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ABSTRACT
We introduce a new fully automated breast mass1 segmentation
method from dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI). The method is based on globally optimal inference
in a continuous space (GOCS) using a shape prior computed from
a semantic segmentation produced by a deep learning (DL) model.
We propose this approach because the limited amount of annotated
training samples does not allow the implementation of a robust DL
model that could produce accurate segmentation results on its own.
Furthermore, GOCS does not need precise initialisation compared to
locally optimal methods on a continuous space (e.g., Mumford-Shah
based level set methods); also, GOCS has smaller memory complex-
ity compared to globally optimal inference on a discrete space (e.g.,
graph cuts). Experimental results show that the proposed method
produces the current state-of-the-art mass segmentation (from DCE-
MRI), achieving a mean Dice coefficient of 0.77.

Index Terms— breast cancer, deep learning, energy-based
segmentation, shape prior, breast mass segmentation, breast MRI,
global optimization.

1. INTRODUCTION

Breast screening based on dynamically contrast-enhanced magnetic
resonance imaging (DCE-MRI) is particularly useful for patients
with dense breasts [1], given that for this cohort, DCE-MRI allows
an increase in sensitivity, compared to mammograms [2, 3]. Due
to the necessity of interpreting 4D images (3D volumes over time),
analysing DCE-MRI images is a complex task that requires medical
expertise and is prone to large inter-user reading variability. As a
result, computer assisted detection (CAD) systems are being devel-
oped to assist radiologists in this task [4]. The analysis used in these
systems can be divided into the detection, segmentation and classifi-
cation of masses where the main contribution of this paper lies in the
segmentation of masses. Furthermore, we also propose a novel mul-
timodal detection approach to allow the implementation of a fully
automated segmentation methodology.

The particular problem of mass segmentation is challenging due
to the variable size, appearance and shape of tumours [5], and the
relatively low signal to noise ratio of the masses in DCE-MRI. In
addition, fully automated methodologies need to address the usually
inaccurate alignment of the initial region of interest (ROI) for the
segmentation. State-of-the-art segmentation methods mostly rely on
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1We refer to mass and non-mass-like lesions throughout the paper,
not just masses.

the development of hand-crafted features [6, 7] and methods based
on globally optimal inference on a discrete space [7].

In this paper, we propose GOCS-DLP, a new breast mass seg-
mentation methodology from DCE-MRI based on globally optimal
inference on a continuous space that relies on a shape prior based
on the semantic segmentation computed from a deep learning (DL)
model (see Fig. 1). The method is inspired by a recent work [8] that
explores locally optimal inference on continuous space and uses a
shape prior based on the semantic segmentation computed from a
DL model for the problem of left ventricle segmentation from MRI.
We extend this method with the use of globally optimal inference,
which shows robustness to the initialisation of the inference pro-
cess [9]. Compared to the work by Cremers et al. [9], the main
novelty lies in the use of a DL model as a shape prior. In order to
make the segmentation fully automated, we extend the breast mass
detection methodology (from mammograms) proposed by Dhungel
et al. [10] with a model that is formed by a cascade of multimodal
deep learning classifiers. While we employ DCE-MRI for segmen-
tation, we combine T1-weighted, T2-weighted and DCE-MRI for
detection .

We test our proposed methodology using a breast multimodal
MRI dataset, containing 117 cases, with 141 annotated masses, with
46 being benign and 95 malignant, where 58 patients are for train-
ing and 59 for testing. We compare, in terms of the mean Dice co-
efficient (D̄), the segmentation results produced by our proposed
method (D̄ = 0.77) with several baselines: globally optimal in-
ference on a discrete space [7] (GODS) (D̄ = 0.74), globally op-
timal inference on a continuous space without a DL shape prior
(GOCS-MS) (D̄ = 0.73), locally optimal inference on a continu-
ous space using DL shape priors [8] (LOCS) (D̄ = 0.62), and se-
mantic segmentation from convolutional neural network (CNN) [11]
(D̄ = 0.68). These results show that our method is significantly
more accurate than the competition for the fully automated problem
(i.e. using automated mass detection) and for the semi-automated
problem (i.e., with manual mass detection).

