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Abstract

Compressive Sensing has become one of the standard
methods of face recognition within the literature. We show,
however, that the sparsity assumption which underpins
much of this work is not supported by the data. This lack
of sparsity in the data means that compressive sensing ap-
proach cannot be guaranteed to recover the exact signal,
and therefore that sparse approximations may not deliver
the robustness or performance desired. In this vein we show
that a simple `2 approach to the face recognition problem
is not only significantly more accurate than the state-of-the-
art approach, it is also more robust, and much faster. These
results are demonstrated on the publicly available YaleB
and AR face datasets but have implications for the appli-
cation of Compressive Sensing more broadly.

1. Introduction

The application of Compressive Sensing (CS) to the
problem of face recognition has received significant recent
attention in the literature (see [18, 19, 14] for example). The
goal of many such methods has been to exploit the underly-
ing sparsity in the problem in order to improve the robust-
ness, speed, or accuracy with which classification might be
performed, or all three. As in many applications of CS,
however, the sparsity of in the problem is assumed, rather
than proven, or measured. We show here that the sparsity
assumption is not supported by data, and that an `2-based
approach out-performs the state-of-the-art in CS methods in
terms of speed, accuracy, and robustness. The implications
are important for the application of CS to face recognition
but also to other problems where sparsity is assumed rather
than proven.

2. The space of all face images

Consider face recognition with n frontal training face
images collected from K subjects. Let nk denote the num-
ber of training images of subject k , thus n =

∑K
k=1 nk.

Without loss of generality, we assume that all the data have
been sorted according to their labels and then we collect
all the vectors in a single matrix A with m rows and n
columns, given by

A = [x1, ...,xn] ∈ Rm×n. (1)

The assumption which underpins the application of CS to
face recognition by Yang et al. [19], Wright et al. [18], and
Shi et al. [14] is as follows:

Assumption 1 Any test image1 lies in the subspace
spanned by the training images belonging to the same per-
son. That is for any test image x, without knowing its la-
bel information, it’s assumed that there exists a η-sparse2

α = (α1, α2, ..., αn) such that

x = Aα. (2)

To seek a sparse solution, one could use

min
α∈Rn

‖α‖`1 (3a)

s.t. x = Aα. (3b)

Solving this problem via linear programming becomes
computationally expensive when m is large, however.

In order to exploit the presumed sparsity in the problem
the authors in [19] and [18] generate a random matrix Φ ∈
Rd×m (where d � m) and identify the vector α which
minimises the following `1 problem:

min
α∈Rn

‖α‖`1 (4a)

s.t. Φx = ΦAα, (4b)

or the related problem:

min
α∈Rn

‖α‖`1 (5a)

s.t. ‖Φx−ΦAα‖`2 ≤ ε, (5b)

1The image here can be either an original image, or a feature image
extracted from the original one, e.g. an eigenface. Often the dimensionality
of the feature has to be reduced due to the complexity of the recognition
algorithm.

2A n-dimensional signal is said η-sparse if it has at most η non-zero
entries.
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for a given error tolerance ε > 0. Introducing the matrix
Φ significantly reduces the computational complexity (par-
ticularly when d� m), yet the CS signal recovery theorem
[5, 4, 11] shows that when d ≥ O(η log(n/η)) the signal α
can be exactly recovered (that is, it reaches the optimum of
the original problem specified in Equation (3)) with over-
whelming probability at least 1− eO(−d).

Shi et al. in [14] showed the connection between Hash
Kernels [12, 13, 17] and CS. In doing so they showed that
it is possible to replace Φ with an implicit hash matrix H
in order to reduce storage requirements and speed up face
recognition with Orthogonal Matching Pursuit (OMP)[15].

2.1. Is the set of face images really sparse?

Despite the results of [19], [18] and [14], it is clear
that the validity of Assumption 1 depends on the particu-
lar data set being used. What is not as immediately clear
is that Assumption 1 does not hold for data of the form
typically used to evaluate face recognition algorithms. As-
sumption 1 is sometimes justified on the basis of the result
in [2] that the images of a rigid Lambertian surface under
varying illumination lie close to a 9-dimensional linear sub-
space. This presumes perfect registration of the images, no
self-shadowing, occlusion, or specularities, and ignores the
fact that faces are neither rigid nor Lambertian, however. In
order to evaluate the validity of Assumption 1 directly we
form the matrix A in the same manner as in [19] and [18].

