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How to get the graph at the first place?

Human heuristics

Learn graphs from the data

Learn from labels (statistical independence testing or mutual
information)
Learn from both labels and features (omitted)

Infer the graph and labels jointly.
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Manually specify a fixed graph
Use a simple rule

Manually specify a fixed graph

(a) original image (b) segmented image

(c) graph structure
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Manually specify a fixed graph
Use a simple rule

Use a simple rule

(d) original image

(e) graph via super-pixel adjacency

(f) graph via distance mst
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Learn graphs from labels only
Learn graphs from both labels and features

Learn graphs from data

Assumptions:

1 the unknown underlying graph is fixed;

2 training data are samples from the distribution represented by
the underlying graph;

3 the number of nodes (i.e. variables) is known in advance, and
the edges are unknown.

4 can extend to multiple fixed underlying graphs, however, each
graph shall have enough samples.
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Learn graphs from labels only

Techniques:

statistical independence testing

mutual information (e.g. ChowLiu Tree algorithm)

· · ·
Problem:

it only considers labels (output), and does not consider
features (input)

it does not consider label cost functions
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Learn graphs from labels only
Learn graphs from both labels and features

Learn graphs from both labels and features

Idea:

One can enforce sparsity (e.g. by ‖w ‖1 regulariser) in
structured SVM or CRFs (Lecture 9) to achieve a sparse w.

If certain block of w being zero or non-zero corresponds to
existence of edge, learning such w is learning edges.
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Infer graphs and labels jointly

Assumptions:

1 the unknown underlying graph is fixed [changing];

2 training data are samples from the distribution represented by
the underlying graph;

3 the number of nodes (i.e. variables) is known in advance, and
the edges are unknown.

4 can extend to multiple fixed underlying graphs, however, each
graph shall [does not] have enough samples.

⇒Not enough samples to learn the graphs.
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Infer graphs and labels jointly

?
?
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TV episode

?
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Tennis

Figure : Unknown MRF graphs and unknown labels

G = (V ,E ), where V node set is known, and E edge set is
unknown. To find the best label and the best E jointly,

(y∗,E ∗) = argmax
y∈Y,E∈E

∑
i ,j∈E

θij(y
(i), y (j)) +

∑
i∈V

θi (y
(i)). (1)
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Alternating method

Lan etal (NIPS 2010) alternates between solving y and E .

Initialise y1 randomly.
for t = 1 to T do

Et = argmax
E∈E

∑
i ,j∈E

θij(y
(i)
t , y

(j)
t ), (2)

yt+1 = argmax
y∈Y

∑
i ,j∈Et

θij(y
(i), y (j)) +

∑
i∈V

θi (y
(i)). (3)

end for
G = (V ,ET ).
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Bilinear formulation

Wang etal (CVPR2013) introduces bilinear program (BLP) form.

max
{zij},{µi,j ,µi}

∑
i ,j∈V

∑
y (i),y (j)

θi ,j(y
(i), y (j))µi ,j(y

(i), y (j))zij

+
∑
i∈V

∑
y (i)

θi (y
(i))µi (y

(i)) (4)

s.t.
∑
yi

µi ,j(y
(i), y (j)) = µj(y

(j)),
∑
y (j)

µi ,j(y
(i), y (j)) = µi (y

(i)),

∑
y (i)

µi (y
(i)) = 1, µi ,j(y

(i), y (j)) ≥ 0, zij = zji , zij ∈ [0, 1],

∀i , j ∈ V , y (i), y (j).
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Inference with unknown graphs
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That’s all

Thanks!
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