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Abstract Indicator-based methods to tackle multiobjective problems have be-
come popular recently, mainly because they allow to incorporate user preferences
into the search explicitely. Multiobjective Evolutionary Algorithms (MOEAs) us-
ing the hypervolume indicator in particular showed better performance than clas-
sical MOEAs in experimental comparisons. In this paper, the use of indicator-
based MOEAs is investigated for the first time from a theoretical point of view.
We carry out running time analyses for an evolutionary algorithm with a (µ + 1)-
selection scheme based on the hypervolume indicator as it is used in most of the
recently proposed MOEAs. Our analyses point out two important aspects of the
search process. First, we examine how such algorithms can approachthe Pareto
front. Later on, we point out how they can achieve a good approximationfor an
exponentially large Pareto front.

1 Introduction

In the last decades, there has been a growing interest in developing evolutionary al-
gorithms for multiobjective optimization problems. Many variants proposed in the last
years make use of special indicator functions that explicitely define the optimization
goal—independent from the algorithm itself. That is an advantage compared to earlier
algorithms where user preferences were incorporated in thealgorithms implicitly.

The hypervolume indicator, first introduced by Zitzler et al. as the ‘size of the space
covered’ [14], is used in many cases as the underlying indicator function. Up to now, it
is—together with its weighted version of [12]—the only known indicator that is compli-
ant with the concept of Pareto-dominance, i.e., whenever a set of solutions dominates
another set, its hypervolume indicator value is higher thanthe one of the latter. This
is the main reason why most of the recently proposed indicator based algorithms like
IBEA [13], SMS-EMOA [1], or the multiobjective version of CMA-ES [8] use the hy-
pervolume as the underlying indicator—although the hypervolume indicator itself is
hard to compute [3] and the best known algorithm to compute the hypervolume has a
running time exponential in the number of objectives [2]. Itwas shown experimentally
even for a higher number of objectives that hypervolume-based algorithms outperform
standard MOEAs [11]. A theoretical understanding why hypervolume-based algorithms
outperform their Pareto-dominance based counterparts is still missing.

This paper is a first step towards a general explanation why hypervolume-based
algorithms perform better on the known test problems than other state-of-the-art algo-
rithms. Our aim is to gain insights into the optimization process of hypervolume-based
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algorithms by carrying out rigorous running time analyses.Besides very general non-
convergence results on steady-state MOEAs by Zitzler et al.[16], there are no results
on the runtime behavior of indicator based evolutionary algorithms known so far. This
paper achieves the first results of this kind. Comparisons toformer running time time
analysis results of non-hypervolume-based algorithms allow first conclusions that and
when hypervolume-based algorithms are preferable to otheralgorithms. Within this pa-
per, we consider two important parts of the optimization process. First, we examine how
hypervolume-based evolutionary algorithms may approach the Pareto optimal set (Sec-
tion 3). By considering the function LOTZ, we point out how the population moves
to the Pareto front. Second, we examine in Section 4 how the hypervolume indicator
helps to spread the individuals of a population over a large Pareto front such that a good
approximation of the Pareto optimal set can be achieved. In the following section, we
provide the basis for our analyses to follow.

2 The Hypervolume Indicator and Hypervolume-based
Algorithms

Classical definitions of the hypervolume indicator, also known as Lebesgue measure
or S-metric are based on volumes of polytopes [15] or hypercubes[6] and assume that
Pareto dominance is the underlying preference relation. Recently, Zitzler et al. proposed
a generalized hypervolume indicator defined via attainmentfunctions [12]. Since all
definitions are equivalent, we stick to the definition of [2] here. Without loss of gener-
ality, we assume thatk objective functionsf = (f1, . . . , fk) that map solutionsx ∈ X
from the decision spaceX to an objective vectorf(x) = (f1(x), . . . , fk(x)) ⊆ R

k

have to be maximized. Instead of optimizing the weak Pareto dominance relation
�:= {(x, y) |x, y ∈ X ∧ ∀1 ≤ i ≤ k : fi(x) ≥ fi(y)}, i.e., finding its maximal
elements forming the Pareto front, the goal for hypervolume-based algorithms is to
maximize the hypervolume indicatorIH . The hypervolume indicatorIH(A) of a solu-
tion setA ⊆ X can be defined as the hypervolume of the space that is dominated by
the setA and is bounded by a reference pointr = (r1, . . . , rk) ∈ R

k:

IH(A) = λ

(

⋃

a∈A

[f1(a), r1] × [f2(a), r2] × · · · × [fk(a), rk]

)

whereλ(S) is the Lebesgue measure of a setS and [f1(a), r1] × [f2(a), r2] × · · · ×
[fk(a), rk] is thek-dimensional hypercuboid consisting of all points that areweakly
dominated by the pointa but not weakly dominated by the reference point.