The AR dataset, which is used in many face recogni-
tion papers including those above, consists of 26 aligned
images of each subject in different lighting conditions and
with different facial expressions and disguises. We ran-
domly selected 100 such subjects and cropped the images
to 165× 120 pixels and converted to grayscale (as in [19]),
and, using (1), formed the matrix A where m = 19800 and
n = 2600. A plot of the log of the singular values of this
matrix is given in Figure 1.

Typically a subset (often half) of the database is used
for training, and the remainder for testing. If Assumption 1
holds then we would hope that 13 training images per sub-
ject would suffice to span the space of all face images of the
subject, and thus that the remaining (testing) 13 were linear
combinations of the training set. This would lead to a ma-
trix A with rank at most 1300 (rank 13 per subject for 100
subjects). Figure 1 does not support this hypothesis, how-
ever, as there is no obvious dip in the singular values of A
at 1300, or any at other point. Note that Figure 1 depicts the
singular values of the matrix of all face images in the AR
data set, rather than only those for a single subject. It thus
shows not only that there is little redundancy in AR dataset
face images for any single subject, but also that there is lit-
tle redundancy in AR dataset face images for all subjects
collectively. The first few singular values are significantly
higher than the remainder, which reflects the commonality

in the overall shape of the face, but there is little differenti-
ation between the remaining components.

The fact that there is no significant dip in the singular
values of A does not discount sparsity completely, as there
is inevitably noise in the training data, but it gives an indi-
cation that there is no simple linear dependence in the data
set.
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Figure 1. The log of the singular values of the data matrix A cal-
culated using the AR data set, and for comparison, of a matrix of
the same size with elements sampled from N(0, 1).

Having seen that the the training data are not linearly de-
pendent we now show that the sparsity espoused in [19, 18]
and [14] is not a feature of the problem, but of the solu-
tion. In applying the matrix Φ ∈ Rd×m (where d � m)
the methods proposed cause the problem to become sparse,
with a degree proportional to the value of d selected. Fig-
ure 2 shows the values of α estimated by solving equa-
tion (4) directly when A is constructed as above, but from
13 images each of 100 subjects, and x represents another
image from the AR dataset. Two matrices Φ have been
used, one with d = n − 1 and one with d = 300. The
plots show that the coefficients α are not sparse until the
selection of a small d forces them to be so.

We show below that the CS methods for face recognition
listed above achieve their state-of-the-art results on the AR
and Yale B datasets only when the the number of features d
is at least 300. This and Figure 2 imply that the coefficients
of α are not as sparse as may have been hoped, and that
at least 300 non-zero coefficients are required in order to
achieve acceptable classification performance.

This analysis draws into question the theoretical support
for all face recognition methods based on Assumption 1 and
any method relying on the sparsity of the coefficients α.
This does not mean that the `1 norm has no place in face
recognition, however, but rather that it needs to be applied
appropriately.

3. Robust vs. sparse `1

One argument with the analysis above might be that the
`1 term is intended to achieve robustness, rather than indi-
cating a belief in the sparsity of the coefficients. This is
an important distinction. The `1 norm is used in CS as a
tractable alternative to the `0 norm [3]. Sparseness does not
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Figure 2. Visualising the sparsity of α when recovered by solving
equation (4). (a) Plot of α when d = 1299. (b) Plot of sorted α
when d = 1299. (c) Plot of α when d = 300. (d) Plot of sorted α
when d = 300.

necessarily lead to robustness to the presence of outliers.
To achieve robustness, one could use `1-Regression [16,

chap. 12.4] as follows:

min
α∈Rn

‖x−Aα‖`1 , (6)

which avoids overly penalising gross outliers.
The `1 norm in CS and `1 norm in `1-Regression are,

however, two unrelated uses of the same norm. The two
applications differ in the quantities to which the `1 norm
is applied. Robustness cannot therefore be used to justify
applying the `1-norm to the coefficients α without further
explanation. No such explanation is given, however.

The problem with (6) is that solving such a linear pro-
gram can be computationally expensive as the data size
grows. Rather than resort to approaches such as those in (4)
and (5), however, we now show that faster, more accurate,
and more robust methods may be achieved by modelling
outliers explicitly and using the `2 norm.

