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Abstract Indicator-based methods to tackle multiobjective problems have be-
come popular recently, mainly because they allow to incorporate udergmees
into the search explicitely. Multiobjective Evolutionary Algorithms (MOEAS) us
ing the hypervolume indicator in particular showed better performanceciha-
sical MOEAs in experimental comparisons. In this paper, the use ofatatic
based MOEAs is investigated for the first time from a theoretical point af.vie
We carry out running time analyses for an evolutionary algorithm wilh-& ()-
selection scheme based on the hypervolume indicator as it is used in flost o
recently proposed MOEAs. Our analyses point out two important &spéthe
search process. First, we examine how such algorithms can apgheaPlareto
front. Later on, we point out how they can achieve a good approximétioan
exponentially large Pareto front.

1 Introduction

In the last decades, there has been a growing interest ifopéwvg evolutionary al-
gorithms for multiobjective optimization problems. Mangriants proposed in the last
years make use of special indicator functions that explicitlefine the optimization
goal—independent from the algorithm itself. That is an atkge compared to earlier
algorithms where user preferences were incorporated ialtfegithms implicitly.

The hypervolume indicator, first introduced by Zitzler ete the ‘size of the space
covered’ [14], is used in many cases as the underlying inalidanction. Up to now, it
is—together with its weighted version of [12]—the only knowdiicator that is compli-
ant with the concept of Pareto-dominance, i.e., whenevet afssolutions dominates
another set, its hypervolume indicator value is higher ttienone of the latter. This
is the main reason why most of the recently proposed indidssed algorithms like
IBEA [13], SMS-EMOA [1], or the multiobjective version of CMES [8] use the hy-
pervolume as the underlying indicator—although the hypeme indicator itself is
hard to compute [3] and the best known algorithm to computehifpervolume has a
running time exponential in the number of objectives [2jv#ts shown experimentally
even for a higher number of objectives that hypervolumestadgorithms outperform
standard MOEASs [11]. A theoretical understanding why hypkme-based algorithms
outperform their Pareto-dominance based counterparttl imssing.

This paper is a first step towards a general explanation wipgetwplume-based
algorithms perform better on the known test problems thaerattate-of-the-art algo-
rithms. Our aim is to gain insights into the optimization gees of hypervolume-based



algorithms by carrying out rigorous running time analy€@ssides very general non-
convergence results on steady-state MOEAs by Zitzler 18], there are no results
on the runtime behavior of indicator based evolutionarpatgms known so far. This
paper achieves the first results of this kind. Comparisordertoer running time time
analysis results of non-hypervolume-based algorithnoefirst conclusions that and
when hypervolume-based algorithms are preferable to elherithms. Within this pa-
per, we consider two important parts of the optimizatiorcpss. First, we examine how
hypervolume-based evolutionary algorithms may approaehrareto optimal set (Sec-
tion 3). By considering the function LOTZ, we point out howethopulation moves
to the Pareto front. Second, we examine in Section 4 how tperglume indicator
helps to spread the individuals of a population over a laggete front such that a good
approximation of the Pareto optimal set can be achieveddrdllowing section, we
provide the basis for our analyses to follow.

2 The Hypervolume Indicator and Hypervolume-based
Algorithms

Classical definitions of the hypervolume indicator, alsown as Lebesgue measure
or S-metric are based on volumes of polytopes [15] or hyperci{flesnd assume that
Pareto dominance is the underlying preference relatioceRéy, Zitzler et al. proposed
a generalized hypervolume indicator defined via attainniemttions [12]. Since all
definitions are equivalent, we stick to the definition of [f&. Without loss of gener-
ality, we assume thdt objective functionsf = (f1, ..., fi) that map solutions € X
from the decision spac to an objective vectof (z) = (fi(z),..., fr(z)) € RF
have to be maximized. Instead of optimizing the weak Parewmidance relation
== {(z,y)|z,y € X AV1 < i < k: fi(x) > fi(y)}, i.e., finding its maximal
elements forming the Pareto front, the goal for hypervoldoased algorithms is to
maximize the hypervolume indicatd;. The hypervolume indicatafy (A) of a solu-
tion setA C X can be defined as the hypervolume of the space that is domibgte
the set4 and is bounded by a reference paint (ry,...,7) € R*:

In(A) = A (U [fi(a),r1] % [fa(a),ro] x -+ x [fk(a),m]>

acA

where\(S) is the Lebesgue measure of a seand|[fi(a), 1] x [fa(a), 2] X -+ %
[fx(a), 7] is the k-dimensional hypercuboid consisting of all points that &e=akly
dominated by the point but not weakly dominated by the reference point.

