for all $\alpha \in \mathcal{F}$
- $P(\Omega) = 1$
- If $\alpha, \beta \in \mathcal{F}$ and $\alpha \cap \beta = \emptyset$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$ \downarrow
- $P(\emptyset) = 0$
- $P(\alpha \cup \beta) = P(\alpha) + P(\beta) P(\alpha \cap \beta)$

Interpretations of Probability

- Frequentist Probability: $P(\alpha)$ = frequencies of the event. *i.e.* fraction of times the event occurs if we repeat the experiment indefinitely.
 - A die roll: $P(\alpha) = 0.5$, for $\alpha = \{2, 4, 6\}$ means if we repeatedly roll this die and record the outcome, then the fraction of times the outcomes in α will occur is 0.5.

Interpretations of Probability

- Frequentist Probability: $P(\alpha)$ = frequencies of the event. *i.e.* fraction of times the event occurs if we repeat the experiment indefinitely.
 - A die roll: $P(\alpha) = 0.5$, for $\alpha = \{2, 4, 6\}$ means if we repeatedly roll this die and record the outcome, then the fraction of times the outcomes in α will occur is 0.5.
 - Problem: non-repeatable event e.g. "it will rain tomorrow morning" (tmr morning happens exactly once, can't repeat).
- Subjective Probability: $P(\alpha)$ = one's own degree of belief that the event α will occur.

Probability space Conditional probability Random Variables and Distributions Independence and conditional independence

Conditional probability

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Conditional probability

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Question: how do we update the our beliefs given new evidence? *e.g.* suppose we learn that a student has received the grade A, what does that tell us about the person's intelligence?

Conditional probability

Event α : "students with grade A"

Event β : "students with high intelligence"

Event $\alpha \cap \beta$: "students with grade A and high intelligence"

Question: how do we update the our beliefs given new evidence? *e.g.* suppose we learn that a student has received the grade A, what does that tell us about the person's intelligence?

Answer: Conditional probability.

Conditional probability of β given α is defined as

$$P(\beta|\alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$$

Chain rule and Bayes' rule

• Chain rule: $P(\alpha \cap \beta) = P(\alpha)P(\beta|\alpha)$ More generally, $P(\alpha \cup \beta) = P(\alpha \cup \beta)P(\alpha|\alpha)$

$$P(\alpha_1 \cap ... \cap \alpha_k) = P(\alpha_1)P(\alpha_2|\alpha_1) \cdots P(\alpha_k|\alpha_1 \cap ... \cap \alpha_{k-1})$$

Bayes' rule:

$$P(\alpha|\beta) = \frac{P(\beta|\alpha)P(\alpha)}{P(\beta)}$$

Random Variables

Assigning probabilities to events is intuitive.

Assigning probabilities to attributes (of the outcome) taking various values might be more convenient.

- a patient's attributes such "Age", "Gender" and "Smoking history" ...
 - "Age = 10", "Age = 50", ..., "Gender = male", "Gender = female"
- a student's attributes "Grade", "Intelligence", "Gender" ...
- P(Grade = A) =the probability that a student gets a grade of A.

Random Variables

A random variable, such as Grade, is a function that associates with each outcome in Ω a value. *e.g.* Grade is defined by a function f_{Grade} that maps each person to his or her grade (say, one of A, B, C)

Grade = A is a shorthand for the event $\{\omega \in \Omega : f_{Grade}(\omega) = A\}$

 $Intelligence = high \ a \ shorthand \ for \ the \ event$

$$\{\omega \in \Omega : f_{Intelligence}(\omega) = high\}$$

Random Variables

Random Variable can take different types of values (e.g. discrete or continuous.

- random variable X, more formally $X(\omega)$
- Val(X): the set of values that X can take
- x: a value $x \in Val(X)$

Shorthand notation:

• P(x) short for P(X = x) shorthand for

$$P(\{\omega \in \Omega : X(\omega) = x\})$$

• $\sum_{x} P(x)$ shorthand for $\sum_{x \in Val(X)} P(X = x)$

$$\sum_{x} P(x) = 1$$

Joint distribution

```
P(\mathsf{Grade}, \mathsf{Intelligence}). \mathsf{Grade} \in \{A, B, C\} \mathsf{Intelligence} \in \{\mathit{high}, \mathit{low}\}. P(\mathsf{Grade} = \mathsf{B}, \mathsf{Intelligence} = \mathsf{high}) = ? P(\mathsf{Grade} = \mathsf{B}) = ?
```

		Intelligence		
		low	high	S SIL
Grade	A	0.07	0.18	0.25
	R	0.28	0.09	0.37
	C	0.35	0.03	0.38
1 150	1911	0.7	0.3	1

Marginal and Conditional distribution

Distributions:

- Marginal distribution $P(X) = \sum_{y \in Val(Y)} P(X, Y = y)$ or shorthand as $P(x) = \sum_{y} P(x, y)$
- Conditional distribution $P(X|Y) = \frac{P(X,Y)}{P(Y)}$

Rules for events carry over for random variables:

- Chain rule: P(X, Y) = P(X)P(Y|X)
- Bayes' rule: $P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$

Independence and conditional independence

Independences give factorisation.