Note that the hypervolume indicator is Pareto-dominance compliant, i.e., whenever
a solution setA ⊆ X is strictly better than a setB ⊆ X with respect to the weak
Pareto-dominance relation (A � B ∧ B 6� A) the hypervolume ofA is also strictly
better than the one for B (IH(A) > IH(B)). Therefore, a setX∗ ⊆ X that maximizes
the hypervolume indicator contains the Pareto front entirely [6].

Fixing the maximal numberµ of solutions in an evolutionary algorithmA, the goal
of maximizing the hypervolume indicator changes to finding aset ofµ solutions that
have the maximal hypervolume indicator value among all setsof µ solutions. The time
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until such a solution set is found for the first time is referred to as the optimization time
of A; its expectation is denoted by the termexpected optimization time.

Several evolutionary algorithms to optimize the hypervolume have been proposed in
the literature [5, 8, 12, 13]. Most of them use the same(µ + λ)-selection scheme which
will be also investigated in the remainder of the paper. The populationP of the next
generation with|P | = µ is computed from the setP ′ of solutions that is the union of
the previous population and theλ generated offsprings in the following way: after a non-
dominated sorting ofP ′ [4], the non-dominated fronts are, starting with the best front,
completely inserted into the new populationP until the size ofP is at leastµ. For the
first frontF the inclusion of which yields a population size larger thanµ, the solutions
x in this front with the smallest indicator lossd(x) := IH(F ) − IH(F \ {x}) are
successively removed from the new population where the indicator loss is recalculated
every time a solution is removed.

The algorithm(µ + 1)-SIBEA, we investigate in the following, is based on the Sim-
ple Indicator-Based Evolutionary Algorithm (SIBEA) proposed in [12] that also uses
the above mentioned selection scheme. For our theoretical investigations, we consider
a simplified version of SIBEA (see Algorithm 1). It uses a population P of sizeµ and
produces in each iteration one single offspringx. By removing the individual with the
smallest hypervolume loss fromP ∪ {x}, the new parent population is obtained. The
omission of the non-dominated sorting step is not crucial for our obtained results, i.e.,
all running time bounds are the same than with the sorting. Only dominated points are
handled differently: with the original selection scheme, always the worst point on the
worst front is deleted, whereas in our version, any dominated point is deleted with the
same probability.

Algorithm 1 (µ + 1)-SIBEA
Parameters:population sizeµ

Step 1 (Initialization):
Generate an initial (multi)-set of decision vectorsP of sizeµ uniformly at random.
Step 2 (Repeat):

• Select an elementx fromP uniformly at random. Flip each bit ofx with probability
1/n to obtain an offspringx′. SetP ′ := P ∪ {x′}.

• For each solutionx ∈ P ′ determine the hypervolume lossd(x) if it is removed
from P ′, i.e.,d(x) := IH(P ′) − IH(P ′ \ {x}).

• Choose randomly an elementz ∈ P ′ with smallest loss inP ′, i. e., z =
argminx∈P d(x) and setP := P ′ \ {z}.

The goal of the next sections is to analyze the runtime behavior of (µ + 1)-SIBEA
on some example functions. These analyses point out some basic concepts how the algo-
rithm can make progress during the optimization process. Additionally, it gives insights
how a good spread over the whole Pareto front can be achieved using the hypervolume
indicator.
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3 Exploring a Small Pareto Front

In this section, we examine the well-known bi-objective problem LOTZ with a Pareto
front of sizen + 1 and show that the expected optimization time of the(µ + 1)-SIBEA
is O(µn2) if µ is large enough to find all optima, i. e.,µ ≥ n + 1.

LOTZ was first investigated in [10] and has been considered inseveral pre-
vious studies concerning the running time analysis of MOEAs. It is defined as
LOTZ : {0, 1}n → N

2 with

f1(x) = LO(x) =
n
∑

i=1

i
∏

j=1

xj and f2(x) = TZ(x) =
n
∑

i=1

n
∏

j=i

(1 − xj).

Without loss of generality, we fix the reference point for computing the hypervol-
ume to(−1,−1). All results of this section still hold as long as the reference point(r, s)
is chosen such thatr ands are negative.