1.1. Literature Review

The segmentation of breast masses from DCE-MRI has been ad-
dressed in several ways. Jayender et al. [6] use hand-crafted fea-
tures in a voxel-wise classification, where the disadvantage lies in
the relatively poor segmentation accuracy produced due to the lack
of a shape model that can smooth the result, which is an issue that
also affects region-growing segmentation methods [12]. Relying on
hand-crafted features is another issue of the method above [6], which
has recently been addressed by the computer vision community with
the use of deep learning models that automatically learn features for
particular classification/regression tasks [13]. More accurate results
can be obtained with segmentation methods based on global infer-



Fig. 1. Breast mass segmentation from DCE-MRI using a global
minimisation on a continuous space based on the following energy
functional terms: DL (CNN) prior [11], mean shape and the terms
inherited from the piece-wise constant Mumford Shah [19] model
(PCMS).

ence on discrete spaces [7] (i.e., graph cut [14]), which has high
memory complexity that is circumvented with the use of techniques
to reduce the number of graph nodes (e.g., superpixels [15]).

Deep learning models have been explored for semantic segmen-
tation [11], which in general need large amounts of annotated train-
ing data and produce relatively poor results in terms of segmentation
accuracy due to the lack of shape models. The use of shape prior
models within deep learning [16] has addressed the accuracy issue
at the expense of complex learning methods that require even larger
annotated training sets. Given that in medical image analysis it is
rare to come across problems with large annotated training sets, re-
cent developments focus on the use of the shape produced by deep
learning models as a weak shape prior that is combined with other
segmentation cues, such as: strong edges, homogeneous grey-value
intensities, contour smoothness, etc. In essence, this involves the
combination of level set methods [17] and deep learning shape pri-
ors, which has been recently studied for the problem of left ventricle
segmentation from MRI [8]; here the issue is the strong dependence
on an accurate intialisation because level set produces a locally opti-
mal segmentation result. Level set optimisation problems have been
relaxed [18] to transform it into globally optimal inference, which in
turn has been adapted to work with (non-deep learning) shape pri-
ors [9]. Therefore, the main novelty of our paper is the combination
of the globally optimal inference on continuous space with the use
of a deep learning-based shape prior.

For the mass detection problem, we extend the methodology
proposed by Dhungel at al. [10], which consists of a cascade of deep
learning and random forest classifiers (where the random forest clas-
sifiers use hand-crafted features) to detect masses on mammograms.
This methodology currently holds the state-of-the-art results in a few
publicly available mammogram datasets. Our proposed extension re-
duces the complexity of Dhungel at al.’s approach [10] by reducing
the number of cascade stages and avoids the use of hand-designed
features by automatically learning features with DL. Furthermore,
similarly to [7], we also consider a multimodal approach for mass
detection.

2. METHODOLOGY

In this section we explain the deep learning model used to pro-
duce the shape prior, the globally optimal inference on a continu-
ous space that uses this deep learning shape prior, and the breast
mass detection approach. Hereafter, let D = {vi,yi}|D|i=1 be the
annotated dataset, where each DCE-MRI volume is represented by
v : Ω ⊂ R3 → [0, 1] (where mass-like voxels have values closer
to 1) and the corresponding breast mass annotation is denoted by
y : Ω ⊂ R3 → {0, 1}, where 0 represents background and mass is

denoted by 1.

2.1. Deep Learning Model

The deep learning shape prior is produced by a convolutional neu-
ral network (CNN) that outputs a semantic segmentation [11] of the
breast mass from a DCE-MRI. The CNN is defined by:

f(v, θ) = y∗,CNN = fout ◦ fL ◦ ... ◦ f2 ◦ f1(v(0)), (1)

where v(0) = v (i.e., the original DCE-MRI volume), ◦ denotes the
composition operator, y∗,CNN ∈ [0, 1], and θ represents the CNN
parameters (i.e., weights and biases). Note from (1) that the output
y∗,CNN estimates a binary map with the mass segmentation. Each
layer in (1) contains a set of filters, defined by

v(l) = fl(v(l − 1)) = σ(W>
l v(l − 1) + βl), (2)

where σ(.) represents a non-linearity [13], and the convolutional fil-
ters are represented by the weight matrix Wl and bias vector βl. The
modelling of the CNN is performed with a supervised learning pro-
cess, where the goal is to approximate the annotation by minimising
the following per-pixel binomial logistic loss:

L =

|D|∑
i=1

∑
x∈Ω

log
(

1 + e(−yi(x)×y
∗,CNN
i (x))

)
, (3)

where x indexes the volume lattice Ω.