4. The orthonormal `2 norm method
In contrast to the `1 case, it is possible to estimate α

using the `2 norm by solving

argmin
α∈Rn

‖x−Aα‖2`2 . (7)

Even when the system is overdetermined, the optimal solu-
tion, (in the sense of the smallest reconstruction error) can
be recovered by α = (ATA)−1AT x.

Algorithm 1 Orthonormal `2 Face Recognition
Input: a training image matrix A for K subjects, a test
image matrix X.
Compute QR = A.
for x ∈ X do
α = R−1QT x
find the identity of image x via (10).

end for
Output: identity for all test images.

Solving (7) efficiently requires re-formulating the
psuedo-inverse, however. By QR factorisation of A, we
have A = QR, where Q forms a orthonormal basis, and R
is an upper triangle matrix. Therefore,

(ATA)−1AT = R−1QT. (8)

Consequently, we can estimate α via

α = R−1QT x . (9)

Here R−1QT remains the same for all x. So we just need
to compute R−1QT once and store it. If a set of test images
is provided as X whose columns are test images, then Λ =
R−1QT X.

Once the coefficients are estimated, one can find the
identity of image x via minimising the residuals

c∗(x) = argmin
k
||x−Akαk||`2 (10)

for k = 1, . . . ,K, where αk is the nk dimensional subvec-
tor consisting of components of α and Ak is a m-by-nk
submatrix of A, both corresponding to the basis of person
k. A similar reformulation applies to the Nearest Subspace
method [6].

It should also be noted that the distance measure used in
(10) is different from that of the nearest subspace method.
This difference becomes apparent when comparing the co-
ordinates given by the respective approaches:

αk = Ik
(
ATA

)−1
ATx (11)

αNS
k =

(
AT

k Ak

)−1
AT

k x, (12)

where Ik =
[

0 ... I ... 0
]

is a matrix extracting
the coordinates corresponding to the k-th individual from
α. These differences are discussed in length in the supple-
mentary material of [18].

5. Face recognition without corruption
The above orthonormal `2 minimisation approach (Algo-

rithm 1), leads to a very efficient face recognition method
when faces are not corrupted by random noise or foreign
objects.

In order to compare to CS based face recognition, we use
the same datasets (Extended YaleB and AR) as [18, 19, 14].
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Figure 3. Prediction on face wearing sunglasses. Top two rows:
for `2 method. Bottom two rows: for `1 method. (a) and (i) are
the test faces. (b) and (j) are used to show the person’s identity
by displaying the first training image from that person. (c) and (k)
are the plots of the estimated α̂. (d) and (l) are the gross residual
images x − [A,B]α̂. (e) and (m) are the reconstructed images
by α̂, i.e. Aα + Bβ. (f) and (n) are the reconstructed images by
the predicted person’s training images only, i.e. Aαc∗ . (g) and (o)
are the reconstructed images by all subjects i.e. Aα. (h) and (p)
are Bβ. For visualisation purpose, all residual images (d,h,l,p) are
re-scaled such that the highest pixel value is 255.

Datasets The AR dataset consists of over 3, 000 frontal
images of 126 individuals. There are 26 images of each in-
dividual, taken at two different occasions [10]. The faces
in AR contain variations such as illumination change, ex-
pressions and facial disguises (i.e. sun glasses or scarf). We
randomly selected 100 subjects (50 male and 50 female) for
our experiments. For each subject, we randomly permute
the 26 images and then take the first half for training and the
rest for testing. This way, we have 1, 300 images for train-
ing and 1, 300 images for testing. For statistical stability, we

generate 10 different training and test dataset pairs by ran-
domly permuting 10 times. The extended YaleB dataset [7]
consists of 2, 414 frontal face images of 38 subjects. They
are captured under various lighting conditions and cropped
and normalised to 192 × 168 pixels. For our experiment,
we take 62 images per person thus in total we use 2, 356
images. Again for each subject, we randomly permute the
62 images and take the first half for training and the rest
for testing. For statistical stability, we generate 10 different
training and test dataset pairs.