Lemma 1 The expected time until the(µ + 1)-SIBEA has obtained for the first time a
Pareto optimal solution ofLOTZ is O(µn2).

Proof. Throughout this proof, we consider the situation where no Pareto optimal search
point belongs to the current populationP . Let {x1, x2, . . . , xk} ⊆ P be the set
of individuals that are not dominated by any other individual in P . Denote byH
the hypervolume covered by these points. Without loss of generality, we assume that
LO(xi) ≤ LO(xi+1), 1 ≤ i ≤ k − 1 holds which also implies TZ(xi) ≥ TZ(xi+1),
1 ≤ i ≤ k − 1, as thek individiduals do not dominate each other.

Let X1 = LO(x1) + 1, Xi = LO(xi) − LO(xi−1), 2 ≤ i ≤ k and denote
by Xmax =

∑k
i=1 Xi the maximum LO-value with respect to the reference point

(−1,−1). Similar, defineY1 = TZ(xk) + 1 and Yi = TZ(xk−i) − TZ(xk−i+1),
2 ≤ i ≤ k, and denote byYmax =

∑k
i=1 Yi the maximum TZ-value with respect to the

reference point(−1,−1).
Considering one single solutionxi of thek non-dominated solutions ofP , we study

how the hypervolume can increase. Flipping the single bit which increases its LO-value
increases the hypervolume by at leastYk−i+1. Flipping the single bit which increases
its TZ-value increases the hypervolume by at leastXi. We call all these1-bit flips
applied to one of thek individuals good. Each of these2k good operations happens
with probability 1

µ · 1
n · (1 − 1/n)n−1 ≥ 1

eµn in the next step.
Note, that each operation is accepted as it leads to a population with a larger hyper-

volume. The total increase of all good operations with respect to the current hypervol-
umeH is at leastXmax + Ymax ≥

√
Xmax · Ymax ≥

√
H.

Choosing one of theses2k good operations uniformly at random, the expected in-
crease of the hypervolume is at least

√
H/(2k). Hence, the expected number of good

operations needed to increase the hypervolume by
√

H is upper bounded by2k. Using
Markov’s inequality, the probability of having at least4k operations to achieve this goal
is upper bounded by1/2. Hence, with probability at least1/2 each phase consisting of
4k good operations is successful with probability at least1/2. This implies that an ex-
pected number of2 phases carrying out4k such good operations is enough to increase
the hypervolume by

√
H.
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Considering all good1-bit flips together, the probability of carrying out one good
operation in the next step of the algorithm is at least2k

eµn . Hence, the expected waiting
time for a good operation isO(µn/(2k)) and the expected waiting time for increasing
the hypervolume by at least

√
H is therefore upper bounded byO(µn

2k ·2 ·4k) = O(µn).
It remains to show thatO(n) successive increases of the hypervolume by its square-

root fraction suffice to reach the maximum hypervolume ofO(n2). Let h(t) be the
hypervolume of the current solutions aftert increases by at least

√

h(t), i. e.,h(t+1) ≥
h(t) +

√

h(t). We want to prove by induction thath(t) ≥ t2/5. The induction basis
case holds trivially sinceh(0) ≥ 0. In general,

h(t) ≥ h(t − 1) +
√

h(t − 1) ≥ (t − 1)2

5
+

t − 1√
5

≥ t2

5
+ t

(

1√
5
− 2

5

)

−
(

1√
5
− 1

5

)

≥ t2

5
.

Therefore, the expected number of iterations for the situation where no solution of the
current population is Pareto optimal is upper bounded byO(µn2).

Theorem 2 Choosingµ ≥ n+1, the expected optimization time of the(µ + 1)-SIBEA
on LOTZ is O(µn2).

Proof. Using Lemma 1, the expected time until for the first time a Pareto optimal solu-
tion has been obtained isO(µn2). There aren+1 possible values that the LO -function
can attain which implies that the maximum number of solutions that do not dominate
each other is upper bounded byn + 1. This implies that if a certain Pareto optimal
solution has been found it will stay from that moment in the population. If the whole
Pareto optimal set has not been achieved there is at least onesolution in the population
which as a Hamming neighbor that is Pareto optimal and not contained in the current
population. Hence, the expected waiting time for increasing the number of Pareto opti-
mal solutions in the population isO(µn). Having reached a Pareto optimal solution for
the first time at mostn additional Pareto optimal solutions have to be produced which
implies that the expected time to achieve a population including all Pareto optimal so-
lutions isO(µn2).