2.2. Globally Optimal Inference on a Continuous Space using a
Deep Learning Shape Prior

The locally optimal inference on a continuous space (i.e., level
set method [17]) can denote the segmentation function in various
ways [18], such as the zero level set of a signed distance func-
tion, or as one of the two regions of a binary function. We assume
the latter representation, with the level set function denoted by
ũ : Ω → {0, 1}, where the final segmentation is obtained with
y∗,LO = ũ, where LO stands for local optimisation. The en-
ergy functional of our approach extends the piece-wise constant
Mumford-Shah (PCMS) [19] (Fig. 2):

E(ũ) =β

∫
Ω

(ȳ(x)− ũ(x))2dx + α

∫
Ω

(y∗,CNN (x)− ũ(x))2dx+

λ

∫
Ω

(v(x)− ũ(x))2dx + |∇ũ(x)|

(4)

where ȳ(x) = 1
|D|
∑|D|

i=1 yi(x) represents the mean shape prior [9]
at position x ∈ Ω, y∗,CNN (.) denotes the DL shape prior from
(1). While the role of the DL shape prior is to capture mass vari-
ability, the mean shape prior attemps to constrain its translation and
scale. Finally, the last two terms (from PCMS) penalise differences
between v and ũ and large segmentation perimeters. The minimisa-
tion of the energy functional in (4) finds the steady state solution of
the gradient flow by iteratively computing the solution of the equa-
tion ∂ũ

∂t
= − ∂E

∂ũ
, where the ∂E

∂u
denotes the Gâteaux derivative of

E(ũ).
The energy functional proposed in (4) is not convex because al-

though the functional E(ũ) is convex, the domain of optimisation
is a non-convex set of functions. Following the approach by Chan
et al. [18], we relax ũ : Ω → {0, 1} to u : Ω → [0, 1] so it can
represent a convex set of functions (i.e., the domain of optimisation



Fig. 2. Energy functional terms of the proposed method: shape prior
from the CNN semantic segmentation (1), PCMS appearance and
shape terms, and mean shape from training annotations. The final
segmentation is estimated with a global inference on a continuous
space.

is now convex), and as a result transform (4) into a convex optimi-
sation problem. Theorem 1 in [18] assures the existence, but not
uniqueness, of a global minimiser of the original problem reached
by thresholding u(.):

y∗,GO = 1Σ(x), with Σ = {x ∈ Ω | u(x) > τ}, (5)

where τ ∈ [0, 1] and 1Σ(x) denotes an indicator function that re-
turns 1 if x ∈ Σ. Therefore, the inference based on the minimisation
of E(u) represents a globally optimal inference in the continuous
space, where the main advantage lies in the use of arbitrary initiali-
sation.

2.3. Breast Mass Detection based on a Cascade of Deep Learn-
ing Models

Initial mass regions are found automatically. Firstly, we follow [7]
to obtain the breast region in the volume by applying Hayton’s algo-
rithm [20]. Then, the mass detection method extends the approach
proposed by Dhungel at al. [10] that finds breast masses in mam-
mograms. The proposed approach consists of a cascade of CNNs
(1), where the first stage is a pixel-wise detection of mass candi-
dates, using as input the 3-D data of the different MRI modalities:
T1-weighted, T2-weighted and DCE-MRI. The second stage uses
connected component analysis to merge the mass candidate voxels
to form region candidates. Finally, these region candidates are fed
into a cascade of two CNNs that process those candidates sequen-
tially. The activations from the last layer of each CNN are concate-
nated and passed into a random forest classifier [21] to produce a
final region classification. This approach improves Dhungel et al.’s
approach [10] by reducing the complexity of the cascade in terms of
the number of stages and by including multimodal image data.

3. EXPERIMENTS

This section introduces the dataset and experimental setup, the meth-
ods used in the comparison, the details of our proposed method, and
the results.

3.1. Dataset

The dataset used to assess the accuracy of our methodology contains
breast MRI studies of 117 patients, where the mean age is 48 ± 12
with age range between 22 and 84 years. Three image modalities
are used in this study: DCE-MRI scans for segmentation and ROI
detection, and T1-weighted anatomical and T2-weighted anatomi-
cal scans for ROI detection only. All images were acquired on a
1.5T GE Signa HDxt scanner, with the patient in prone position.