Note that the hypervolume indicator is Pareto-dominancepdiant, i.e., whenever
a solution setd C X is strictly better than a seB C X with respect to the weak
Pareto-dominance relatiodl (> B A B # A) the hypervolume ofd is also strictly
better than the one for B f;(A) > I (B)). Therefore, a sekK* C X that maximizes
the hypervolume indicator contains the Pareto front elgt&.

Fixing the maximal numbeu of solutions in an evolutionary algorithm, the goal
of maximizing the hypervolume indicator changes to findinggaof 1 solutions that
have the maximal hypervolume indicator value among all setssolutions. The time



until such a solution set is found for the first time is refdrte as the optimization time
of A; its expectation is denoted by the teexpected optimization time

Several evolutionary algorithms to optimize the hypermodthave been proposed in
the literature [5, 8, 12, 13]. Most of them use the sgme- \)-selection scheme which
will be also investigated in the remainder of the paper. Topupation P of the next
generation with P| = p is computed from the sg®’ of solutions that is the union of
the previous population and thegenerated offsprings in the following way: after a non-
dominated sorting of’ [4], the non-dominated fronts are, starting with the bestty
completely inserted into the new populatiénuntil the size ofP is at leasfu. For the
first front F' the inclusion of which yields a population size larger thathe solutions
x in this front with the smallest indicator log&z) := Iy (F) — Iy (F \ {z}) are
successively removed from the new population where the#tdi loss is recalculated
every time a solution is removed.

The algorithm(i + 1)-SIBEA, we investigate in the following, is based on the Sim-
ple Indicator-Based Evolutionary Algorithm (SIBEA) prageml in [12] that also uses
the above mentioned selection scheme. For our theoretieadtigations, we consider
a simplified version of SIBEA (see Algorithm 1). It uses a plagion P of sizey and
produces in each iteration one single offsprind3y removing the individual with the
smallest hypervolume loss frofd U {z}, the new parent population is obtained. The
omission of the non-dominated sorting step is not cruciabfa obtained results, i.e.,
all running time bounds are the same than with the sortindy @ominated points are
handled differently: with the original selection schemigyag's the worst point on the
worst front is deleted, whereas in our version, any domihatent is deleted with the
same probability.

Algorithm 1 (1 + 1)-SIBEA
Parameterspopulation size.

Step 1 (Initialization):
Generate an initial (multi)-set of decision vectdt®f sizep uniformly at random.
Step 2 (Repeat):

e Select an elementfrom P uniformly at random. Flip each bit af with probability
1/n to obtain an offspring’. SetP’ := P U {«'}.

e For each solution: € P’ determine the hypervolume log$z) if it is removed
from P’ i.e.,d(x) := Ig(P') — Iy (P’ \ {z}).

e Choose randomly an element € P’ with smallest loss inP’, i.e., z =
argmin, . p d(z) and setP := P’ \ {z}.

The goal of the next sections is to analyze the runtime beha¥i(. + 1)-SIBEA
on some example functions. These analyses point out sorieechasepts how the algo-
rithm can make progress during the optimization processitAahally, it gives insights
how a good spread over the whole Pareto front can be achiesied the hypervolume
indicator.
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3 Exploring a Small Pareto Front

In this section, we examine the well-known bi-objectivelgeon LOTZ with a Pareto
front of sizen + 1 and show that the expected optimization time ofthe+ 1)-SIBEA
is O(un?) if u is large enough to find all optima, i. @.,> n + 1.

LOTZ was first investigated in [10] and has been consideredeveral pre-
vious studies concerning the running time analysis of MOEMsis defined as
LOTZ: {0,1}" — IN? with

i) =L0(@) =) J[z; and folx)=TZ(x)=> [ -
i=1j=1 i=1 j=1i
Without loss of generality, we fix the reference point for garing the hypervol-
ume to(—1, —1). All results of this section still hold as long as the referepoint(r, s)
is chosen such thatands are negative.

Lemmal The expected time until tHe + 1)-SIBEA has obtained for the first time a
Pareto optimal solution o OTZ is O(un?).

Proof. Throughout this proof, we consider the situation where meteaptimal search
point belongs to the current populatid®. Let {z1,29,...,2x} C P be the set
of individuals that are not dominated by any other individira P. Denote by H
the hypervolume covered by these points. Without loss oegaity, we assume that
LO(z;) < LO(z341), 1 < i < k — 1 holds which also implies T&:;) > TZ(x;11),

1 < i<k —1, as thek individiduals do not dominate each other.