Performance comparisons We compare our fast `2 norm
method to the `1 norm method with a Gaussian random ma-
trix [18], OMP on a Gaussian random matrix and OMP on
a Hash matrix [14] and the Nearest Subspace method [6].
Wright et al. in [18] use flattened raw pixel values as fea-
tures after downsampling the images claiming that this is
necessary for computational tractability. However, we show
our `2 norm method has no problem dealing with the orig-
inal feature dimension. We thus simply flatten the original
165× 120 images to feature vectors of length 19800.

All of the methods listed above need to estimate α, then
check the test image’s identity by identifying the minimal
residual. There are also off-line processes (independent of
the test images) which need to be carried out for each of the
methods. For the `2 norm method, R−1QT must be com-
puted, but this can happen before hand. For the `1 norm
method, the Gaussian random matrix Φ must be generated
and ΦA computed. For both OMP methods (Random OMP
and Hash OMP), each column of A must be normalied to
unit length (`2 distance). Random OMP requires a Gaussian
random matrix Φ and that ΦA be computed. In principle,
Hash OMP does not need to compute the Hash matrix H ex-
plicitly. One can feed the data stream into the hash code and
generate the HA on the fly. However, for ease of compar-
ison, we generate it explicitly here and compute HA. We
solve (4) using CVX, a package for specifying and solving
convex programs [9, 8].

Results All algorithms are evaluated on the training and
test dataset pairs constructed as described above. The com-
parison results for the AR dataset are reported in Table 1.
As we can see, `2 has the highest average recognition rate
at 95.89%, and the second best is the `1 with norm d = 300
which acheives 93.12%. What is notable here is that `2
takes only 2.71 seconds (in matlab) to estimate α for all
1, 300 test images, which is over 2, 000 times faster than the
`1 method with 2.77% higher recognition rate. The offline
process of the `2 norm method takes only 28.74 seconds,
which is negligible for an offline process. The speed of the
Nearest Subspace method is comparable with that of the `2
norm method, but it has it has worse average recognition
rate and significantly larger standard deviation. Likewise,
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Table 5. CheckID running time (for the `2 norm method) vs.
recognition rate. d = the number of rows in Φ. Time = running
time for check faces’ identification. All running time are in sec-
onds. RecRate = Recognition Rate. Data were randomly permuted
10 times, thus all measures are reported as the average ± standard
deviation.

d Time RecRate

213 28.14 ± 0.60s 95.90 ± 2.35%
211 7.34 ± 0.02s 95.92 ± 2.33%
29 2.47 ± 0.03s 95.90 ± 2.35%
27 1.05 ± 0.03s 95.87 ± 2.33%
25 0.90 ± 0.03s 95.88 ± 2.21%
23 0.88 ± 0.03s 95.57 ± 2.42%
22 0.80 ± 0.01s 95.08 ± 2.65%
21 0.79 ± 0.01s 85.35 ± 1.98%

on the YaleB dataset, the `2 norm method outperforms its
competitors as shown in Table 2. We do not report the re-
sults for d which lead to non-competitive results in Table 2.
All experiments are conducted in Matlab running on a PC
with a 2.8GHz CPU with 8GB Memory.

Improving CheckID performance Estimating the coef-
ficients using the `2-based method is so fast that the time
taken to check the identity of the result (CheckID) is the
dominating factor in its execution time. We can, how-
ever, improve the speed of the CheckID process with-
out noticeably degrading the recognition rate. Recall that
CheckID uses (10) for all methods except the nearest sub-
space method (reported in Table 1 and 2). Instead, given
an estimated α, we can check the identity in a random pro-
jected space, that is ĉ∗(x) = argmink ||Φx−ΦAkαk||`2 ,
where Φ ∈ Rd,m. Note that if the test image set denoted
as Atest is known, then ΦAtest and ΦA only need to be
computed once and the complexity of CheckID decreases
as d decreases. Fortunately, we discover that decreasing d
significantly speeds up the CheckID without noticeably de-
generating the recognition rate, as shown in Table 5. For ex-
ample, CheckID of `2 norm method takes 69.15 seconds in
Table 1 with recognition rate 95.89%, whereas it takes only
0.88 seconds with recognition rate 95.57% when d = 23.
In fact, the recognition rate only has a significant drop at
d = 21. The recognition rate is preserved despite the small
values of d in the spirit of Johnson-Lindenstrauss Lemma
[1].