4 Approximating a Large Pareto Front

The goal of this section is to examine how the hypervolume indicator helps to achieve
a good spread over a larger Pareto front. In the case of a largePareto front, we are
interested in the time until an algorithm has achieved a goodapproximation of the Pareto
optimal set. We are considering the multiplicativeǫ-dominance relation [9] to measure
the quality of an approximation. Letε ∈ R

+ be a positive real number. We define that
an objective vectoru ε-dominatesv, denoted byu �ε v, precisely if(1 + ε) · ui ≥ vi

for all i ∈ {1, . . . ,m}. An evolutionary algorithm has achieved anε-approximation
for a given problem if there exists for each objective vectorv in the objective space a
solution with objective vectoru in the population such thatu �ε v. In the following,
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Figure 1. Illustration of the objective space of LF. The arrows show the corresponding
points in the search space. It is important to note that both axes are scaled logarithmi-
cally.

we present for each choice ofǫ a function where Global SEMO can not obtained anε-
approximation while(µ + 1)-SIBEA is able to achieve this goal in expected polynomial
time.

We consider the bi-objective problem LFε (large front) introduced in [7] which is
parametrized by the valueǫ coming from the definition ofǫ-dominance. Without loss
of generality, we assume thatn is even, i. e., each decision vector consists of an even
number of bits. We denote the lower half of a decision vectorx = (x1, . . . , xn) by
ℓ(x) = (x1, . . . , xn/2) and its upper half byu(x) = (xn/2+1, . . . , xn). Furthermore,
we denote the length of a bit-stringx by |x|, the number of its1-bits by|x|1, the number
of its 0-bits by|x|0, and its complement byx. In addition, we define the function

BV(x) :=

|x|
∑

i=1

2|x|−i · xi

which interprets a bit-stringx as the encoded natural number with respect to the binary
numeral system. We consider the function LFε : {0, 1}n → R

2 (large front), for a given
ε ∈ R

+, defined as



7

f1(x) = LFε,1(x) :=

{

(1 + ε)2·|ℓ(x)|1+2−n/2·BV(u(x)) min{|ℓ(x)|0, |ℓ(x)|1}≥
√

n

(1 + ε)2·|ℓ(x)|1 otherwise,

f2(x) = LFε,2(x) :=

{

(1 + ε)2·|ℓ(x)|0+2−n/2·BV(u(x)) min{|ℓ(x)|0, |ℓ(x)|1}≥
√

n

(1 + ε)2·|ℓ(x)|0 otherwise.

The function LFε(x) is illustrated in Figure 1. In the following proofs it will sometimes
be useful to use the following identity.

LFε,2(x)=

{

(1 + ε)n−2|ℓ(x)|1+1−2−n/2BV(u(x))−2−n/2

min{|ℓ(x)|0, |ℓ(x)|1}≥
√

n

(1 + ε)n−2|ℓ(x)|1 otherwise.

It has been shown in [7] that Global SEMO needs with probability exponentially
close to1 an exponential number of steps to achieve anε-approximation of LF. On the
other hand it has been pointed out in this paper that the use ofε-dominance with the
choice ofε as used for the definition of LF achieves anε-approximation in expected
polynomial time.

In the following, we show that this goal can also be achieved by using the
(µ + 1)-SIBEA with a population of reasonable size. Our result holds for eachε ∈
R

+—in contrast to the usage ofε-dominance based algorithms examined in [7] where
the exact knowledge ofε is necessary to achieve a good approximation.

Let the reference point for computing the hypervolume be((1 + ε)−1, (1 + ε)−1)
corresponding to the point(−1,−1) in the double-logarithmic plot of Figure 1. Note
that the following results also hold for any reference point(r, s) with r, s ≤ (1 + ε)−1.

Theorem 3 Choosingµ ≥ n/2 + 3, the expected time until(µ + 1)-SIBEA has
achieved anε-approximation ofLFε is O(µn log n).

To prove Theorem 3 we need the following lemma.

Lemma 4 When optimizingLFε, the (µ + 1)-SIBEA withµ ≥ n/2 + 3 will not re-
move a solutions with {x ∈ P : |ℓ(x)|1 = |ℓ(s)|1} = {s} from the populationP ,
i. e., if no other solutionx with |ℓ(x)|1 = |ℓ(s)|1 is contained in the population the
(µ + 1)-SIBEA will not remove the solutions from the population.