Let X; = LO(z1) + 1, X; = LO(z;) — LO(z;-1), 2 < ¢ < k and denote
by Xinax = Zle X, the maximum LO-value with respect to the reference point
(—1,—1). Similar, defineY; = TZ(zy) + 1 andy; = TZ(xp—;) — TZ(xk—i+1),

2 < i < k, and denote by .« = Zle Y; the maximum TZ-value with respect to the
reference point—1, —1).

Considering one single solutian of thek non-dominated solutions @, we study
how the hypervolume can increase. Flipping the single bitlvincreases its LO-value
increases the hypervolume by at le&st ; ;. Flipping the single bit which increases
its TZ-value increases the hypervolume by at ledst We call all thesel-bit flips
applied to one of thé: individuals good. Each of thess: good operations happens
with probability L - L . (1 — 1/n)"~! > L in the next step.

14 n . . eun ) . .

Note, that each operation is accepted as it leads to a papuiaith a larger hyper-
volume. The total increase of all good operations with resfmethe current hypervol-
umeH iS at leaStXmax + Knax Z \% Xmax : Ymax Z \/ﬁ

Choosing one of thes&d: good operations uniformly at random, the expected in-
crease of the hypervolume is at lea$t /(2k). Hence, the expected number of good
operations needed to increase the hypervolume/Byis upper bounded bgk. Using
Markov'’s inequality, the probability of having at lealst operations to achieve this goal
is upper bounded by/2. Hence, with probability at leadt/2 each phase consisting of
4k good operations is successful with probability at I6a& This implies that an ex-
pected number df phases carrying outk such good operations is enough to increase
the hypervolume by/H.



Considering all good-bit flips together, the probability of carrying out one good
operation in the next step of the algorithm is at Iegﬁlt. Hence, the expected waiting
time for a good operation i©(un/(2k)) and the expected waiting time for increasing
the hypervolume by at leastH is therefore upper bounded Y57 -2-4k) = O(un).

It remains to show thad(n) successive increases of the hypervolume by its square-
root fraction suffice to reach the maximum hypervolumeOdf:?). Let h(t) be the
hypervolume of the current solutions afténcreases by at leagth(t), i. e.,h(t+1) >
h(t) + /h(t). We want to prove by induction that(t) > #2/5. The induction basis
case holds trivially sincé(0) > 0. In general,

(t—1)2  t—1
5 5
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Therefore, the expected number of iterations for the sanavhere no solution of the
current population is Pareto optimal is upper bounde®byn?). O

h(t) > h(t — 1) + /h(t — 1) >

Theorem 2 Choosingu > n + 1, the expected optimization time of the+ 1)-SIBEA
onLOTZ is O(un?).

Proof. Using Lemma 1, the expected time until for the first time a fapptimal solu-
tion has been obtained@(un?). There arer + 1 possible values that the LO -function
can attain which implies that the maximum number of solgitrat do not dominate
each other is upper bounded by+ 1. This implies that if a certain Pareto optimal
solution has been found it will stay from that moment in the@ydation. If the whole
Pareto optimal set has not been achieved there is at leasbart®n in the population
which as a Hamming neighbor that is Pareto optimal and natagoed in the current
population. Hence, the expected waiting time for increzdie number of Pareto opti-
mal solutions in the population @(un). Having reached a Pareto optimal solution for
the first time at most additional Pareto optimal solutions have to be produceahvhi
implies that the expected time to achieve a population @holy all Pareto optimal so-
lutions isO(un?). O

4 Approximating a Large Pareto Front

The goal of this section is to examine how the hypervoluméatdr helps to achieve
a good spread over a larger Pareto front. In the case of a Rageto front, we are
interested in the time until an algorithm has achieved a gpmioximation of the Pareto
optimal set. We are considering the multiplicatisdominance relation [9] to measure
the quality of an approximation. Lete R™ be a positive real number. We define that
an objective vector e-dominatew, denoted by =, v, precisely if(1 + ) - u; > v;

for all i € {1,...,m}. An evolutionary algorithm has achieved arapproximation
for a given problem if there exists for each objective veetan the objective space a
solution with objective vector in the population such that . v. In the following,
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Figurel. lllustration of the objective space of LF. The arrows shoe/¢brresponding
points in the search space. It is important to note that bxdls are scaled logarithmi-
cally.

we present for each choice oh function where Global SEMO can not obtainedsan
approximation whild . + 1)-SIBEA is able to achieve this goal in expected polynomial
time.