T1-weighted anatomical volumes acqusition was performed axially
(acquisition matrix of 512 × 512) and without fat suppression. T2-
weighted anatomical volumes were obtained axially (acquisition ma-
trix of 320 × 224) and with fat suppression. In order to obtain the
DCE-MRI volumes, four or five volumes were acquired axially with
fat suppression. The first (pre-contrast) volume is obtained before
a contrast agent is injected to the patient. Then, several acquisi-
tions are obtained at different time points (post-contrast volumes),
where subtraction volumes are obtained by subtracting pre-contrast
and post-contrast volumes. The acquisition matrix is 360x360 for
these DCE-MRI volumes. All images for each patient are registered
to the first post-contrast volume. There is at least one breast mass
present in each DCE-MRI study, where the total number of masses
is 141 (46 benign and 95 malignant) that were cyto- or histopathol-
ogy confirmed. All masses were annotated by a radiographer using
a region growing algorithm on the subtraction volumes [22].

The dataset was randomly divided into training and testing sets.
In contrast to [7], where the training and testing data consisted of 35
(41 lesions) and 85 patients (93 lesions) respectively, our training set
contains studies from 58 patients, with 72 lesions (23 benign and
49 malignant), and testing has the studies from 59 patients, with
69 lesions (23 benign and 46 malignant). Segmentation accuracy is
assessed with the mean and median Dice coefficient on the training
and testing sets.

3.2. Experimental Setup

We evaluate our segmentation methodology on the first subtraction
image of DCE-MRI. As the initial ROI, we use both automated (as
explained in Sec 2.3) and manual detection. A lesion is correctly
detected when the Dice coefficient between the manual annotation
and the ROI is at least 0.4, yielding a true positive rate (TPR) of 0.85
at 3.66 false positive regions per patient. T1-weighted, T2-weighted
and the first two subtraction volumes are used for all deep learning
models during the detection phase. In the case of the manual set-up,
the initial region is the bounding box of the ground truth augmented
by three voxels in each direction.

For the segmentation baseline methods, we use the results of the
globally optimal inference on a discrete space (GODS) method [7]
that holds the current state-of-the-art results for the dataset above.
We re-implemented the locally optimal inference on a continuous
space (LOCS) [8] that uses a DL shape prior model on a distance reg-
ularised level set method [23]. In addition, we also implemented the
segmentation for globally optimal inference on a continuous space
with a mean shape prior (GOCS-MS) [9]. Finally, we also imple-
mented the CNN semantic segmentation [11] for comparison.

For our methodology, we use the training set to estimate the
mean shape ȳ in (4), the weights and biases of the CNN in (1), and
the weights of the terms in the energy functional (4). The CNN con-
sists of 3 convolutional layers, with linear activation functions, and
an output layer with two channels of size 30 × 25 × 18 represent-
ing the probability of background (channel 1) or mass (channel 2).
This fixed output size requires that the annotations are resized to fit
that output layer during training. The first layer has 10 filters of
size 5 × 5 × 3, while the second and third layers contain 20 filters
of size 3 × 3 × 3. The learning rate is 0.1 and the input layer is
a volume of size 30 × 25 × 18, where the input volume is resized
with cubic interpolation to fit this input layer. The CNN structure
and its weights and biases in (1) are estimated using exclusively the
training set, which is sub-divided into training (with 45 patients, con-
taining 57 lesions) and validation (with 13 patients and 15 lesions)
sets, for model selection. We augment the training data by flipping



Mean Dice Median Dice
Train Test Train Test Detection Inference Time

GOCS-DLP(Ours) 0.80 ± 0.11 0.77 ± 0.14 0.82 0.82 Auto 7.78 ± 20.69 s
GOCS-DLP(Ours) 0.79 ± 0.13 0.77 ± 0.13 0.81 0.80 Manual 5.95 ± 18.07 s

GODS [7] - 0.74 ± 0.12 - 0.76 Auto -
LOCS [8] 0.64 ± 0.16 0.62 ± 0.15 0.65 0.64 Auto 14.37 ± 41.15 s
LOCS [8] 0.61 ± 0.15 0.59 ± 0.17 0.64 0.61 Manual 12.90 ± 28.13 s

GOCS-MS [9] 0.76 ± 0.18 0.73 ± 0.21 0.81 0.79 Auto 7.61 ± 21.44 s
GOCS-MS [9] 0.75 ± 0.18 0.72 ± 0.22 0.80 0.79 Manual 5.83 ± 15.02 s

CNN 0.69 ± 0.16 0.68 ± 0.19 0.70 0.74 Auto 0.12 ± 0.16 s
CNN 0.66 ± 0.16 0.66 ± 0.18 0.68 0.69 Manual 0.11 ± 0.03 s

Table 1. Mean, median and standard deviation for training/testing
Dice coefficients and inference time (per lesion) for each methodol-
ogy.