6. Face recognition with corruption
White noise is quite common, and commonly assumed

in signal transmission problems. We therefore add random
noise from normal distributions to the existing AR images
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Figure 4. Recognition Rate v.s. Noise Factor on the AR dataset
images with additive Gaussian noise.
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Figure 5. Boxes representing the disguising objects. The boxes
have intensity 0.1× 255 and non-box areas have intensity 0.

in order to test resilience to normal noise sources. That is,

x́i = (xi +b zi), i = 1, . . . n

where zi ∼ N(0, 1), and b > 0 is the noise factor.
In practice, we need to make sure x́i is still a valid 8-bit

grey scale image, which can be simply done by truncating
pixel values outside the interval [0, 255] before applying all
methods to the noisy dataset. We test `2, `1 based methods
and the Nearest Subspace on images with noise. We are not
interested in testing Random OMP and Hash OMP here be-
cause (1) they are just fast greedy methods for looking for
sparse solutions. In terms of the precision on sparse signal
recovery, `1 is superior to them. (2) testing all of them on
10 different noise factor with 10 different data split takes
too much running time. Figure 4 shows that the recogni-
tion rate for the `2 norm method’s is preserved reasonably
well as the noise factor b increases. The Nearest Subspace
method performs second best with nearly double the stan-
dard deviation (shown as the error bar width). The `1 norm
method performs poorly as the noise factor increases3 This
suggests that sparseness reinforcement on the α does not
necessarily lead to robustness.

7. Face recognition with disguise

Now we study how the `2 norm method and the competi-
tors perform on faces with disguise. In the AR dataset, there
are 26 images of each person : 14 images without disguises

3We did not evaluate the `1 norm method for b > 50 as its speed and
accuracy had diminished so far that it was not warranted.
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Table 1. Recognition Rate and Running Time on AR dataset. Offline = running time for offline processing. Est = running time for estimating
coefficients. CheckID = running time for checking face identification for all test images (not per image). All running time are in seconds.
RecRate = Recognition Rate. Data were randomly permuted 10 times, thus all measures are reported as the average ± standard deviation.
Lowest running time and highest recognition rate are in bold.

Algorithms Offline Est CheckID RecRate

`2 28.74 ± 0.37s 2.71 ± 0.02s 69.15 ± 0.32s 95.89 ± 2.35%
`1(d = 300) 1.01 ± 0.01s 5519.01 ± 23.70s 91.20 ± 0.77s 93.12 ± 2.94%
`1(d = 200) 0.68 ± 0.01s 2893.47 ± 67.41s 102.16 ± 1.79s 91.54 ± 3.15%
`1(d = 100) 0.35 ± 0.00s 1068.20 ± 25.94s 102.13 ± 1.50s 86.13 ± 3.87%
Random OMP(d = 300) 1.98 ± 0.01s 1177.52 ± 3.02s 91.90 ± 0.28s 84.85 ± 3.43%
Random OMP(d = 200) 1.64 ± 0.02s 348.88 ± 1.24s 85.75 ± 0.15s 80.52 ± 4.12%
Random OMP(d = 100) 1.31 ± 0.01s 44.85 ± 0.78s 60.95 ± 0.12s 64.68 ± 5.50%
Hash OMP(d = 300) 4.51 ± 0.04s 153.08 ± 7.39s 63.90 ± 0.94s 86.92 ± 3.44%
Hash OMP(d = 200) 4.21 ± 0.02s 38.37 ± 2.11s 59.90 ± 0.39s 82.99 ± 3.63%
Hash OMP(d = 100) 3.93 ± 0.01s 7.05 ± 0.20s 58.33 ± 0.11s 64.49 ± 5.27%
Nearest Subspace 1.06 ± 0.06s 3.07 ± 0.03s 0.07 ± 0.01s 92.32 ± 4.16%

Table 2. Recognition Rate and Running Time on YaleB dataset.
Algorithms Offline Est CheckID RecRate