- Independence
 - $X \perp Y \Leftrightarrow P(X,Y) = P(X)P(Y)$
 - Extension: $X \perp Y, Z$ means $X \perp H$ where H = (Y, Z). $\Leftrightarrow P(X, Y, Z) = P(X)P(Y, Z)$
- Conditional Independence

$$X \perp Y \mid Z \Leftrightarrow P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

• Independence: $X \perp \!\!\! \perp Y$ can be considered as $X \perp \!\!\! \perp Y | \emptyset$

Properties

For conditional independence:

- Symmetry: $X \perp \!\!\! \perp Y|Z \Rightarrow Y \perp \!\!\! \perp X|Z$
- Decomposition: $X \perp \!\!\! \perp Y, W|Z \Rightarrow X \perp \!\!\! \perp Y|Z$ and $X \perp \!\!\! \perp W|Z$
- Weak union: $X \perp \!\!\! \perp Y, W|Z \Rightarrow X \perp \!\!\! \perp Y|Z, W$
- Contraction: $X \perp \!\!\! \perp W|Z, Y \text{ and } X \perp \!\!\! \perp Y|Z \Rightarrow X \perp \!\!\! \perp Y, W|Z$
- Intersection: $X \perp \!\!\! \perp Y | W, Z$ and $X \perp \!\!\! \perp W | Y, Z \Rightarrow X \perp \!\!\! \perp Y, W | Z$

For independence: let $Z = \emptyset$ *e.g.*

$$X \perp Y \Rightarrow Y \perp X$$

 $X \perp Y, W \Rightarrow X \perp Y \text{ and } X \perp W$

. .

Marginal and MAP Queries

Given joint distribution P(Y, E), where

- Y, query random variable(s), unknown
- E, evidence random variable(s), observed i.e. E = e.

Two types of queries:

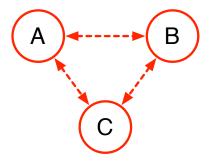
- Marginal queries (a.k.a. probability queries) task is to compute P(Y|E=e)
- MAP queries (a.k.a. most probable explanation) task is to find $y^* = \operatorname{argmax}_{y \in Val(Y)} P(Y|E = e)$

Probability space Conditional probability Random Variables and Distributions Independence and conditional independence

Break

Take a break ...

Scenario 1



Multiple problems (A, B, ...) affect each other

Joint optimal solution of all \neq the solutions of individuals

History and books Representations Factorisation Independences

Scenario 2

Two variables X, Y each taking 10 possible values. Listing P(X, Y) for each possible value of X, Y requires specifying/computing 10^2 many probabilities.

Scenario 2

Two variables X, Y each taking 10 possible values. Listing P(X, Y) for each possible value of X, Y requires specifying/computing 10^2 many probabilities.

What if we have 1000 variables each taking 10 possible values?

Scenario 2

Two variables X, Y each taking 10 possible values. Listing P(X, Y) for each possible value of X, Y requires specifying/computing 10^2 many probabilities.

What if we have 1000 variables each taking 10 possible values?

- $\Rightarrow 10^{1000}$ many probabilities
- \Rightarrow Difficult to store, and query naively.

History and books Representations Factorisation Independences

Remedy

Structured Learning, specially Probabilistic Graphical Models (PGMs).

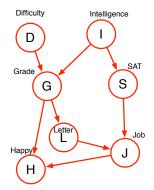
PGMs

PGMs use graphs to represent the complex probabilistic relationships between random variables.

Benefits:

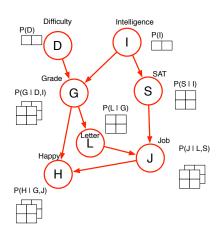
- compactly represent distributions of variables.
- Relation between variables are intuitive (such as conditional independences)
- have fast and general algorithms to query without enumeration. e.g. ask for P(A|B=b,C=c) or $\mathbb{E}_P[f]$

An Example



Intuitive

An Example



Compact

History

- Gibbs (1902) used undirected graphs in particles
- Wright (1921,1934) used directed graph in genetics
- In economists and social sci (Wold 1954, Blalock, Jr. 1971)
- In statistics (Bartlett 1935, Vorobev 1962, Goodman 1970, Haberman 1974)
- In AI, expert system (Bombal *et al.* 1972, Gorry and Barnett 1968, Warner *et al.* 1961)
- Widely accepted in late 1980s. Prob Reasoning in Intelli Sys (Pearl 1988), Pathfinder expert system (Heckerman et al. 1992)