Proof. If {x ∈ P : |ℓ(x)|1 = k} = {s} for somek, such a solutions will be called
sole. To show the lemma, it suffices to prove that sole solutions are not removed from
the population. The(µ + 1)-SIBEA removes from the union of the parent and chil-
dren populationP ′ (|P ′| = µ + 1), a solutionx with the smallest contribution to the
hypervolumed(x) = I(P ′) − I(P ′ \ {x}).

Let s be a sole solution. We will show that there is always another solution z
with d(z) < d(s). For this, we first calculate a lower bound ford(s) and then up-
per boundd(z). The small sketches to the right of the volume calculations in this
proof use the same double-logarithmic axes as Figure 1. Ifmin{|ℓ(s)|0, |ℓ(s)|1} ≥√

n, then (we can ignore the−2−n/2 in the exponent of the first subtrahend)
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d(s) >
[

(1 + ε)2|ℓ(s)|1+2−n/2BV(u(s)) − (1 + ε)2|ℓ(s)|1−1
]

·
[

(1 + ε)n−2|ℓ(s)|1+1−2−n/2BV(u(s))−2−n/2

− (1 + ε)n−2|ℓ(s)|1−1−2−n/2]

=(1 + ε)n+1−2−n/2

+ (1 + ε)n−2−2−n/2

− (1 + ε)n−2−n/2BV(u(s))−2−n/2

− (1 + ε)n−1+2−n/2BV(u(s))−2−n/2

≥(1 + ε)n+1−2−n/2 − (1 + ε)n−2−n/2

− (1 + ε)n−1−2−n/2

+ (1 + ε)n−2−2−n/2

where the last inequality stems from the fact that

max
0≤∆≤1

(1 + ε)∆ + (1 + ε)1−∆ = (1 + ε)0 + (1 + ε)1.

It remains to prove the existence of a solutionz with d(z) < d(s). If there
is a solution z with min{|ℓ(z)|0, |ℓ(z)|1} <

√
n and |{x ∈ P : |ℓ(x)|1 =

|ℓ(z)|1}| ≥ 2, then d(z) = 0 and the lemma is proven. If there is ak with
|{x ∈ P : |ℓ(x)|1 = k}| > 2, then there is a solutionz with |ℓ(z)|1 = k and

d(z) ≤
[

(1 + ε)2|ℓ(z)|1+2−n/2BV(u(z)) − (1 + ε)2|ℓ(z)|1
]

·
[

(1 + ε)n−2|ℓ(z)|1+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2|ℓ(z)|1
]

<(1 + ε)n+1 − (1 + ε)n+2−n/2BV(u(z))

+ (1 + ε)n − (1 + ε)n+1−2−n/2BV(u(z))

≤(1 + ε)n+1 + (1 + ε)n − 2(1 + ε)n+1/2

where the last inequality holds

sinceargmin0≤∆≤1(1+ ε)∆ +(1+ ε)1−∆ = 1
2 . Comparing this upper bound ford(z)

and the above lower bound ford(s) yieldsd(z) < d(s) for all ε > 0 andn.

It remains to examine the case where there is neither ak with
min{n − k, k} <

√
n and |{x ∈ P : |ℓ(x)|1 = k}| ≥ 2 nor a

k with |{x ∈ P : |ℓ(x)|1 = k}| > 2. As there are onlyn/2 + 1
possible values fork, but at leastµ + 1 ≥ n/2 + 4 solutions inP ′, by the pigeonhole
principle there must be ak with

min{n − k, k} > ⌈
√

n⌉,
|{x ∈ P : |ℓ(x)|1 = k}| ≥ 2,

|{x ∈ P : |ℓ(x)|1 = k + 1}| ≥ 1.
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Let z be a solution with|ℓ(z)|1 = k, then

d(z) ≤
[

(1 + ε)2|ℓ(z)|1+2−n/2BV(u(z)) − (1 + ε)2|ℓ(z)|1
]

·
[

(1 + ε)n−2|ℓ(z)|1+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2|ℓ(z)|1−2
]

=(1 + ε)n+1−2−n/2 − (1 + ε)n+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2+2−n/2BV(u(z)) + (1 + ε)n−2

<(1 + ε)n+1−2−n/2 − (1 + ε)n+1−2−n/2BV(u(z))−2−n/2

− (1 + ε)n−2+2−n/2BV(u(z))−2−n/2

+ (1 + ε)n−2−2−n/2

≤(1 + ε)n+1−2−n/2 − (1 + ε)n−2−n/2 − (1 + ε)n−1−2−n/2

+ (1 + ε)n−2−2−n/2

where the last inequality comes fromargmin0≤∆≤1(1 + ε)3−∆ + (1 + ε)∆ = 1. This
showsd(z) < d(s) and finally proves the lemma.