`2 29.02 ± 0.25s 3.55 ± 0.09s 70.60 ± 0.71s 98.91 ± 1.37%
`1(d = 300) 1.52 ± 0.01s 4191.34 ± 14.16s 79.48 ± 0.03s 96.63 ± 3.03%
Random OMP(d = 200) 2.43 ± 0.07s 12291.77 ± 87.31s 48.21 ± 0.19s 93.75 ± 4.40%
Hash OMP (d = 300) 7.04 ± 0.09s 3246.28 ± 250.37s 51.09 ± 0.98s 94.92 ± 3.86%
Nearest Subspace 2.74 ± 0.03s 3.83 ± 0.04s 0.02 ± 0.00s 96.87 ± 2.12%

but with various facial expressions and illumination condi-
tions, 6 images with sunglasses and 6 images with scarves.
We thus split the dataset into a training set (i.e. 1400 un-
occluded faces only), a sunglasses test set ( 600 images of
subjects wearing sunglasses) and a scarves test set (600 im-
ages of subjects wearing scarves). This ensures that none
of the disguising objects (sunglasses or scarves) appears in
the training set. Note that in [18] only a subset (200 out of
600 ) of disguised images are used for testing in each dis-
guise case. When we apply all competitors to the full test
sets, the results are very different from what was reported
there, which will be discussed in detail later in this section
after we introduce a method for dealing with the disguising
objects.

To represent the disguising objects Wright et al. in [18]
expand the basis by a square identity matrix I, then seek α
and β by the following `1 minimisation:

min
α∈Rn,β∈Rm

‖[ α
β

]‖`1 (13a)

s.t. Φx = Φ[A, I][
α
β

], (13b)

or alternatively

min
α∈Rn,β∈Rm

‖[ α
β

]‖`1 (14a)

s.t. ‖Φx−Φ[A, I][
α
β

]‖`2 ≤ ε. (14b)

Identity is again determined by identifying the minimal
residuals among all subjects. This is problematic, how-
ever, since I can represent any possible face image without
A. Alternatively, they construct more sophisticated features
(e.g. partition features) to improve the performance of the
`1 norm method. However, the features are not applied to
other competitors in [18], thus it is not clear that whether
the improvement comes from the `1 norm method or purely
from the new features.

We use a similar method (but with significantly fewer
additional columns) to cope with the disguise. The key idea
is to try to let β only represent non-face objects and let α
only represent faces. Clearly an identity I is not a good
choice for it is able to represent any image with that size.
Thus we generate a number of images with one grey box in
various locations to represent reasonable size objects. In the
experiment, we use 8 large (30 by 30) box images and 144
small (5 by 5) box images4 shown in Figure 5. The face

4In fact, users can design other images as long as the images follow the
“key idea” mentioned above.
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Table 3. Performance comparison when subjects are disguised with sunglasses and scarves. Since we use all non-disguised faces as training
set, we have one unique data split.

Wearing Sunglasses Wearing Scarves
Algorithms Offline Est CheckID RecRate Offline Est CheckID RecRate

`2 48.22s 1.49s 35.01s 78.50% 47.52s 1.50s 34.89s 79.50%
`1(d = 300) 0.87s 2917.69s 47.56s 40.17% 0.93s 2935.33s 47.37s 55.17%
Random OMP(d = 300) 1.60s 426.05s 40.20s 43.00% 1.70s 3170.02s 39.75s 27.00%
Hash OMP(d = 300) 4.12s 189.95s 38.66s 46.50% 4.20s 1660.65s 37.29s 32.50%

Table 4. `1 results on the downsampled AR dataset with disguise. Correct = the number of correct predictions of the test images. `1 = LP
form uses (13). `1r = the reduced problem uses (14) . Both use d = 300. m is the size of images after downsampling.

Wearing Sunglasses Wearing Scarves
Algorithms Offline Est CheckID Correct RecRate Offline Est CheckID Correct RecRate

`1(m = 540) 0.19s 3679.03s 2.78s 294 49.00% 0.20s 3738.69s 2.80s 378 63.00%
`1(m = 130) 0.05s 2903.38s 0.97s 220 36.67% 0.05s 2853.37s 0.96s 179 29.83%
`1r(m = 540) 0.19s 4828.12s 2.80s 291 48.50% 0.20s 4740.44s 2.78s 378 63.00%
`1r(m = 130) 0.05s 4156.75s 0.98s 220 36.67% 0.06s 4148.06s 1.00s 180 30.00%

images and the box images can be downloaded from the
authors’ website. Stacking the box images as columns, we

get a matrix B. Let Â = [A,B] and α̂ = [
α
β

], and then

input Â (instead of A) to Algorithm 1 to estimate α̂ (instead
ofα). The person id is predicted via minimal residuals over
all αk, while β can be ignored as it is shared by all subjects
to represent the disguising objects.