We consider the bi-objective problem LHarge front) introduced in [7] which is
parametrized by the valuecoming from the definition oé-dominance. Without loss
of generality, we assume thatis even, i. e., each decision vector consists of an even
number of bits. We denote the lower half of a decision veetot (z1,...,z,) by
l(x) = (x1,...,2,/2) and its upper half by,(z) = (2,241, .., 2,). Furthermore,
we denote the length of a bit-stringoy |z|, the number of itd-bits by|z|;, the number
of its 0-bits by |x|o, and its complement by. In addition, we define the function

||

BV(z):=» 27" .a;
=1

which interprets a bit-string as the encoded natural number with respect to the binary
numeral system. We consider the function..§0, 1} — R? (large front), for a given
e € RT, defined as



J6(2) |1 +2- 2BV (u(z)) o
F1() = LF. y(2) = 4 L2120 mind ()]0, [((x)h} = Vi
: (1+e)>lh otherwise
(1 4 &) M@)o +27" 2BV (u(@) min{|(z)|o, [6(x)]1} > v/n
= LF.o(2):=
o) 2(2) {(1+5)2'£(”)° otherwise

The function LE (z) is illustrated in Figure 1. In the following proofs it will seetimes
be useful to use the following identity.

LFE 2(1‘) =

)

1+ E)W—QW(C’J)|1+1—2*"/ZBV(u(w))—2*"/2 min{|£(z)|o, |¢(z) 1 } > v/n
(14 ¢g)n—2l@)h otherwise

It has been shown in [7] that Global SEMO needs with probighbéikponentially
close tol an exponential number of steps to achieve-@pproximation of LF. On the
other hand it has been pointed out in this paper that the usedominance with the
choice ofe as used for the definition of LF achieves aapproximation in expected
polynomial time.

In the following, we show that this goal can also be achievgdubing the
(1 + 1)-SIBEA with a population of reasonable size. Our result bdlak eachs €
RR*—in contrast to the usage efdominance based algorithms examined in [7] where
the exact knowledge afis necessary to achieve a good approximation.

Let the reference point for computing the hypervolume e+ )1, (1 +¢)~1)
corresponding to the poirft-1, —1) in the double-logarithmic plot of Figure 1. Note
that the following results also hold for any reference pgins) with r, s < (1 +¢)~%.

Theorem 3 Choosingu > n/2 + 3, the expected time unt{lu + 1)-SIBEA has
achieved ar-approximation oLF. is O(unlogn).

To prove Theorem 3 we need the following lemma.

Lemma4 When optimizind-F., the (1 + 1)-SIBEA withy > n/2 + 3 will not re-
move a solutiors with {x € P : |¢(z)]1 = |¢(s)|1} = {s} from the populationP,
i.e., if no other solution: with |[¢(z)|; = |¢(s)|; is contained in the population the
(1 + 1)-SIBEA will not remove the solutionfrom the population.

Proof. If {x € P : |¢(z)|y = k} = {s} for somek, such a solutiors will be called
sole. To show the lemma, it suffices to prove that sole soistere not removed from
the population. Theéu + 1)-SIBEA removes from the union of the parent and chil-
dren populationP’ (|P’| = u + 1), a solutionz with the smallest contribution to the
hypervolumed(z) = I(P') — I(P' \ {z}).

Let s be a sole solution. We will show that there is always anotlodution =
with d(z) < d(s). For this, we first calculate a lower bound féts) and then up-
per boundd(z). The small sketches to the right of the volume calculatianshis
proof use the same double-logarithmic axes as Figure itf|¢(s)|o, [¢(s)[1} >
V/n, then (we can ignore the-2-"/2 in the exponent of the first subtrahend)



d(s) >[(1 + 6)2\e(s)|1+2—n/2Bv(u(s)) —(1 +5)2|E(s)\1—1]

) [(1 +E)n72|€(5)‘1+172_"/QBV(U(S))72_"/2

n—20t(s))y +2

n—2|((s)|s +1-27"/2

_ (1 +€)n—2|€(s)|1—1—2’"/2:| g

n—2[t(s))x
:(1 _1_5)n+1—27"/2 + (1 +E)n—2—2’”/2

_ (1 + E)n72’"/ZBV(u(s))72’”/2

n—2[l(s))y —1—-27"/2

2[6(s)lx

210(s)| +2

—(1+ €)n71+2_"/2BV(u(s))72_"/2

2[6(s)y — 1 —27"/2
2/4(s)]y +1—27™

2(1 _’_€)n+1—27"/2 _ (1 + 6)n—27"/2
—(1+ €)n—1—2*"/2 +(1+ E)n—z—r"/?
where the last inequality stems from the fact that

A 1-A _ 0 1
OrgnAa:él(l—&-E) +(1+4¢) =14+e)+1+¢e).