ROIs in each of the three possible axes. Finally, the weights in the
energy functional in (4) are estimated (using the training set) over
a grid of possible values for each term, where the estimated values
are λ = 55, α = 2.5, β = 1.5. We label our approach as glob-
ally optimal inference on a continuous space using DL shape prior
(GOCS-DLP). Note that for the LOCS and GOCS-MS method, we
run a similar method to estimate these weights.

For the inference of GOCS-DLP, GOCS-MS and LOCS the ini-
tial segmentation consists of a rectangular centered prism of 90%
of the ROI volume. When the optimisation process has converged,
we threshold the solution of the relaxed problem at the value of
τ = 0.75 as defined in (5).

The same training, validation and testing sets are employed to
automatically detect masses. For the first stage, we use a three-scale
CNN. The network architecture in every scale is composed of 4 con-
volutional layers, a fully connected layer and a softmax operation to
normalize probabilities of being normal and mass tissue. The multi-
scale CNN produces an average of 30 false positive ROIs per image.
Such candidates are fed into a cascade of two CNNs, each containing
two convolutional - max pooling layers, two convolutional layers, a
fully connected layer and a softmax layer. Activations from both last
layers are concatenated together to form the input to a random forest
classifier to produce the final classification.

3.3. Results

We compare our proposed GOCS-DLP with GODS, LOCS, GOCS-
MS, and the CNN semantic segmentation for the training and testing
sets in Table 1, where the last column refers to the average time em-
ployed for the segmentation of one lesion. We measure the statistical
significance of the results for both automated and manual detection
in Table 1 with the Wilcoxon signed-rank test, and the results from
the proposed GOCS-DLP are significant compared to all others, as-
suming a significance level of 0.01. In particular, p-values of fully
automated GOCS-DLP with respect to fully automated GODS and
GOCS-MS are 0.0081 and 0.0005 respectively. Fig.3 shows exam-
ples of mass segmentations achieved with our proposed GOCS-DLP
after an automated detection.

4. DISCUSSION AND CONCLUSION

The experimental resuts show that the segmentation accuracy pro-
duced by our proposed GOCS-DLP is significantly better (p <
0.01) than the baselines GODS, LOCS and GOCS-MS and CNN
semantic segmentation for the problem of breast mass segmentation
from DCE-MRI. Note that the segmentation accuracy using the
manual ROI detection is not better than its automated counterpart
because masses that are not automatically detected are not passed

Fig. 3. Examples of mass segmentations produced by our proposed
GOCS-DLP. GODS results not available

to the segmentation stage, and these masses turn out to be the most
challenging ones to be segmented.

In Sec. 1, we hypothesise that the semantic segmentation from
CNN would not be robust enough because of the small training set,
and the evidence in Table 1 provides support for that hypothesis. Ta-
ble 1 also shows that the inclusion of the DL shape prior significantly
improves the quality of the segmentation (GOCS-DLP vs GOCS-
MS). However, we expect that for large training sets, the CNN alone
will be able to produce accurate segmentation on its own. In addi-
tion, one of the advantages of globally optimal inference compared
to the locally optimal inference is the independence with respect to
the initialisation: global methods produce significantly better seg-
mentation than the local method. This advantage is particularly ef-
fective to avoid large errors in segmentation after an automated de-
tection of the lesion, which might yield a misaligned ROI. In fact,
even a more precise initialisation (the bounding box of the manual
annotation) for LOCS does not achieve an accurate segmentation
(D̄ = 0.68 for the test set) compared to the global methods.

The inference time in Table 1 shows that the global methods
converge much faster. Note that the large variability in the inference
time is due to the variation of shape and size of masses. Even though
we do not have the training and inference time results for GODS [7],
the comparison in terms of “Mean Dice Test” and “Median Dice
Test” shows evidence of the disadvantage of using superpixels to
decrease the memory complexity that implicitly assumes appearance
homogeneity, which may not be correct for this problem. Finally, the
visual results in Fig. 3 show that our proposed GOCS-DLP produces
quite precise segmentation results for different types of masses.

In this work, we introduce a new segmentation method that com-
bines global inference in the continuous space with deep learning
for the problem of breast mass segmentation from DCE-MRI. Our
results show a significant improvement over the state-of-art for this
problem, where we also present results produced by several base-
line methods based on DL alone, discrete global optimisation and
continuous global optimisation. We intend to apply the proposed
methodology in other medical imaging segmentation problems.
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