Proof of Theorem 3.An ε-approximation of the Pareto front has been achieved if and
only if the population includes for eachk ∈ {0, . . . n/2} a solutionx with |ℓ(x)|1 = k
(see [7]). Denote the set of covered| · |1 values byA := {|l(x)|1 | x ∈ P} and the
set of uncovered| · |1 values byB := {0, . . . , n/2} \ A. Due to the previous lemma,
we know that during the optimization process elements that are added toA are never
removed and follow the ideas given in [7].

As long asA 6= {0, . . . , n/2}, there exists ana ∈ A and ab ∈ B with b = a − 1
or b = a + 1. Let x ∈ P be the individual with|l(x)|1 = a. The probability to choose
x in the next step and flip exactly one proper bit to obtain a decision vectory with
|l(y)|1 = b is at least1µ · min{b+1,n/2−b+1}

en ≥ min{b,n/2−b}+1
µen .

Summing up over the different values thatb can attain, we get a maximum waiting
time ofµen ·∑n/2

b=0
1

min{b,n/2−b}+1 ≤ 2µen ·∑n/4+1
b=1

1
b = O(µn log n) until solutions

with all possible values ofb are contained in the population which completes the proof.

5 Conclusions

Indicator-based evolutionary algorithms have been shown to be very successful for deal-
ing with multiobjective optimization. With this paper, we have taken a first step in un-
derstanding these algorithms using the hypervolume indicator by rigorous running time
analysis. Considering the function LOTZ, we have pointed out how the progress of
such algorithms towards the Pareto front can be analyzed. Later on, we have shown that
the hypervolume indicator is provable helpful for approximating large Pareto fronts.
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Intelligence, Universiẗat Dortmund, July 2006.

[3] Joshua Cooper and Tobias Friedrich. The hypervolume indicator and klee’s measure prob-
lem. Unpublished manuscript.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197,
2002.

[5] M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using the Hypervolume
Measure as Selection Criterion. InConference on Evolutionary Multi-Criterion Optimiza-
tion (EMO 2005), volume 3410 ofLNCS, pages 62–76. Springer Berlin, 2005.

[6] M. Fleischer. The measure of Pareto optima. Applications to multi-objective metaheuristics.
In C. M. Fonseca et al., editors,Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), volume 2632 ofLNCS, pages 519–533, Faro, Portugal, 2003. Springer.

[7] C. Horoba and F. Neumann. Benefits and drawbacks for the use of ǫ-dominance in evolu-
tionary multi-objective optimization. InProc. of GECCO 2008, 2008. To appear.

[8] C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-objective Opti-
mization.Evolutionary Computation, 15(1):1–28, 2007.

[9] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining Convergence and Diversity
in Evolutionary Multiobjective Optimization.Evolutionary Computation, 10(3):263–282,
2002.

[10] M. Laumanns, L. Thiele, and E. Zitzler. Running Time Analysis of Multiobjective Evo-
lutionary Algorithms on Pseudo-Boolean Functions.IEEE Transactions on Evolutionary
Computation, 8(2):170–182, 2004.

[11] T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-,and Indicator-based Methods
in Many-objective Optimization. In S. Obayashi et al., editors,Conference on Evolutionary
Multi-Criterion Optimization (EMO 2007), volume 4403 ofLNCS, pages 742–756, Berlin
Heidelberg, Germany, 2007. Springer.

[12] E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume Indicator Revisited: On the
Design of Pareto-compliant Indicators Via Weighted Integration. In S. Obayashi et al.,
editors,Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), volume
4403 ofLNCS, pages 862–876, Berlin, 2007. Springer.

[13] E. Zitzler and S. K̈unzli. Indicator-Based Selection in Multiobjective Search. InConference
on Parallel Problem Solving from Nature (PPSN VIII), volume 3242 ofLNCS, pages 832–
842. Springer, 2004.

[14] E. Zitzler and L. Thiele. Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. InConference on Parallel Problem Solving from Nature
(PPSN V), pages 292–301, Amsterdam, 1998.



11

[15] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach.IEEE Transactions on Evolutionary Computation,
3(4):257–271, 1999.

[16] E. Zitzler, L. Thiele, and J. Bader. On Set-Based Multiobjective Optimization. Technical
Report 300, Computer Engineering and Networks Laboratory, ETH Zurich, February 2008.