History

- Hot since 2001. Flexible features and principled ways of learning.
 - CRFs (Lafferty *et al.* 2001), SVM struct (Tsochantaridis etal 2004), M^3 Net (Taskar *et al.* 2004), DeepBeliefNet (Hinton *et al.* 2006)
- Super-hot since 2010. Winners of a large number of challenges with big data.
 - Google, Microsoft, Facebook all open new labs for it.

Probability Introducation Probabilistic Graphical Models

History and books Representations Factorisation

History

History and books

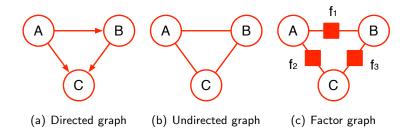
Representations

Factorisation Independences

Good books

- Chris Bishop's book "Pattern Recognition and Machine Learning" (Graphical Models are in chapter 8, which is available from his webpage) \approx 60 pages
- Koller and Friedman's "Probabilistic Graphical Models" > 1000 pages
- Stephen Lauritzen's "Graphical Models"
- Michael Jordan's unpublished book "An Introduction to Probabilistic Graphical Models"

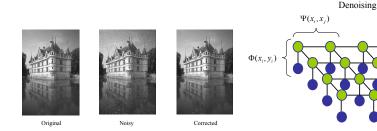
Representations



- Nodes represent random variables
- Edges reflect dependencies between variables
- Factors explicitly show which variables are used in each factor i.e. $f_1(A, B)f_2(A, C)f_3(B, C)$

Example — Image Denoising

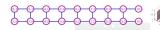
Denoising¹

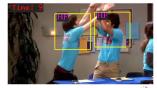


 $X^* = \operatorname{argmax}_X P(X|Y)$

¹This example is from Tiberio Caetano's short course: "Machine Learning using Graphical Models"

Example —Human Interaction Recognition



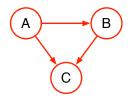


Factorisation for Bayesian networks

Directed Acyclic Graph (DAG):

Factorisation rule:
$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i | Pa(x_i))$$

 $Pa(x_i)$ denotes parent of x_i . e.g. $(A, B) = Pa(C)$



 \Rightarrow P(A, B, C) = P(A)P(B|A)P(C|A, B)Acyclic: no cycle allowed. Replacing edge $A \to C$ with $C \to A$ will form a cycle (loop *i.e.* $A \to B \to C \to A$), not allowed in DAG.

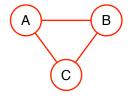
Factorisation for Markov Random Fields

Undirected Graph:

Factorisation rule:
$$P(x_1, ..., x_n) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{X}_c),$$

 $Z = \sum_{\mathbf{X}} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{X}_c),$

where c is an index set of a clique (fully connected subgraph), \mathbf{X}_{c} is the set of variables indicated by c.



Consider
$$\mathbf{X}_{c_1} = \{A, B\}, \mathbf{X}_{c_2} = \{A, C\}, \mathbf{X}_{c_3} = \{B, C\}$$

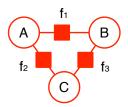
 $\Rightarrow P(A, B, C) = \frac{1}{Z} \psi_{c_1}(A, B) \psi_{c_2}(A, C) \psi_{c_3}(B, C)$

Consider
$$\mathbf{X}_c = \{A, B, C\} \Rightarrow P(A, B, C) = \frac{1}{7}\psi_c(A, B, C)$$
,

Factorisation for Markov Random Fields

Factor Graph:

Factorisation rule:
$$P(x_1, ..., x_n) = \frac{1}{Z} \prod_i f_i(\mathbf{X}_i), \ Z = \sum_{\mathbf{X}} \prod_i f_i(\mathbf{X}_i)$$



$$\Rightarrow P(A, B, C) = \frac{1}{7}f_1(A, B)f_2(A, C)f_3(B, C)$$

History and books

Independences

Independences

Independence

$$A \perp \!\!\! \perp B \Leftrightarrow P(A,B) = P(A)P(B)$$

Conditional Independence

$$A \perp\!\!\!\perp B|C \Leftrightarrow P(A,B|C) = P(A|C)P(B|C)$$

Case 1:

Question: $B \perp C$?

Case 1:

Question: $B \perp \!\!\! \perp C$?

Answer: No.

$$P(B, C) = \sum_{A} P(A, B, C)$$

$$= \sum_{A} P(B|A)P(C|A)P(A)$$

$$\neq P(B)P(C) \text{ in general}$$

Case 2:

Question: $B \perp C|A$?