It remains to prove the existence of a solutienwith d(z) < d(s). If there
is a solutionz with min{|¢(2)|o, [¢(2)1} < Vvnand|{z € P : [{l(z)) =
[¢(z)l1}] > 2, thend(z) = 0 and the lemma is proven. If there is fawith
{x € P : |¢(x)y = k}| > 2, then there is a solution with |[¢(z)]; = k and
d(z) <[(1+ P2 IRV (1 4 g2lh]
. [(1 +E)nf2\€(z)\1+172_"/QBV(u(z))72_"/2
— (14 )@
<(L+e)m! — (14 6)n+2”l/2|3v(u(z))
+ (1 + s)n o (1 + €)n+172_"/zBV(u(z))
S(l + E)n—i-l + (1 + E)n _ 2(1 + E)"+1/2

sinceargmingc o<, (1 +¢)? 4 (1+¢)'~4 = 1. Comparing this t
and the above lower bound fd(s) yieldsd(z) < d(s) forall € > (. sy +1- 2

where the last inequality holds

It remains to examine the case where there is neithawrih
min{n — k., k} < v/nand|{z € P : [{(z)]y = k}| > 2 nor a

n -2z

kEwith [{x € P : |¢(x)|; = k}| > 2. As there are only:/2 + 1
possible values fok, but at leasyy + 1 > n/2 + 4 solutions inP’, by the pigeonh
principle there must be awith

2/6(=)@-
]

min{n — k. K} > [vi],
{z e P:ll(z)h =k} =2,
HzxeP:|l(z)1=k+1} > 1.

2/(z)]1 +1—27"/2



Let z be a solution with4(z)|; = k, then

d(z) <[(1 + e)2@h+27" BV (u(2) _ (1 4 )2 ] e

n—206(z)h

) [(1 +E)n—me(z)\1+1—2*"/QBV(u(z))—2*"/2

n—20f(z) —1-27"*

_ (1 + €)n72|l(z)\172}

n—2/((z)}y -2

2

:(1 + €)n+172—n/2 B (1 i €)n+172_"/2BV(u(z)),z—wﬂ

2/e(z)l
206(z)h +2

_ (1 + E)n—2-i-27"/2BV(u(z)) + (1 + 6)71—2
<(1 + 5)n+1—2""/2 _ (1 + E)n+1—27"/2BV(u(z))—27”/2

200(2))1 +1— 27"/
200(2))1 +3—27"/2

—(1+ 6)n—2+2’"/2BV(u(z))—QiWQ +(1+ 6)71—2—2*"/2

S(l + E)n+172’"/2 _ (1 _|_€)7172’"/2 _ (1 _|_€)n7172’"/2 + (1 +5)n7272’"/2
where the last inequality comes framgming< < (1 +)*™? + (1 +£)2 = 1. This
showsd(z) < d(s) and finally proves the lemma. O

Proof of Theorem 3An c-approximation of the Pareto front has been achieved if and
only if the population includes for eadhe {0, ...n/2} a solutionz with |¢(z); = k
(see [7]). Denote the set of covergd|; values byA := {|i(z)|; | « € P} and the
set of uncovered - |; values byB := {0,...,n/2} \ A. Due to the previous lemma,
we know that during the optimization process elements threbdded tad are never
removed and follow the ideas given in [7].

As long asA # {0,...,n/2}, there existsan € Aandab € Bwithb =a—1
orb=a+ 1. Letz € P be the individual withi(x)|; = a. The probability to choose

x in the next step and flip exactly one proper bit to obtain asiegivectory with
|l(y)|1 — bis at least! - min{b+1,n/2—b+1} > min{b,n/Q—b}—&-l.
1 en — pnen
Summing up over the different values tlbatan attain, we get a maximum waiting
time Ofuen-zgﬁ) m < 2uen- ZZQH 7 = O(unlog n) until solutions
with all possible values df are contained in the population which completes the proof.
O

5 Conclusions

Indicator-based evolutionary algorithms have been showe tvery successful for deal-
ing with multiobjective optimization. With this paper, wave taken a first step in un-
derstanding these algorithms using the hypervolume italitey rigorous running time

analysis. Considering the function LOTZ, we have pointetilmw the progress of

such algorithms towards the Pareto front can be analyzedr ba, we have shown that
the hypervolume indicator is provable helpful for approating large Pareto fronts.
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