Lecture 10: PGM — Structure Estimation

Qinfeng (Javen) Shi

13 Oct 2014

Intro. to Stats. Machine Learning COMP SCI 4401/7401

Table of Contents I

- Manually specify a fixed graph
- Use a simple rule

2 Learn graphs

- Learn graphs from labels only
- Learn graphs from both labels and features

3 Infer graphs

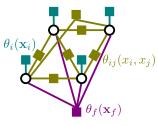
How to get the graph at the first place?

- Human heuristics
- Learn graphs from the data
 - Learn from labels (statistical independence testing or mutual information)
 - Learn from both labels and features (omitted)
- Infer the graph and labels jointly.

Manually specify a fixed graph Use a simple rule

Manually specify a fixed graph

(a) original image

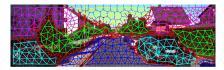


(c) graph structure

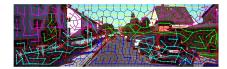
Manually specify a fixed gra Use a simple rule

Use a simple rule

(d) original image



(e) graph via super-pixel adjacency



(f) graph via distance mst Qinfeng (Javen) Shi Lecture 10: PGM — Structure Estimation

Learn graphs from labels only Learn graphs from both labels and features

Learn graphs from data

Assumptions:

- the unknown underlying graph is fixed;
- training data are samples from the distribution represented by the underlying graph;
- the number of nodes (*i.e.* variables) is known in advance, and the edges are unknown.
- G can extend to multiple fixed underlying graphs, however, each graph shall have enough samples.

Learn graphs from labels only Learn graphs from both labels and features

Learn graphs from labels only

Techniques:

- statistical independence testing
- mutual information (e.g. ChowLiu Tree algorithm)

• • • •

Problem:

- it only considers labels (output), and does not consider features (input)
- it does not consider label cost functions

Learn graphs from labels only Learn graphs from both labels and features

Learn graphs from both labels and features

Idea:

- One can enforce sparsity (*e.g.* by || w ||₁ regulariser) in structured SVM or CRFs (Lecture 9) to achieve a sparse w.
- If certain block of **w** being zero or non-zero corresponds to existence of edge, learning such **w** is learning edges.

Infer graphs and labels jointly

Assumptions:

- the unknown underlying graph is fixed [changing];
- training data are samples from the distribution represented by the underlying graph;
- the number of nodes (*i.e.* variables) is known in advance, and the edges are unknown.
- G can extend to multiple fixed underlying graphs, however, each graph shall [does not] have enough samples.

 \Rightarrow Not enough samples to learn the graphs.

Infer graphs and labels jointly

Figure : Unknown MRF graphs and unknown labels

G = (V, E), where V node set is known, and E edge set is unknown. To find the best label and the best E jointly,

$$(\mathbf{y}^*, \boldsymbol{E}^*) = \operatorname*{argmax}_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}, \boldsymbol{E} \in \boldsymbol{\mathcal{E}}} \sum_{i, j \in \boldsymbol{E}} \theta_{ij}(\boldsymbol{y}^{(i)}, \boldsymbol{y}^{(j)}) + \sum_{i \in \boldsymbol{V}} \theta_i(\boldsymbol{y}^{(i)}).$$
(1)

Alternating method

Lan etal (NIPS 2010) alternates between solving y and E.

Initialise \mathbf{y}_1 randomly. for t = 1 to T do

$$E_{t} = \underset{E \in \mathcal{E}}{\operatorname{argmax}} \sum_{i,j \in E} \theta_{ij}(y_{t}^{(i)}, y_{t}^{(j)}), \qquad (2)$$
$$\mathbf{y}_{t+1} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{i,j \in E_{t}} \theta_{ij}(y^{(i)}, y^{(j)}) + \sum_{i \in V} \theta_{i}(y^{(i)}). \qquad (3)$$

end for $G = (V, E_T).$

Bilinear formulation

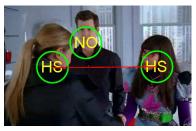
Wang etal (CVPR2013) introduces bilinear program (BLP) form.

$$\max_{\{z_{ij}\},\{\mu_{i,j},\mu_{i}\}} \sum_{i,j\in V} \sum_{y^{(i)},y^{(j)}} \theta_{i,j}(y^{(i)},y^{(j)})\mu_{i,j}(y^{(i)},y^{(j)})z_{ij} \\ + \sum_{i\in V} \sum_{y^{(i)}} \theta_{i}(y^{(i)})\mu_{i}(y^{(i)}) \qquad (4)$$

s.t. $\sum_{y_{i}} \mu_{i,j}(y^{(i)},y^{(j)}) = \mu_{j}(y^{(j)}), \quad \sum_{y^{(j)}} \mu_{i,j}(y^{(i)},y^{(j)}) = \mu_{i}(y^{(i)}), \\ \sum_{y^{(i)}} \mu_{i}(y^{(i)}) = 1, \quad \mu_{i,j}(y^{(i)},y^{(j)}) \ge 0, z_{ij} = z_{ji}, z_{ij} \in [0,1], \\ \forall i,j \in V, y^{(i)}, y^{(j)}.$

Inference with unknown graphs

Alg.		N	4CSVN	1		SSVM					Lan's					BLP				
A/A	NO	HS	HF	HG	KS	NO	HS	HF	HG	KS	NO	HS	HF	HG	KS	NO	HS	HF	HG	KS
NO	0.37	0.07	0.21	0.11	0.24	0.20	0.40	0.27	0.06	0.06	0.11	0.36	0.19	0.20	0.13	0.49	0.20	0.13	0.13	0.05
HS	0.01	0.55	0.06	0.17	0.21	0.10	0.51	0.21	0.11	0.06	0.09	0.52	0.14	0.15	0.10	0.18	0.56	0.09	0.08	0.09
HF	0.09	0.03	0.52	0.21	0.14	0.08	0.11	0.61	0.08	0.12	0.02	0.14	0.58	0.18	0.08	0.11	0.09	0.63	0.07	0.10
HG	0.02	0.14	0.20	0.49	0.15	0.05	0.15	0.11	0.58	0.11	0.03	0.06	0.11	0.55	0.26	0.03	0.10	0.10	0.70	0.06
KS	0.07	0.11	0.09	0.05	0.67	0.02	0.26	0.14	0.12	0.46	0.01	0.07	0.15	0.11	0.67	0.06	0.08	0.04	0.13	0.69



That's all

Thanks!

Qinfeng (Javen) Shi Lecture 10: PGM — Structure Estimation