Case 2:

Question: $B \perp C \mid A$?

Answer: Yes.

$$P(B, C|A) = \frac{P(A, B, C)}{P(A)}$$
$$= \frac{P(B|A)P(C|A)P(A)}{P(A)}$$
$$= P(B|A)P(C|A)$$

Case 3:

Question: $B \perp C$, $B \perp C \mid A$?

Case 3:

Question:
$$B \perp \!\!\! \perp C$$
, $B \perp \!\!\! \perp C | A$?

$$P(A, B, C) = P(B)P(C)P(A|B, C),$$

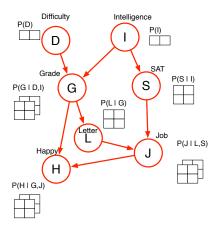
$$P(B, C) = \sum_{A} P(A, B, C)$$

$$= \sum_{A} P(B)P(C)P(A|B, C)$$

$$= P(B)P(C)$$

Parameters for bayesian networks

For bayesian networks, $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i|Pa(x_i))$. Parameters: $P(x_i|Pa(x_i))$.



Parameters for MRFs

For MRFs, let V be the set of nodes, and C be the set of clusters c.

$$P(\mathbf{x};\theta) = \frac{\exp(\sum_{c \in \mathcal{C}} \theta_c(\mathbf{x}_c))}{Z(\theta)},$$
 (1)

where normaliser $Z(\theta) = \sum_{\mathbf{x}} \exp\{\sum_{\mathbf{c''} \in \mathcal{C}} \theta_{\mathbf{c''}}(\mathbf{x}_{\mathbf{c''}})\}.$

Parameters: $\{\theta_c\}_{c \in \mathcal{C}}$.

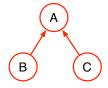
Inference:

- MAP inference $\mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} \sum_{c \in \mathcal{C}} \theta_c(\mathbf{x}_c)$ log $P(\mathbf{x}) \propto \sum_{c \in \mathcal{C}} \theta_c(\mathbf{x}_c)$
- Marginal inference $P(\mathbf{x}_c) = \sum_{\mathbf{x}_{V/c}} P(\mathbf{x})$

Learning (parameter estimation): learn θ and the graph structure.

- Often assume $\theta_c(\mathbf{x}_c) = \langle \mathbf{w}, \Phi_c(\mathbf{x}_c) \rangle$.
- $\theta \leftarrow$ empirical risk minimisation (ERM).

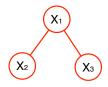
Inference - variable elimination



What is P(A), or $\operatorname{argmax}_{A,B,C} P(A,B,C)$?

$$\begin{split} P(A) &= \sum_{B,\,C} P(B) P(C) P(A|B,\,C) \\ &= \sum_{B} P(B) \sum_{C} P(C) P(A|B,\,C) \\ &= \sum_{B} P(B) m_1(A,B) \quad (C \text{ eliminated}) \\ &= m_2(A) \quad (B \text{ eliminated}) \end{split}$$

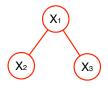
Inference - variable elimination



$$P(x_1, x_2, x_3) = \frac{1}{7} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3)$$

$$\begin{split} P(x_1) &= \frac{1}{Z} \sum_{x_2, x_3} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3) \\ &= \frac{1}{Z} \psi(x_1) \sum_{x_2} \left(\psi(x_1, x_2) \psi(x_2) \right) \sum_{x_3} \left(\psi(x_1, x_3) \psi(x_3) \right) \\ &= \frac{1}{Z} \psi(x_1) m_{2 \to 1}(x_1) m_{3 \to 1}(x_1) \end{split}$$

Inference - variable elimination



$$P(x_2) = \frac{1}{Z}\psi(x_2) \sum_{x_1} \left(\psi(x_1, x_2)\psi(x_1) \sum_{x_3} [\psi(x_1, x_3)\psi(x_3)] \right)$$

$$= \frac{1}{Z}\psi(x_2) \sum_{x_1} \psi(x_1, x_2)\psi(x_1) m_{3 \to 1}(x_1)$$

$$= \frac{1}{Z}\psi(x_2) m_{1 \to 2}(x_2)$$

Inference - Message Passing

In general,

$$P(x_i) = \frac{1}{Z} \psi(x_i) \prod_{j \in Ne(i)} m_{j \to i}(x_i)$$

$$m_{j \to i}(x_i) = \sum_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in Ne(j) \setminus \{i\}} m_{k \to j}(x_j) \right)$$

Probabilistic Graphical Models

History and book Representations Factorisation Independences

That's all

Thanks!