In order to ensure a fair comparison all competitors have
been tested using the same Â. Since we use all non-
disguised faces as the training set, we have one unique data
split. Table 3 shows that in the case of both sunglasses and
scarves the `2 norm method outperforms its competitors by
a very large margin in terms of recognition rate and estima-
tion running time. In particular, `2 achieves 38.33% higher
recognition rate than `1 in sunglasses case and 24.33%
higher recognition rate than `1 in scarves case with over
2, 000 times speed up.

It is interesting to note that the image reconstructed by
the `1 coefficients is highly distorted (Figure 3(m)) whereas
that reconstructed by `2 (Figure3(e) ) is more faithful to the
original image. The `1 norm gives a sparse α whereas `2
norm gives a dense one as expected (see Figure 3(k) and
3(c)). However, a sparse α does not necessarily lead to a
more robust estimation. In fact, from Table 3, the dense α
via the `2 norm outperforms the sparse one via `1 in recog-
nition rate by a significant amount.

We also tested the Nearest Subspace method on this
dataset. Since the projection onto the additional B is not
meaningful we instead used A, and achieved a recognition
rate of 62.83% on the sunglasses test set and 13.83% recog-
nition rate on the scarves test set. The result is not directly
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Figure 6. Prediction on downsampled AR faces with size 13× 10.
(a) test face. (b) predicted test face by `1 and `1r. (c) estimated
coefficient α via `1. The coefficient achieved by `1r is very sim-
ilar to (c), thus it is not presented here. (d) The difference of
the estimated coefficients by `1 and `1r. The difference is only
in O(10−4).

comparable to those in Table 3, but is still informative.

Performance comparison against Wright et al. [18] In
[18] the downsampling of AR face images from 165× 120
to 27 × 20 and 13 × 10 is justified as being necessary for
computational tractability. They train on 799 unoccluded
images and test on two separate test sets (i.e. sunglasses and
scarves) of 200 images. Since it is not stated which 799 of
the 1400 unoccluded images or which 200 of the 600 sun-
glasses(or scarves) images are used, we have selected all
1, 400 unoccluded images as the training set, and 600 sun-
glasses images and 600 scarf images as two separate testing
sets. To better compare with their results, we downsam-
ple AR images to 27 × 20 and 13 × 10 as well, though the
downsampling step itself is arguable: after downsampling ,
the 13 × 10 images are hardly recognisable as faces and it
is extremely difficult for a human to recognise the subjects’
identities (see Figure 6 (a) and (b)). We use both (13) and
(14) as in [18]. Here (13) is a linear program, hence it is
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expected to be faster than (14), which is a convex problem
(a second-order cone program) [5]. We solve both problems
using CVX [9, 8]. For (14), we set ε = 0.05 as in [18]. The
results are reported in Table 4. Both (13) and (14) produce
almost identical recognition rates though (13) is faster as ex-
pected. The difference between the estimated coefficients is
very small (in O(10−4) see Figure 6(d) ). Comparing to
Table 3, downsampled `1 still produces results inferior to
`2. Moreover, the recognition rate of downsampled `1 de-
creases as the image size m decreases.

8. Discussion
In this work we have compared Compressive Sensing

face recognition methods, such as [18] and [14], with stan-
dard `2 approaches. The conclusion we have drawn as
a result is that there is no theoretical or empirical reason
to expect that enforcing sparsity on the coefficients of (2)
will improve robustness. The experiments carried out here
clearly demonstrate this. Not only does solving (4) lead to
worse performance, it is also less robust and orders of mag-
nitudes slower than least-squares type approaches.

We do not propose a novel robust method for face recog-
nition, but rather show that well know least-squares ap-
proaches out perform many of the existing more compli-
cated algorithms. We also showed that if `1 minimisation is
intended to improve the robustness of the method then this
should be achieved by solving (6) as discussed in section
3. This may be computationally expensive, however, as it
requires solving a linear program. Ways of efficiently solv-
ing (6) and an investigation in to the performance of such a
formulation is the topic of future work.
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